Affine permutations and rational slope parking functions - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2014

Affine permutations and rational slope parking functions

Résumé

We introduce a new approach to the enumeration of rational slope parking functions with respect to the area and a generalized dinv statistics, and relate the combinatorics of parking functions to that of affine permutations. We relate our construction to two previously known combinatorial constructions: Haglund's bijection ζ exchanging the pairs of statistics (area,dinv) and (bounce, area) on Dyck paths, and Pak-Stanley labeling of the regions of k-Shi hyperplane arrangements by k-parking functions. Essentially, our approach can be viewed as a generalization and a unification of these two constructions.
Fichier principal
Vignette du fichier
dmAT0176.pdf (475.65 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01207556 , version 1 (01-10-2015)

Identifiants

Citer

Eugene Gorsky, Mikhail Mazin, Monica Vazirani. Affine permutations and rational slope parking functions. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. pp.887-898, ⟨10.46298/dmtcs.2450⟩. ⟨hal-01207556⟩

Collections

TDS-MACS
104 Consultations
916 Téléchargements

Altmetric

Partager

More