Schubert varieties, inversion arrangements, and Peterson translation - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2014

Schubert varieties, inversion arrangements, and Peterson translation

Résumé

We show that an element $\mathcal{w}$ of a finite Weyl group W is rationally smooth if and only if the hyperplane arrangement $\mathcal{I} (\mathcal{w})$ associated to the inversion set of \mathcal{w} is inductively free, and the product $(d_1+1) ...(d_l+1)$ of the coexponents $d_1,\ldots,d_l$ is equal to the size of the Bruhat interval [e,w]. We also use Peterson translation of coconvex sets to give a Shapiro-Steinberg-Kostant rule for the exponents of $\mathcal{w}$.
Fichier principal
Vignette du fichier
dmAT0162.pdf (334.68 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01207554 , version 1 (01-10-2015)

Identifiants

Citer

William Slofstra. Schubert varieties, inversion arrangements, and Peterson translation. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. pp.715-726, ⟨10.46298/dmtcs.2436⟩. ⟨hal-01207554⟩

Collections

TDS-MACS
177 Consultations
791 Téléchargements

Altmetric

Partager

More