Chevalley-Monk and Giambelli formulas for Peterson Varieties - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2014

Chevalley-Monk and Giambelli formulas for Peterson Varieties

Résumé

A Peterson variety is a subvariety of the flag variety $G/B$ defined by certain linear conditions. Peterson varieties appear in the construction of the quantum cohomology of partial flag varieties and in applications to the Toda flows. Each Peterson variety has a one-dimensional torus $S^1$ acting on it. We give a basis of Peterson Schubert classes for $H_{S^1}^*(Pet)$ and identify the ring generators. In type A Harada-Tymoczko gave a positive Monk formula, and Bayegan-Harada gave Giambelli's formula for multiplication in the cohomology ring. This paper gives a Chevalley-Monk rule and Giambelli's formula for all Lie types.
Fichier principal
Vignette du fichier
dmAT0175.pdf (401.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01207557 , version 1 (01-10-2015)

Licence

Identifiants

Citer

Elizabeth Drellich. Chevalley-Monk and Giambelli formulas for Peterson Varieties. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. pp.875-886, ⟨10.46298/dmtcs.2449⟩. ⟨hal-01207557⟩

Collections

TDS-MACS
122 Consultations
807 Téléchargements

Altmetric

Partager

More