Honeycombs from Hermitian Matrix Pairs - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2014

Honeycombs from Hermitian Matrix Pairs

Résumé

Knutson and Tao's work on the Horn conjectures used combinatorial invariants called hives and honeycombs to relate spectra of sums of Hermitian matrices to Littlewood-Richardson coefficients and problems in representation theory, but these relationships remained implicit. Here, let $M$ and $N$ be two $n ×n$ Hermitian matrices. We will show how to determine a hive $\mathcal{H}(M, N)={H_ijk}$ using linear algebra constructions from this matrix pair. With this construction, one may also define an explicit Littlewood-Richardson filling (enumerated by the Littlewood-Richardson coefficient $c_μν ^λ$ associated to the matrix pair). We then relate rotations of orthonormal bases of eigenvectors of $M$ and $N$ to deformations of honeycombs (and hives), which we interpret in terms of the structure of crystal graphs and Littelmann's path operators. We find that the crystal structure is determined \emphmore simply from the perspective of rotations than that of path operators.
Fichier principal
Vignette du fichier
dmAT0177.pdf (1.89 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01207559 , version 1 (01-10-2015)

Identifiants

Citer

Glenn Appleby, Tamsen Whitehead. Honeycombs from Hermitian Matrix Pairs. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. pp.899-910, ⟨10.46298/dmtcs.2451⟩. ⟨hal-01207559⟩

Collections

TDS-MACS
84 Consultations
1139 Téléchargements

Altmetric

Partager

More