Coloring Rings in Species
Résumé
We present a generalization of the chromatic polynomial, and chromatic symmetric function, arising in the study of combinatorial species. These invariants are defined for modules over lattice rings in species. The primary examples are graphs and set partitions. For these new invariants, we present analogues of results regarding stable partitions, the bond lattice, the deletion-contraction recurrence, and the subset expansion formula. We also present two detailed examples, one related to enumerating subgraphs by their blocks, and a second example related to enumerating subgraphs of a directed graph by their strongly connected components.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...