Peak algebras, paths in the Bruhat graph and Kazhdan-Lusztig polynomials
Résumé
We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of quasisymmetric functions.
On montre une formule combinatoire pour les polynômes de Kazhdan-Lusztig qui est valable en toute généralité. Cette formule est plus simple et plus explicite que toutes les autres formules connues; de plus, elle ne peut pas être simplifiée linéairement. La preuve utilise une nouvelle base pour la sous-algèbre des sommets de l’algèbre des fonctions quasi-symmetriques.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...