Bott-Samelson Varieties, Subword Complexes and Brick Polytopes
Résumé
Bott-Samelson varieties factor the flag variety $G/B$ into a product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational; however in this paper we study fibers of this map when it is not birational. We will see that in some cases this fiber is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into a purely combinatorial one in terms of a subword complex. These simplicial complexes, defined by Knutson and Miller, encode a lot of information about reduced words in a Coxeter system. Pilaud and Stump realized certain subword complexes as the dual to the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg and Lange. These stories connect in a nice way: the moment polytope of a fiber of the Bott-Samelson map is the Brick polytope. In particular, we give a nice description of the toric variety of the associahedron.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...