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REFLECTIVE FILTERED BACKPROJECTION: NUMERICAL RESULTS

JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Abstract. This paper gives new insights on re�ective tomography. It provides original numerical
results both in 2D and 3D. They show that using the �ltered backprojection on re�ective images
is a sensitivity analysis. By combination of the contrasts of the original images, this approach
constructs indeed a volume whose most intense voxels are located near the surfaces of the original
scene. Thus the combination of the FDK algorithm with the Maximum Intensity Projection is very
relevant to generate new views of the considered scene. On numerical examples, we investigate the
e�ect of the input contrasts, we show the robustness with respect to angle-dependancy and we show
the stability. We also apply the method for a recognition problem from optronic images.

Keywords. Re�ective tomography, FDK algorithm, Maximum Intensity Projection, optronic
recognition

1. Introduction

The Radon transform encounters a great success in several communities. In X-Ray tomography,
since transmission models involve the Radon transform, numerical reconstruction of media are
provided by inversion of the Radon transform [1], and especially by �ltered backprojection (FBP).
In pattern recognition the Hough transform for detection of linear features is similar to the adjoint
of the Radon transform. By the way the direct use of FBP has been extended to di�erent kind
of imaging modalities. In particular the use of FBP on re�ective-kind images, including images of
backscattered intensity, is a heuristics which provides interesting reconstruction results [2, 3]. This
heuristics is the so-called re�ective tomography. We can more particularly distinguish a 3D laser
imaging technique which is emerging [4, 3, 5, 6, 7]. This method is very promising, in particular in
the �eld of target recognition: using a set of 2D images of occluded objects, it enables automatic
real-time 3D visualization of the scene, and 3D extraction of targets [8].

To understand the heuristics of re�ective tomography from a mathematical point of view, we have
proposed an original mathematical study in [9], where the e�ect of FBP on some general model of
re�ective images is mathematically formulated. We have considered a scene with opaque objects
which generates piecewise smooth projections. We have expressed the FBP of such projections in
function of the variations and the jumps of the recorded images. We have emphasized that this
constitutes some sensitivity analysis; it constructs a volume where the most intense voxels must be
generically located near the surfaces of the scene that generate coherent variations in the recorded
images.

In this paper we provide original numerical results of the re�ective �ltered backprojection. We
�rst study a 2D case. We recall the main results of [9] without the technical details, and, step
by step, we illustrate the re�ective projection, the tomographic �ltering of such data, and the
associated �ltered backprojection. We emphasize where coherence occurs in the �ltered sinogram,
and thus why the most intense values in the reconstruction are generically located near the surfaces
of the scene. Then we consider the 3D extension which uses the famous FDK algorithm [10, 1]. We
illustrate this process step by step. We recall a 3D visualization principle which is very e�cient
for a re�ective FDK volume: the Maximum Intensity Projection (MIP) [11, 8]. We show that the
sequence FDK-MIP is relevant for re�ective images. We provide several examples which correspond
to di�erent explanations of contrasts. They con�rm the role of the variations, and show for example
that tangential contributions enable the reconstruction of pieces which are invisible on a binary
dataset. We then propose a robustness test; we show that the method does not need any particular
assumption about the dependance of data with respect to the angles of projection: the method
successully recombines coherent contrasts of the dataset, even if changes in the direct problem
appear. We show the stability of the process: we test the e�ect of additive noise and the e�et
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of speckle noise, for several orders of magnitude of noise. To conclude, we apply the process on
optronic data; it shows the interest of the method for the recognition problem from optronic images.

2. 2D study

In the plane R2, we consider a set of curves (Σi)16i6n, inside a curve Σ0. Σ0 plays the role of
the wall of the experiment, whereas the Σi, 1 6 i 6 n, play the role of opaque objects. We consider
a screen of projection which is oriented along a unitary vector θ ∈ S1. Each point of the screen
belongs to a line which is orthogonal to θ: x · θ = s, which plays the role of a line of projection.
At such a point, we measure an information f(y(θ, s), θ), which comes from a point of the scene:
y(θ, s) ∈ ∪06i6nΣi, along the line of projection: y(θ, s) · θ = s. The opacity assumption means
that y(θ, s) is the �rst intersection point of the line with the objects. On the screen, we then
get a 1D-projection Fθ : s 7→ f(y(θ, s), θ). Eventually but not necessary, f can represent a light
intensity which is backscattered after an illumination of the scene. That is the reason why use the
terminology of re�ective projection; also we sometimes call f the emission intensity. An example
of re�ective projection Fθ is represented on the Figure 1. We have represented a scene with three
objects: rectangle, bucket, banana, inside a circular wall. A projection on a screen is represented:
the edges of projection, which join screen pixels with the points of emission y(θ, s) have been drawn;
the gray level of an edge is the value of the projected intensity. It is reasonnable to assume that the
projection Fθ is piecewise smooth. On the example, the represented projection contains portions of
objects which belong successively to: wall, rectangle, wall, bucket, banana, wall. There is a jump at
every interface. There is also a jump on the bucket. Outside these jumps, the image is smooth. Let
us mention that if the screen were vertical and on the right, there would be a jump on the concavity
of the banana. The process is repeated for a �nite number of angles: θ scans a �nite set Θ ⊂ S1.
Thus we get a re�ective sinogram: F : (θ, s) 7→ Fθ(s), which is the juxtaposition of the individual
projections Fθ, θ ∈ Θ. For the considered example, θ scans a full circle, with a step of one degree.
The dataset is represented on Figure 1, on the right.

The �rst step of the reconstruction algorithm is applying a tomographic �ltering on each indi-
vidual projection Fθ. We get from the jumps formula:

∂sFθ ? ϕ(s) =

∫
Σ(θ)

∂τf(y, θ)ϕ(s− y · θ)dσ(y) +
∑
j

[fθ,j ]ϕ(s− s(θ, j)).

Here, Σ(θ) := {y(θ, s), s} denotes the visible part of the scene, ∂τf(·, θ) is the tangential derivative
of f(·, θ) on Σ(θ), and the jumps of Fθ are the [fθ,j ], located at the s(θ, j). The �lter ϕ is a low-pass
version of the Hilbert kernel; in particular ϕ is odd, and the size of its main lob is proportional to
the inverse of its maximum frequency. Filtering of each projection in the sinogram yields a �ltered
sinogram: see Figure 2, on the left. Because of the e�ect of the derivative and the shape of ϕ,
the variations and the jumps from the original projections are emphasized. In particular a contour
detection (jumps) of zero-crossing type can be noticed.

The next step is backprojecting the �ltered sinogram. For instance the image of the �rst example
has been �ltered and then backprojected: see Figure 2, on the right. We see again that the variations
and the jumps of the original projection are emphasized. Superposing the backprojection of each
�ltered image yields the �nal FBP, which is represented on Figure 3. The main parts of the scene
that are reconstructed are those where the intensity varies, such as the concavity of the banana, and
the points whose intensity are located near jumps for some angles, such as the North-East corner of
the rectangle. This is consistent with the following analysis. The mathematical expression of this
reconstruction by FBP is deduced from the expression of the �ltered sinogram:

R∗[∂sFθ ? ϕ](x) =
∑
θ∈Θ

∫
Σ(θ)

∂τf(y, θ)ϕ((x− y) · θ)dσ(y) +
∑
j

[fθ,j ]ϕ(x · θ − s(θ, j))

 .
Here, R∗ denotes the adjoint of the Radon transform, which sums over lines through x: R∗[g](x) =∑

θ∈Θ g(x · θ). For every pixel x of the reconstruction, the computed value is the sum along the
sinusoid x · θ = s in the �ltered sinogram. A point of the scene: y ∈ ∪iΣi is visible in the sinogram
along a piece of the curve y ·θ = s: see Figure 1. Then y is essentially visible in the �ltered sinogram
in a neighborhood of this piece, with an intensity level which depends on the contrasts at y in the
dataset. For x close to y, a piece of the sinusoid x · θ = s can contain coherent data in the �ltered
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Figure 1. One projection on a screen inside a circular wall (on the left) and a
re�ective sinogram (on the right): juxtaposition of the collected projections.

Figure 2. On the left: �ltered sinogram. On the right: backprojection of a single
�ltered projection. Filtering emphasizes the variations and the jumps.

Figure 3. FBP over the whole sinogram superposes the backprojection of the �l-
tered projections.
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sinogram: see Figure 2. Such coherent data are constructively added by summation, and thus give
a signi�cant contribution at x. Of course the value of this signi�cant contribution depends on the
intensity levels of the coherent data, and depends also on the angular range of visibility of y. By the
way, along a generical sinusoid x · θ = s, where x is far from ∪iΣi, the �ltered data are incoherent
and thus summing along such a sinusoid yields a value which is generically low.

3. 3D extension

We now consider the 3D extension of the 2D re�ective �ltered backprojection: we use the FDK
algorithm to compute a 3D reconstruction, from 2D re�ective images of a cone-beam scanning
experiment. We take perspective projections of a scene, by turning horizontally around it. On the
Figure 4, we have represented some views of a sequence of 360 images, one degree step. The �rst step
of the FDK algorithm is applying horizontally the tomographic �ltering; this especially emphasizes
the horizontal variations, including the contours which are transverse to the horizontal direction:
see Figure 4. Also juxtaposing the di�erent images provides a sinogram: see Figure 5. The next step
of the FDK algorithm is the backprojection. For each point of the volume of reconstruction, which
is voxelized, an integration over lines through the point is computed; this is done by a summation
along a curve in the �ltered sinogram. For a generical point, this curve contains incoherent data.
But for a point which is close to a surface of the original scene, the curve may contain coherent data
that are generated by the contrasts of the input images; such coherent data can be constructively
added and enables to obtain a high value at the considered voxel. We have represented slices of
the FDK volume for the considered example on the Figure 6. We present below another way of
visualization with which it will be easy to identify 3D structures.

We have emphasized that a re�ective FDK volume is a 3D volume of sensitivity; the most intense
voxels must be located near the surfaces of the original scene. So we use the Maximum Intensity
Projection (MIP) to visualize a re�ective FDK volume [8]: the volume is projected onto a screen,
by selection of the most intense voxel along each ray of projection. This method tries to visualize
surfacic points of the original scene; whereas the artifacts tend to become invisible, due to the
selection process. The MIP produces e�ciently and fastly high contrasted images: see Figure 7 for
several angles of view. These results validate the sequence FDK-MIP for 2D re�ective images. The
object is successfully visualized in 3D with this process; we get semi-transparent representations.
The 3D reconstruction allows to compute as many views as required, including views of extracted
sub-volumes.

4. Numerical tests

4.1. Contrasts. We have represented four examples of reconstruction in the Figure 8. They corre-
spond to di�erent explanations of the contrasts in the images. The general set-up is the following:
we take pictures of a tricycle by turning around it over 360 degrees, with a one degree step. For the
�rst case, we assume that we measure binary images. For the second case, we consider a uniform
object, but with some lightening e�ect; this introduces contrasts on the object. For the third case,
we assume that the intensity of the object is non-uniform in space, but is constant in angle: the
measure depends on the point but does not depend on the angle. For the last case, we combine the
two origins of contrasts: we consider a non-uniform object with a lightening e�ect. For all of the
four cases, we represent four images of the sequences, and a MIP. On these examples, we observe
that the combination of the FDK algorithm with the MIP works very well for re�ective images. It
can support di�erent kind of models, it works here for all the cases. We observe that the variations
in intensity in the dataset improve the quality of the result. For instance the interior of the wheels
is not recovered for the binary dataset but is recovered for the other cases. Also the input contrasts
add contrasts in the visualization of the reconstruction.

4.2. Robustness. In this part, we consider projections which depend on the angle of projection.
We would like to show that the method is robust to changes during the acquisition process, including
changes in the direct problem when the angle changes. We check that FDK recombines the coherent
contrasts. The scene is a cow that we observe over 360 degrees (one degree step, and the rotation
is done is the plane x3 = 0). We propose three cases: see Figure 9. For the �rst case, the color of
the cow is �xed, and some lightening e�ect is �xed. For the second case, the color is �xed, and the
lightening e�ect changes with the angle, with randomized rules. For the last case, the lightening
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Figure 4. Top: re�ective images of an object at 60, 150, 240, 330 degrees (from left
to right). Bottom: images after horizontal tomographic �ltering. Filtering especially
emphasizes the horizontal variations, including the jumps.

Figure 5. On the left: slices in the re�ective sinogram; on the right: slices in the
�ltered sinogram.

Figure 6. Three orthogonal slices in the FDK volume. The most interesting voxels
are the most intense ones.

Figure 7. MIP views of the re�ective FDK volume. Top: rotation in the plane
x3 = 0; bottom: rotation in the plane x1 = 0. The sequence FDK-MIP is relevant
for re�ective images; it successfully generates new semi-transparent views of the
scene.
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e�ect is �xed, but the color contains some randomized part. The contrasts of each individual image
contain the shape of the object and structures of the body. They depend on the angle, and this
dependancy becomes more and more severe from the �rst case to the third one.

For the �rst two cases, the contrasts tend to be consistent when the angle changes, and so FDK
successfully recombines them, and thus the shape and structures of the body are recovered. For the
last case, the shape is distinguished on every image; this provides coherent informations that are
recombined. But because of the randomization of the color, the contrasts of some structures of the
body are not coherent when the angle changes. Their contributions tend to become less signi�cant
than the shape contribution in the �nal reconstruction. We have represented a slice of the �ltered
sinograms, in the plane x3 = 0: see Figure 10. These slices con�rm that the contrast coherency
between the images is better for the �rst two datasets.

To conclude this part, when the intensities depend on the angle, as soon as there are some infor-
mations, including structural ones, which remain coherent from image to image, FDK successfully
recombines the associated coherent contrasts. In particular the method is robust to slight changes
in the direct problem.

4.3. Stability. We consider now a rotation over 360 degrees, one degree step, around a lambertian
cow: no variation are due to changes in angle. We get a sinogram d, rescaled to the range [0, 1].
But we corrupt the images with an increasing level of noise, σ = 0, 3−p, p = 4, 3, 2, 1, 0. First we
consider additive noise: da = d + σN (0, 1) where N (0, 1) is the normalized gaussian. And then
we consider some speckle noise: ds = (1 + d)(1 + σN (0, 1)). For each case, we have represented
one image of the corrupted sequence, and a MIP of the reconstruction on Figure 11. We observe
stability: a small noise in the data introduces a small noise in the reconstruction. By the way, the
object can still be quite clearly distinguished in the reconstruction with a noise level of 3−1.



REFLECTIVE FILTERED BACKPROJECTION: NUMERICAL RESULTS 7

Figure 8. From left to right: binary tricycle, uniform tricycle with lightening e�ect,
non-uniform lambertian tricycle, non-uniform tricycle with lightening e�ect. From
top to bottom: 60, 150, 240, 330 degrees of the original sequence, and a MIP of the
reconstruction. Re�ective FDK-MIP works, and contrasts improve the quality of the
reconstruction.
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Figure 9. Robustness test. From top to bottom: a few images of the sequence,
and a MIP of the reconstruction. From left to right: �xed color with �xed lighten-
ing e�ect, �xed color with randomized lightening e�ect, �xed lightening e�ect with
randomized color. Re�ective FDK-MIP recombines the coherent contrasts.

Figure 10. Filtered sinograms in the plane x3 = 0 for the datasets of Figure 9.
The contrast coherency along sinusoids is better for the �rst two cases.
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Figure 11. From left to right: image with additive noise, associated reconstruction,
image with speckle noise, associated reconstruction. From top to bottom: increasing
level of noise, σ = 0, 3−p, p = 4, 3, 2, 1, 0. Re�ective FDK-MIP is stable.
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5. Application: optronic recognition

In this section we provide an example of using the re�ective �ltered backprojection in the recogni-
tion �eld. We consider a laser system which provides active laser images of backscattered intensity
by rough surfaces. We consider a set of such optronic images, courtesy of Thales Optronics, that
has been obtained with a simulated laser system [6]. A sequence of 360 images has been computed
by turning around the scene, one degree step. The considered scene is a vehicle behind foliages:
see Figure 12 for two samples of the sequence. We apply the FDK-MIP to reconstruct-visualize

Figure 12. Optronic images of a complex scene

the scene. We have represented on Figure 13 such a semi-transparent view of the full scene. We
have also represented a view of car, after deletion of the foliages in the reconstructed volume.
The method overcomes the di�culties which are generated by the occultations. The extracted car
contains features and details that are useful for recognition.

Figure 13. Reconstruction of an optronic scene. Full scene (on the left), and after
extraction of an interesting sub-volume (on the right).

6. Conclusion

The interpretation of the mathematical formulation of re�ective tomography is consistent with
the numerical results. It provides a new mathematical insight on the subject. The use of FDK on
re�ective-kind images can be interpreted as a sensitivity analysis which recombines the coherent
horizontal contrasts of the dataset, at their true location in space. In particular the MIP is very
relevant to visualize a re�ective FDK volume. We observe that the sequence FDK-MIP is very
stable, and that the method is robust with respect to dependancy in angle. We have seen that
re�ective �ltered backprojection works without strong assumption about the re�ection process, so
it is very general and several uses could be imagined. With a binary dataset, we get a reconstruction
from shapes. The method can be used for travel-time images. We could imagine two di�erent light
sources which illuminate alternately a scene. We have seen a relevant example of target extraction
from optronic data. More generally, since active images of backscattered intensity by rough surfaces
are coherent and high contrasted, the proposed interpretation shows that the method is very relevant
for 3D laser imagery. Finally this paper opens perspectives such as recognition of targets, even when
fog, occlusions, or countermeasurements disrupt the acquisition.
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