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Bicovariograms and Euler characteristic of random fields excursions

Raphaël Lachièze-

Introduction

The geometry of random fields excursion sets has been a subject of intense research over the last two decades. Many authors are concerned with the computation of the mean [START_REF] Adler | Climbing down Gaussian peaks[END_REF][START_REF] Adler | High level excursion set geometry for non-gaussian infinitely divisible random fields[END_REF][START_REF] Adler | Euler characteristics for Gaussian fields on manifolds[END_REF][START_REF] Auffinger | Complexity of random smooth functions on the highdimensional sphere[END_REF] or variance [START_REF] Estrade | A central limit theorem for the Euler characteristic of a Gaussian excursion set[END_REF][START_REF] Cammarotta | Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics[END_REF] of the Euler characteristic, denoted by χ here.

As an integer-valued quantity, the Euler characteristic can be easily measured and used in many estimation and modelisation procedures. It is an important indicator of the porosity of a random media [START_REF] Arns | Second-order analysis by variograms for curvature measures of two-phase structures[END_REF][START_REF] Hilfer | Review on scale dependent characterization of the microstructure of porous media[END_REF][START_REF] Scholz | Permeability of porous materials determined from the Euler characteristic[END_REF], it is used in brain imagery [START_REF] Kilner | Topological inference for EEG and MEG[END_REF][START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF], astronomy, [START_REF] Cammarotta | Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics[END_REF][START_REF] Melott | The topology of large-scale structure in the universe[END_REF][START_REF] Schmalzing | Disentangling the cosmic web. I. morphology of isodensity contours[END_REF], and many other disciplines. See also [START_REF] Adler | Persistent homology for random fields and complexes[END_REF] for a general review of applied algebraic topology.

Most of the available works on random fields use the results gathered in the celebrated monograph [START_REF] Adler | Random Fields and Geometry[END_REF], or similar variants. In this case, theoretical computations of the Euler characteristic emanate from Morse theory, where the focus is on the local extrema of the underlying field instead of the set itself. For the theory to be applicable, the functions must be C 2 and satisfy the Morse hypotheses, which conveys some restrictions on the set itself.

The expected Euler characteristic also turned out to be a widely used approximation of the distribution function of the maximum of a Morse random field, and attracted much interest in this direction, see [START_REF] Adler | Climbing down Gaussian peaks[END_REF][START_REF] Auffinger | Complexity of random smooth functions on the highdimensional sphere[END_REF][START_REF] Azaïs | A general expression for the distribution of the maximum of a Gaussian field and the approximation of the tail[END_REF][START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF]. Indeed, for large r > 0, a well-behaved field rarely exceeds r, and if it does, it is likely to have a single highest peak, which yields that the level set of f at level r, when not empty, is most often simply connected, and has Euler characteristic 1. Thereby, Eχ({f r}) ≈ P(sup f r), which provides an additional motivation to compute the mean Euler characteristic of random fields.

Even though [START_REF] Adler | High level excursion set geometry for non-gaussian infinitely divisible random fields[END_REF] provides an asymptotic expression for some classes of infinitely divisible fields, most of the tractable formulae concern Gaussian fields. One of the ambitions of this paper is to provide a formula that is tractable in a rather general setting, and also works in the Gaussian realm. There seems to be no particular obstacle to extend these ideas to higher dimensions in a future work.

Given a set A ⊂ R 2 , let Γ(A) be the class of its bounded arc-wise connected components. We say that a set A is admissible if Γ(A) and Γ(A c ) are finite, and in this case its Euler characteristic is defined by

χ(A) = #Γ(A) -#Γ(A c ),
where # denotes the cardinality of a set. The theoretical results of Adler and Taylor [START_REF] Adler | Random Fields and Geometry[END_REF] regarding the Euler characteristic of random excursions require second order differentiability of the underlying field f , but the expression of the mean Euler characteristic only involves the firstorder derivatives, suggesting that second order derivatives do not matter in the computation of the Euler characteristic. In the words of Adler and Taylor (Section 11.7), regarding their Formula (11.7.6), it is a rather surprising fact that the [mean Euler characteristic of a Gaussian field] depends on the covariance of f only through some of its derivatives at zero, the latter referring to first-order partial derivatives. We present here a new method for which the second order differentiability is not needed. The results are valid for C 1 fields with locally Lipschitz derivatives, also called C 1,1 fields, relaxing slightly the classical C 2 Morse framework.

Our results exploit the findings of [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF] connecting smooth sets Euler characteristic and variographic tools. For some λ ∈ R and a bi-variate function f , define for x ∈ R 2 the event

δ η (x, f, λ) = 1 {f (x) λ,f (x+ηu1)<λ,f (x+ηu2)<λ} , η ∈ R,
where (u 1 , u 2 ) denotes the canonical basis of R 2 , assuming f is defined in these points. When f is a random field, let δη (x, f, λ) denote the event {δ η (x, f, λ) = 1}. Let us write a corollary of our main result here, a more general statement can be found in Section 3. Denote by Vol 2 the Lebesgue measure on R 2 . For W ⊂ R 2 and a function f

: W → R 2 , introduce the mapping R 2 → R 2 , f [W ] (x) = -∞ if x / ∈ W f (x) otherwise, so that the intersections of level sets of f with W are the level sets of f [W ] . Theorem 1. Let W = [0, a] × [0, b] for some a, b > 0, f be a C 1 real random field on R 2 with locally Lipschitz partial derivatives ∂ 1 f, ∂ 2 f , λ ∈ R, and let F = {x ∈ W : f (x) λ}.
Assume furthermore that the following conditions are satisfied: (i) For some κ > 0, for x ∈ R 2 , the random vector (f (x), ∂ 1 f (x), ∂ 2 f (x)) has a density bounded by κ from above on R 3 .

(ii) There is p > 6 such that

E[Lip(f, W ) p ] < ∞, E[Lip(∂ i f, W ) p ] < ∞, i = 1, 2,
where Lip(g, W ) denotes the Lipschitz constant of a vector-valued function g on W .

Then

E[#Γ(F )] < ∞, E[#Γ(F c )] < ∞, and 
E[χ(F )] = lim ε→0 x∈εZ 2 [P( δε (x, f [W ] , λ)) -P( δ-ε (x, -f [W ] , -λ))] (1) = lim ε→0 ε -2 R 2 P( δε (x, f [W ] , λ)) -P( δ-ε (x, -f [W ] , -λ)) dx. ( 2 
)
If f is furthermore stationary, we have

E[χ(F )] = χ(f, λ)Vol 2 (W ) + Per(f, λ)Per(W ) + Vol 2 (f, λ)χ(W )
where the volumic Euler characteristic, perimeter and volume χ, P er, Vol 2 are defined in Theorem 9, they only depend on the behavior of f around the origin.

The right hand side of ( 2) is related to the bicovariogram of the set F , defined by

δ x,y 0 (F ) = Vol 2 (F ∩ (F + x) c ∩ (F + y) c ), x, y ∈ R 2 , (3) 
in that (2) can be reformulated as

Eχ(F ) = lim ε→0 ε -2 (E[δ -εu1,-εu2 0 (F )] -E[δ εu1,εu2 0 (F c )]).
This approach seems to be new in the literature. It highlights the fact that under suitable conditions, the mean Euler characteristic of random level sets is linear in the field's third order marginal. In [15, Corollary 6.7], Fu gives an expression for the Euler characteristic of a set with positive reach by means of local topological quantities related to the height function. If the set is the excursion of a random field, this approach is of a different nature, as passing Fu's formula to expectations would not lead to an expression depending directly on the field's marginals. We also give in Theorem 3 a bound on the number of connected components of the excursion of f , valid in any dimension, which is finer than just bounding by the number of critical points; we could not locate an equivalent result in the literature. This topological estimate is interesting in its own and also applies uniformly to the number of components of 2D-pixel approximations of the excursions of f . We therefore use it here as a majoring bound in the application of Lebesgue's theorem to obtain (1)- [START_REF] Adler | Persistent homology for random fields and complexes[END_REF].

It is likely that the results concerning the planar Euler characteristic could be extended to higher dimensions. See for instance [START_REF] Svane | Local digital estimators of intrinsic volumes for boolean models and in the design-based setting[END_REF], that paves the way to an extension of the results of [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF] to random fields on spaces with arbitrary dimension. Also, the uniform bounded density hypothesis is relaxed and allows for the density of the (d + 1)-tuple (f (x), ∂ 1 f (x), . . . , ∂ d f (x)) to be arbitrarily large in the neighborhood of (λ, 0, . . . , 0). Theorem 7 features a result where f is defined on the whole space and the level sets are observed through a bounded window W , as is typically the case for level sets of non-trivial stationary fields, but the intersection with ∂W requires additional notation and care. See Theorem 9 for a result tailored to deal with excursions of stationary fields.

Theorem 11 features the case where f is a Gaussian field assuming only C 1,1 regularity (classical literature about random excursions require C 2 Morse fields in dimension d 2, or C 1 fields in dimension 1). Under the additional hypothesis that f is stationary and isotropic, we retrieve in Theorem 13 the classical results of [START_REF] Adler | Random Fields and Geometry[END_REF].

Let us explore other consequences of our results. Let h : R → R be a C 1 test function with compact support, and F as in Theorem 1. Using the results of our paper, it is shown in the follow-up article [START_REF] Lachièze-Rey | An analogue of Kac-Rice formula for Euler characteristic[END_REF] that for any deterministic

C 2 Morse function f on R 2 , R χ(F )h(λ)dλ = - 2 i=1 W 1 {∇f (x)∈Qi} [h (f (x))∂ i f (x) 2 + h(f (x))∂ ii f (x)]dx + boundary terms (4)
where

Q 1 = {(x, y) ∈ R 2 : y < x < 0}, Q 2 = {(x, y) ∈ R 2 : x < y < 0},
yielding applications for instance to shot-noise processes. In the context of random functions, no marginal density hypothesis is required to take the expectation, at the contrary of analogous results, including those from the current paper. Biermé & Desolneux [10, Section 4.1] later gave another interpretation of (4), showing that if it is extended to a random isotropic stationary field which gradient does not vanish a.e. a.s., it can be rewritten as a simpler expression, after appropriate integration by parts, namely

E U χ({f λ}; U )h(λ)dλ = Vol 2 (U )E h(f (0))[-∂ 11 f (0) + 4∂ 12 f (0)∂ 1 f (0)∂ 2 f (0) ∇f (0) -2 ] ,
where U is an appropriate open set, and χ({f λ; U }) is the total curvature of the level set {f λ} within U , generalizing the Euler characteristic. They obtained this result by totally different means, via an approach involving Gauss-Bonnet theorem, without any requirement on f apart from being C 2 .

Topological approximation

Let f be a function of class C 1 over some window W ⊂ R d , and λ ∈ R. Define

F := F λ (f ) = {x ∈ W : f (x) λ}, F λ + (f ) = {x ∈ W : f (x) > λ}.
Remark that F λ + (f ) = (F -λ (-f )) c . If we assume that ∇f does not vanish on f -1 ({λ}), then

∂F λ (f ) = ∂F λ + (f ) = f -1 ({λ})
, and this set is furthermore Lebesgue-negligible, as a (d -1)dimensional manifold.

According to [14, 4.20], ∂F λ (f ) is regular in the sense that its boundary is C 1 with Lipschitz normal, if ∇f is locally Lipschitz and does not vanish on ∂F λ (f ). This condition is necessary to prevent F from having locally infinitely many connected components, which would make Euler characteristic not properly defined in dimension 2, see [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF]Remark 2.11]. We call C 1,1 function a differentiable function whose gradient is a locally Lipschitz mapping. Those functions have been mainly used in optimization problems, and as solutions of some PDEs, see for instance [START_REF] Hiriart-Urrurty | Generalized Hessian matrix and secondorder optimality conditions for problems with C 1,1 data[END_REF]. They can also be characterized as the functions which are locally semiconvex and semiconcave, see [START_REF] Cannarsa | Semi-concave functions, Hamilton-Jacobi equations and Optimal Control[END_REF].

The results of [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF] also yield that the Lipschitzness of ∇f is sufficient for the digital approximation of χ({f λ}) to be valid. It seems therefore that the C 1,1 assumption is the minimal one ensuring the Euler characteristic to be computable in this fashion.

Observation window

An aim of the present paper is to advocate the power of variographic tools for computing intrinsic volumes of random fields excursions. Since many applications are concerned with stationary random fields on the whole plane, we have to study the intersection of excursions with bounded windows, and assess the quality of the approximation.

To this end, call rectangle of R d any set W = I 1 × • • • × I d where the I k are possibly infinite closed intervals of R with non-empty interiors, and let corners(W ), which number is between 0 and 2 d , be the points having extremities of the I i as coordinates. Then call polyrectangle a finite union W = ∪ i W i where each W i is a rectangle, and for i = j, corners(W i ) ∩ corners(W j ) = ∅. Call W d the class of polyrectangles.

For W ∈ W d and x ∈ W , let I x (W ) = {1, . . . , d} if x ∈ int(W ), and otherwise let I x (W ) ⊂ {1, . . . , d} be the set of indices i such that x + εu i ∈ ∂W and x -εu i ∈ ∂W for arbitrarily small ε > 0, where

u i is the i-th canonical vector of R d . Say then that x is a k-dimensional point of W if |I x (W )| = k. Denote by ∂ k W the set of k-dimensional points, and call k-dimensional facets the connected components of ∂ k W . Remark that I x (W ) is constant over a given facet. Note that ∂ d W = int(W ) and ∂W = ∪ d-1 k=0 ∂ k W . We extend the notation corners(W ) = ∂ 0 W. An alternative definition is that a subset F ⊂ W is a facet of W if it is a maximal relatively open subset of a affine subspace of R d . Definition 2. Let W ∈ W d , and f : W → R be of class C 1,1 . Say that f is regular within W at some level λ ∈ R if for 0 k d, {x ∈ ∂ k W : f (x) = λ, ∂ i f (x) = 0, i ∈ I x (W )} = ∅, or equivalently if for every k-dimensional facet G of W , the k-dimensional gradient of the restriction of f to G does not vanish on f -1 ({λ}) ∩ G.
For such a function f in dimension 2, it is shown in [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF] that the Euler characteristic of its excursion set F = F λ (f ) ∩ W can be expressed by means of its bicovariograms, defined in (3). For ε > 0 sufficiently small

χ(F ) = ε -2 [δ -εu1,-εu2 0 (F ) -δ εu1,εu2 0 (F c )]. ( 5 
)
The proof is based on the Gauss approximation of F :

F ε = x∈εZ 2 ∩F x + ε[-1/2, 1/2) 2 .
According to [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF]Theorem 2.7], for ε sufficiently small,

χ(F ) = χ(F ε ) = x∈εZ 2 (δ ε (x, f [W ] , λ) -δ -ε (x, -f [W ] , -λ)) = ε -2 R 2 (δ ε (x, f [W ] , λ) -δ -ε (x, -f [W ] , -λ))dx.
If f is a random field, the difficulty to pass the result to expectations is to majorize the right hand side uniformly in ε by an integrable quantity, and this goes through bounding the number of connected components of F and its approximation F ε . This is the object of the next section.

Topological estimates

The next result, valid in dimension d 1, does not concern directly the Euler characteristic. Its purpose is to bound the number of connected components of F λ (f ) ∩ W by an expression depending on f and its partial derivatives. It turns out that a similar bound holds for the excursion approximation (F λ (f ) ∩ W ) ε in dimension 2, uniformly in ε, enabling the application of Lebesgue's theorem to the point-wise convergence [START_REF] Adler | Euler characteristics for Gaussian fields on manifolds[END_REF].

Traditionally, see for instance [START_REF] Estrade | A central limit theorem for the Euler characteristic of a Gaussian excursion set[END_REF]Prop. 1.3], the number of connected components of the excursion set, or its Euler characteristic, is bounded by using the number of critical points, or by the number of points on the level set where f 's gradient points towards a predetermined direction. Here, we use another method based on the idea that in a small connected component, a critical point is necessarily close to the boundary, where f -λ vanishes. It yields the expression [START_REF] Adler | Random Fields and Geometry[END_REF] as a bound on the number of connected components. It also allows in Section 3, devoted to random fields, to relax the usual uniform density assumption on the marginals of the (d+1)-tuple (f, ∂ i f, i = 1, . . . , d), leaving the possibility that the density is unbounded around (λ, 0, . . . , 0).

Denote by Lip(g; A) ∈ R + ∪ {∞}, or just Lip(g), the Lipschitz constant of a mapping g going from a metric space A to another metric space. Let

W ∈ W d , g : W → R, C 1 with Lipschitz derivatives. Denote by H k d the k-dimensional Hausdorff measure in R d . Define the possibly infinite quantity, for 1 k d, I k (g; W ) : = max(Lip(g), Lip(∂ i g), 1 i d) k ∂ k W H k d (dx) max (|g(x)|, |∂ i g(x)|, i ∈ I x (W )) k ,
and I 0 (g; W ) := #corners(W ). Put I k (g; W ) = 0 if Lip(g) = 0 and g vanishes, 1 k d.

Theorem 3. Let W ∈ W d , and f : W → R be a C 1,1 function. Let F = F λ (f ) or F = F λ + (f ) for some λ ∈ R. Assume that f is regular at level λ in W . (i) For d 1, #Γ(F ∩ W ) d k=0 2 k κ -1 k I k (f -λ; W ), (6) 
where κ k is the volume of the k-dimensional unit ball.

(ii

) If d = 2, #Γ((F ∩ W ) ε ) C 2 k=0 I k (f -λ; W ) (7)
for some C > 0 not depending on f, λ, or ε.

The proof is given in Section 5.

Remark 4. Theorem 7 gives conditions on the marginal densities of a bivariate random field ensuring that the term on the right hand side has finite expectation.

Remark 5. Similar results hold if partial derivatives of f are only assumed to be Höldercontinuous, i.e. if there is δ > 0 and

H i > 0, i = 1, . . . , d, such that ∂ i f (x) -∂ i f (y) H i x -y δ for x, y such that [x, y] ⊂ W .
Namely, we have to change constants and replace the exponent k in the max by an exponent kδ. We do not treat such cases here because, as noted at the beginning of Section 2, if the partial derivatives are not Lipschitz, the upper level set is not regular enough to compute the Euler characteristic from the bicovariogram, but the proof is similar to the C 1,1 case.

Remark 6. Calling B the right hand term of [START_REF] Arns | Second-order analysis by variograms for curvature measures of two-phase structures[END_REF] and noticing that F λ + (f ) c is an upper level set of -f , an easy reasoning yields (see [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF]Remark 2.13])

|χ((F λ (f ) ∩ W ) ε )| 2B.

Mean Euler characteristic of random excursions

We call here C 1 random field over a set Ω ⊆ R d a separable random field (f (x); x ∈ Ω), such that in each point x ∈ Ω, the limits

∂ i f (x) := lim s→0 f (x + su i ) -f (x) s , i = 1, 2,
exist a.s., and the fields (∂ i f (x), x ∈ Ω), i = 1, . . . , d, are a.s. separable with continuous sample paths. See [START_REF] Adler | The Geometry of Random fields[END_REF][START_REF] Adler | Random Fields and Geometry[END_REF] for a discussion on the regularity properties of random fields. Say that the random field is C 1,1 if the partial derivatives are a.s. locally Lipschitz.

Many sets of conditions allowing to take the expectation in ( 5) can be derived from Theorem 3. We give below a compromise between optimality and compactness.

Theorem 7. Let W ∈ W d bounded, and let f be a C 1,1 random field on W , λ ∈ R, F = {x ∈ W : f (x) λ}.
Assume that the following conditions are satisfied: The proof is deferred to Section 5. We give an explicit expression in the case where f is stationary. Boundary terms involve the perimeter of F , introduced below. Denote by C 1 c the class of compactly supported C 1 functions on R 2 endowed with the norm ϕ = sup x∈R 2 |ϕ(x)|. For a measurable set A ⊂ R 2 , and u ∈ S 1 , the unit circle in R 2 , define the variational perimeter of A in direction u by Per u (A) = sup

(i) For some κ > 0, α > 1, for 1 k d, x ∈ ∂ k W, I ⊂ I k , the random (k + 1)-tuple (f (x) -λ, ∂ i f (x), i ∈ I) satisfies P(|f (x) -λ| ε, |∂ i f (x)| ε, i ∈ I) κε αk , ε > 0, (ii) for some p > dα(α -1) -1 , E[Lip(f ) p ] < ∞, E[Lip(∂ i f ) p ] < ∞, i = 1, . . . , d. Then E[#Γ(F )] < ∞, E[#Γ(F c )] < ∞
ϕ∈C 1 c : ϕ 1 A ∇ϕ(x), u dx.
Recall that (u 1 , u 2 ) is the canonical basis of R 2 , and introduce the

• ∞ -perimeter Per ∞ (A) = Per u1 (A) + Per u2 (A),
named so because it is the analogue of the classical perimeter when the Euclidean norm is replaced by the • ∞ -norm, see [START_REF] Galerne | Random measurable sets and covariogram realisability problems[END_REF].

Theorem 9. Let f be a C 1,1 stationary random field on R 2 , λ ∈ R, W ∈ W 2 bounded. Assume that (f (0), ∂ 1 f (0), ∂ 2 f (0)
) has a bounded density, and that there is p > 6 such that

E Lip(f ; W ) p < ∞, E Lip(∂ i f ; W ) p < ∞, i = 1, 2.
Then the following limits exist:

χ(f , λ) := lim ε→0 ε -2 P( δε (0, f, λ)) -P( δ-ε (0, -f, -λ)) , Per ui (f , λ) := lim ε→0 ε -1 P(f (0) λ, f (εu i ) < λ), i = 1, 2, Vol 2 (f , λ) := P(f (0) λ),
and we have, with Per ∞ = Per u1 + Per u2 ,

E[χ(F λ (f ) ∩ W )] = Vol 2 (W )χ(f , λ) + 1 4 (Per u2 (W )Per u1 (f , λ) + Per u1 (W )Per u2 (f , λ)) + χ(W )Vol 2 (f , λ) (8) 
E[Per ∞ (F λ (f ) ∩ W )] = Vol 2 (W )Per ∞ (f , λ) + Per ∞ (W )Vol 2 (f , λ) (9) 
E[Vol 2 (F λ (f ) ∩ W )] = Vol 2 (W )Vol 2 (f , λ). ( 10 
)
The proof of this result requires notation contained in the proof of Theorem 7, it is therefore placed at Section 5.3.

Gaussian level sets

Let (f (x), x ∈ W ) be a centred Gaussian field on some W ∈ W d . Let the covariance function be defined by

σ(x, y) = E[f (x)f (y)], x, y ∈ W.
Say that some real function h satisfies the Dudley condition on D ⊂ W if for some α > 0, |h(x) -h(y)| | log( x -y )| -1-α for x, y ∈ W . We will make the following assumption on σ: Assumption 10. Assume that x ∈ W → ∂ 2 σ(x, x)/∂x i ∂y i exists and satisfies the Dudley condition for i = 1, . . . , d, that the partial derivatives ∂ 4 σ(x, x)/∂ xi ∂ xj ∂ yi ∂ yj , x ∈ W , 1 i, j d, exist and that for some finite partition {D k } of W they satisfy the Dudley condition over each D k .

Theorem 11. Let W ∈ W d bounded. Assume that σ satisfies Assumption 10 and that for x ∈ W , (f (x), ∂ i f (x), i = 1, . . . , d) is non-degenerate. Then for any λ ∈ R, F = F λ (f ) satisfies the conclusions of Theorem 7.

Proof. Assumption 10 and [1, Theorem 2.2.2] yield that for i = 1, . . . , d, (∂ i f (x); x ∈ W ) is well defined in the L 2 sense and is a Gaussian field with covariance functions E[∂ i f (x)∂ i f (y)] = ∂ 2 σ(x, y)/∂x i ∂y i for x, y ∈ W . Since the latter covariance functions satisfy Dudley condition, Theorem 1.4.1 in [START_REF] Adler | Random Fields and Geometry[END_REF] implies the sample-paths continuity of the partial derivatives.

Using again [1, Theorem 2.2.2], for 1 i, j d, (∂ i,j f (x), x ∈ D) is a well-defined Gaussian field with covariance E[∂ i,j f (x)∂ i,j f (y)] = ∂ 4 σ(x, y)/∂x i ∂y i ∂x j ∂y j . For each k, [6, Theorem 1.4.1] again yields that ∂ i,j f is continuous and bounded over D k , hence ∂ i,j f is bounded over W . Finally, formula (2.1.4) in [START_REF] Adler | Random Fields and Geometry[END_REF] 

yields that E [sup x∈W |∂ i,j f (x)| p ] < ∞ for p 0. Since Lip(∂ i f ) d max j=1,...,d ∂ ij f , Condition (ii) of Theorem 7 is satisfied for any α > 1.
To prove (i), put for notational convenience f (0) := f, f (i) = ∂ i f, i = 1, . . . , d. We have for i, j ∈ {0, . . . , d},

|Ef (i) (x)f (j) (x) -f (i) (y)f (j) (y)| E f (i) (x) -f (i) (y) f (j) (x) + E f (i) (y) f (j) (x) -f (j) (y) E sup W |f (j) |Lip(f (i) ) x -y + E sup W |f (i) |Lip(f (j) ) x -y ,
which yields that the covariance function with values in the space of (d + 1) × (d + 1) matrices,

x → Σ(x) := cov(f (x), ∂ i f (x), 1 i d)
is Lipschitz on W . In particular, since det(Σ(x)) does not vanish on W , it is bounded from below by some c > 0, whence the density of (f (x), ∂ 1 f (x), ∂ 2 f (x)), x ∈ W , is uniformly bounded by (2π) -d/2 c -1/2 , and assumption (i) from Theorem 7 is satisfied with α = (d + 1)/d. Example 12. Random fields that are C 1,1 and not C 2 naturally arise in the context of smooth interpolation. Let E = {x i ; i ∈ Z} be a countable set of points of R, such that x i < x i+1 , i ∈ Z. Let (W (x), x ∈ E) be a random field on E, and A x , B x , x ∈ E be random variables on the same probability space. Define

g(y) = i∈Z 1 {y∈[xi,xi+1)} A xi y -x i x i+1 -x i 2 + B xi y -x i x i+1 -x i + W (x i ) .
Straightforward computations yield that, with

∆ x = W (x i+2 ) -2W (x i+1 ) + W (x i ), if • A xi+1 = ∆ xi -A xi , i ∈ Z, • B xi = W (x i+1 ) -W (x i ) -A x , i ∈ Z,
then with probability 1, g is a C 1,1 and in general not twice differentiable field on (lim i→-∞ x i , lim i→∞ x i ) such that g(x i ) = W (x i ), i ∈ Z. If for some i 0 ∈ Z, (A xi 0 ; W (x i ), i ∈ Z) is a Gaussian process, g is furthermore a Gaussian field. Given a Gaussian process (g(k); k ∈ Z d ), it should be possible to carry out a similar approximation scheme in R d by defining g = k∈Z d 1 {x∈(k+[0,1) d )} g k where g k is a bicubic polynomial interpolation of Gaussian variables W (j), j ∈ (k + {0, 1} d ) on k + [0, 1) d . A possible follow-up of this work could be to investigate the asymptotic properties of topological characteristics of g when it is the smooth interpolation of an irregular Gaussian field as the grid mesh converges to 0.

Let us give the mean Euler characteristic in dimension 2 under the simplifying assumptions that the law of f is invariant under translations and rotations of R 2 . This implies for instance that in every x ∈ R 2 , f (x), ∂ 1 f (x) and ∂ 2 f (x) are independent, see for instance [START_REF] Adler | Random Fields and Geometry[END_REF] Section 5.6 and (5.7.3). Assumption 10 is simpler to state in this context: x → ∂ 2 σ(x, x)/∂x i ∂y i and x → ∂ 4 σ(x, x)/∂x i ∂x j ∂y i ∂y j should exist and satisfy Dudley's condition in 0. It actually yields that f has C 2 sample paths, and it is not clear wether this is equivalent to C 1,1 regularity in this framework. For this reason we state the result with the abstract conditions of Theorem 9 .

Theorem 13. Let f = (f (x); x ∈ R 2 ) be a C 1,1 stationary isotropic centred Gaussian field on R 2 with E[Lip(∂ i f ) p ] < ∞, for some p > 6. Let λ ∈ R, F = {x : f (x) λ}, and let W ∈ W 2 bounded. Let µ = E[∂ 1 f (0) 2 ], and Φ(λ) = 1 √ 2π ∞ λ exp(-t 2 /2)dt. Then E[Vol 2 (F ∩ W )] = Vol 2 (W )Φ(λ), (11) 
E[Per ∞ (F ∩ W )] = Vol 2 (W )2 √ µ π exp(-λ 2 /2) + Per ∞ (W )Φ(λ), (12) 
E[χ(F ∩ W )] = Vol 2 (W ) µλ (2π) 3/2 + Per ∞ (W ) √ µ 4π e -λ 2 /2 + 1 √ 2π Φ(λ)χ(W ). ( 13 
)
Remark 14. If W is a square, the relation ( 13) coincides with [6, (11.7.14)].

Proof. [START_REF] Biermé | Level total curvature integral: Euler characteristic and 2d random fields[END_REF] immediately yields [START_REF] Cammarotta | Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics[END_REF]. To prove [START_REF] Estrade | A central limit theorem for the Euler characteristic of a Gaussian excursion set[END_REF], first remark that the stationarity of the field and the fact that it is not constant a.s. entail that (f (0),

∂ 1 f (0), ∂ 2 f (0)) (d) = (f (x), ∂ 1 f (x), ∂ 2 f (x)), x ∈ R 2 is non-degenerate. Let us show χ(F ) = lim ε→0 ε -2 P δε (0, f, λ) -P δ-ε (0, -f, -λ) = µλ exp(-λ 2 /2) (2π) 3/2 . ( 14 
)
Fix ε > 0. Let M ε be the 3×3 covariance matrix of (f (0

), f (εu 1 ), f (εu 2 )). Since Cov(f (0), f (εu i )) = 1 -µε 2 /2 + O(ε 4 ), Cov(f (εu 1 ), f (εu 2 )) = 1 -µε 2 + O(ε 4 ), straightforward computations show that det(M ε ) = ε 4 µ 2 + o(ε 4
), and

M -1 ε = 1 det(M ε ) ε 2 W ε + ε 4 D ε , (15) 
where the sum of each line and each column of W ε is 0, for ε > 0, and as ε → 0

W ε → W := µ   2 -1 -1 -1 1 0 -1 0 1   , D ε → D := µ 2 4   -4 2 2 2 -1 1 2 1 -1   .
Denote by 1 the row vector (1, 1, 1), and let Λ = λ1, Q = {(t, s, z) : t 0, s < 0, z < 0}. Denote by A the transpose of a matrix (or a vector) A. We have

P( δε (0, f, λ)) = 1 (2π) 3 det(M ε ) Q+Λ exp - 1 2 (t, s, z) M -1 ε (t, s, z) dtdsdz
and by isotropy and symmetry, for λ ∈ R,

P( δ-ε (0, -f, -λ)) = P( δε (0, -f, -λ)) = P( δε (0, f, -λ)).
Therefore, [START_REF] Auffinger | Complexity of random smooth functions on the highdimensional sphere[END_REF] 

yields that χ(F ) = lim ε→0 ε -2 P( δε (0, f, λ)) -P( δε (0, f, -λ)) . Let X = (t, s, z) ∈ Q, Y = ε √ det(Mε)
X. Since ΛW ε and W ε Λ are 0, we have

(X + Λ) M -1 ε (X + Λ) = Y (W ε + ε 2 D ε )Y =:γε(Y ) + 2ε 3 det(M ε ) Y D ε Λ + ε 4 det(M ε ) Λ D ε Λ P( δε (0, f, λ)) = √ det(Mε) ε 3 exp -λ 2 ε 4 2 det(Mε) 1 D ε 1 (2π) 3 det(M ε ) Q exp - 1 2 γ ε (Y ) -ε 3 λ Y D ε 1 det(M ε) dY and, for some θ = θ(ε, Y, λ) ∈ [-ε 3 det(M ε ) -1/2 , ε 3 det(M ε ) -1/2 ], exp - ε 3 λY D ε 1 det(M ε ) -exp ε 3 λY D ε 1 det(M ε ) = -2 ε 3 λY D ε 1 det(M ε ) exp(θλ1 D ε Y ).
Therefore, as ε → 0, ε -2 (P( δε (0, f, λ)) -P( δε (0, f, -λ))) is equivalent to

ε -2 exp(-λ 2 /2) det(M ε ) ε 3 (2π) 3 Q exp(-γ ε (Y )/2) -2ε 3 Y D ε λ1 det(M ε ) exp (θY D ε λ1) dY ∼ -exp(-λ 2 /2)µ √ 2π 3 Q exp(-γ ε (Y )/2)Y D ε λ1 exp(θY D ε λ1)dY. (16) 
For Y = (x, y, z) ∈ Q, we have

Y W Y µ = 2x 2 + y 2 + z 2 -2xy -2xz =2x 2 + y 2 + z 2 + 2|xy| + 2|xz| Y 2 . Since W ε + ε 2 D ε → W as ε → 0, γ ε (Y ) µ Y 2 /2 for ε sufficiently small, uniformly in Y ∈ Q.
This yields a clear majoring bound and Lebesgue's theorem gives

χ(F ) = -µ exp(-λ 2 /2)I(2π 3 ) -1/2 with I = Q exp(-1 2 Y W Y )Y DΛdY = 2λJ where J = Q exp(-(2t 2 + s 2 + z 2 -2ts -2tz))(s + z)dtdsdz = -1/4
with the change of variables u = t -s, v = t -z, w = t. The statement ( 14) is therefore proved. The computation of Per ∞ (F ) is similar and simpler and is omitted here. 

+ k (F ; W ) = Γ k (F ∩ W ) \ Γ + k-1 (F ; W ), 1 k d (with Γ + 0 (F ; W ) := F ∩ corners(W )). Let 1 k d, C ∈ Γ + k (F ; W ), C arbitrarily chosen in Γ(C ∩ ∂ k W ). Since C does not touch ∂ k-1 W , it is included in the relative interior of ∂ k W within the affine k-dimensional tangent space to ∂W that contains C , hence it is contained in some facet G. Let I ∈ I k such that for x ∈ G, I x (W ) = I. Let x C ∈ cl(C ) be such that f (x C ) = sup C f . Since the k-dimensional gradient ∇(f |G ) does not vanish on ∂C , f (x C ) > 0 and the Lagrange multipliers Theorem yields that ∂ i f (x C ) = 0 for i ∈ I. Call r C the maximal radius such that B C := (B(x C , r C ) ∩ G) ⊂ C . Since B C touches ∂F , f has a zero on B C . It follows that |f (x)| 2Lip(f )r C and |∂ i f (x)| Lip(∂ i f )r C for x ∈ B C , i ∈ I. Define M (x) = max |f (x)| 2Lip(f ) , |∂ i f (x)| Lip(∂ i f ) , i ∈ I ∈ R + , x ∈ ∂ k W. Since M (x) r C on B C , we have 1 = 1 H k d (B C ) B C 1 {M (x) r C } H k d (dx) = κ -1 k r -k C B C 1 {r -1 C M (x) -1 } H k d (dx) κ -1 k B C M (x) -k H k d (dx).
Since the B C are pairwise disjoint, summing over all the C ∈ Γ + k (F ; W ) and k ∈ {1, . . . , d} gives

#Γ(F ∩ W ) d k=0 Γ + k (F ; W ) d k=0 C∈Γ + k (F ;W ) κ -1 k B C M (x) -k H k d (dx) d k=0 κ -1 k ∂ k W M (x) -k H k d (dx).
with M (x) -0 = 1 by convention on corners(W ). The result follows by noticing that

M (x) min 1 2Lip(f ) , 1 Lip(∂ i f ) , i ∈ I max(|f (x)|, |∂ i f (x)|, i ∈ I) max(|f (x)|, |∂ i f (x)|, i ∈ I) 2 max(Lip(f ), Lip(∂ i f ), i ∈ I) .
(ii) Theorem 2.12 in the companion paper [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF], in the context d = 2, features a bound on χ((F ∩ W ) ε ) in terms of the number of occurrences of local configurations called entanglement points of F . Roughly speaking, an entanglement point occurs when two close points of F are connected by a tight path in F . As a consequence, if F is sampled with an insufficiently high resolution in this region, the connecting path is not detected, and F looks locally disconnected. For formal definitions, for x, y ∈ εZ 2 at distance ε, introduce P x,y the closed square with sidelength ε such that x and y are the midpoints of two opposite sides. Let P x,y = ∂P x,y \ {x, y}, which has two connected components. Then {x, y} is an entanglement pair of points of F if x, y / ∈ F and (P x,y ∪ F ) ∩ P x,y is connected. We call N ε (F ) the family of such pairs of points. See Figure 1 for an example. 

• x, y = ∅ • x, y ⊆ εZ 2 ∩ F c ∩ F ⊕ε .
The family of such pairs of points {x, y} is denoted by N ε (F ; W ) . It is proved in [START_REF] Lachièze-Rey | Covariograms and Euler characteristic of regular sets[END_REF]Theorem 2.12 [START_REF] Hilfer | Review on scale dependent characterization of the microstructure of porous media[END_REF] It therefore only remains to bound #(N ε (F ) ∩ W ⊕ε ) and #N ε (F, W ) to achieve [START_REF] Arns | Second-order analysis by variograms for curvature measures of two-phase structures[END_REF]. For m 1 and a function g : A ⊆ R m → R, introduce the continuity modulus ω(g, A) = sup

] that #Γ((F ∩ W ) ε ) 2#(N ε (F ) ∩ W ⊕ε ) + 2#N ε (F, W ) + #Γ(F ∩ W ) + 2#corners(W ).
x =y∈A |g(x) -g(y)|.
The bound will follow from the following lemma.

Lemma 15. (i) For {x, y} ∈ N ε (F ), we have for some i ∈ {1, 2}, and i = i + 1 mod 2,

|f (x)| ω(f, [x, y]) Lip(f )ε |∂ i f (x)| ω(∂ i f, [x, y]) Lip(∂ i f )ε |∂ i f (x)| 2ω(∂ i f, P x,y ) + ω(∂ i f, P x,y ) √ 2ε(2Lip(∂ i f ) + Lip(∂ i f )),
and idem for y.

(ii) For x, y ∈ N ε (F, W ), there is z = z(x, y) ∈ x, y , i ∈ {1, 2}, such that

|f (z)| Lip(f )ε |∂ i f (z)| Lip(∂ i f )ε.
The lemma is proved later for convenience. To obtain the integral upper bounds from [START_REF] Arns | Second-order analysis by variograms for curvature measures of two-phase structures[END_REF], note that there is c > 0 such that for ε > 0 sufficiently small, for every x, y ∈ W , neighbours in εZ 2 , Vol 2 ((B(x, ε) ∪ B(y, ε)) ∩ W ) ε 2 /c. Define the possibly infinite quantity, for z ∈ W,

M (z) = max |f (z)| 2Lip(f ) , |∂ i f (z)| 2Lip(∂ i f ) , |∂ i f (z)| 2 √ 2(Lip(∂ 1 f ) + Lip(∂ 2 f )) .
Lemma 15 yields that for {x, y}

∈ N ε (F ) and z ∈ B(x, ε) ∪ B(y, ε), M (z) ε. Then #N ε (F ) {x,y}∈Nε(F ) 1 {∀z∈B(x,ε)∪B(y,ε)∩W,M (z) ε} {x,y}∈Nε(F ) (B(x,ε)∪B(y,ε))∩W cε -2 1 {ε -1 M (z) -1 } dz 4c W M (z) -2 dz c I 2 (f ; W ),
for some c > 0, because for every z ∈ W there are at most 4 couples {x, y} ∈ N ε (F ) such that z ∈ B(x, ε) ∪ B(y, ε). Now, given w ∈ ∂W , there can be at most 3 pairs {x, y} ∈ N ε (F ) such that w is on the closest edge of W parallel to [x, y] and z = z(x, y) (defined in Lemma 15) is within distance 3ε from w, and in this case |f (w)| 4Lip(f )ε and

|∂ i f (w)| 4Lip(∂ i f )ε for some i ∈ {1, 2}. We have H 1 2 (B(z, 3ε) ∩ ∂W ) ε, because z is within distance 2ε from a segment of ∂W parallel to [x, y]. It follows that, with M i (w) = max(|f (w)|/4Lip(f ), |∂ i f (w)|/4Lip(∂ i f )) #N ε (F, W ) {x,y}∈N ε (F,W ) 2 i=1 1 {∀w∈B(z,3ε)∩∂W,Mi(w) ε} 2 i=1 {x,y}∈N ε (F ) 1 ε ∂W ∩B(z,3ε) 1 {Mi(w) -1 ε -1 } H 1 2 (dw) 2 i=1 3 ∂W M i (w) -1 H 1 2 (dw) 24I 1 (f ; W ).
Proof of Lemma 15. For x ∈ R 2 , denote by (x [START_REF] Adler | The Geometry of Random fields[END_REF] , x [START_REF] Adler | Persistent homology for random fields and complexes[END_REF] ) its coordinates in the canonical basis, not to be mistaken with a pair of vector of R 2 , denoted by (x 1 , x 2 ). If ϕ is a mapping with values in R 2 , denote its coordinates by (ϕ(•) [START_REF] Adler | The Geometry of Random fields[END_REF] , ϕ(•) [START_REF] Adler | Persistent homology for random fields and complexes[END_REF] ).

(i) Let x, y ∈ N ε (F ). The definition of N ε (F ) yields a connected path γ ⊆ (F ∩ P x,y ) going through some z ∈ [x, y] and connecting the two connected components of P x,y . Since f (x) 0 and f (z) 0, there is a point z of [x, y] satisfying f (z ) = 0, hence |f (x)| ω(f, [x, y]). Note for later that for t ∈ P x,y |f (t)| ω(f, P x,y ) Lip(f ) √ 2ε. We assume without loss of generality that [x, y] is horizontal. Let [z , z ] be the (also horizontal) connected component of F ∩ [x, y] containing z. After choosing a direction on [x, y], z and z are entry and exit points for F , and their normal vectors n F (z ), n F (z ) point towards the outside of F . Therefore they satisfy n F (z ) [START_REF] Adler | The Geometry of Random fields[END_REF] n F (z ) [START_REF] Adler | The Geometry of Random fields[END_REF] 0, and so ∂ 1 f (z )∂ 1 f (z ) 0. This gives us by continuity the existence of a point w ∈ 

[x, y] such that 0 = ∂ 1 f (w), whence |∂ 1 f (x)| ω(∂ 1 f, [x, y]). Note for later that |∂ 1 f (t)| ω(∂ 1 f, P x,y ) on P x,y . If [x, y] is vertical, ∂ 2 f
): [z [1] , z [1] ] → R such that ϕ(z [1] ) = z [2] (resp. ψ(z [1] ) = z 2 = z [2] ), |ϕ | 1/2, (resp. |ψ | 1/2), ϕ([z [1] , z [1] ]) ⊂ (z [2] + (-ε/2, ε/2)), (resp. ψ([z [1] , z [1] ]) ⊂ (z [2] + (-ε/2, ε/2))
) and the graph of ϕ (resp. ψ) coincides with ∂F ∩ ([z [START_REF] Adler | The Geometry of Random fields[END_REF] , z [START_REF] Adler | The Geometry of Random fields[END_REF] ] × (z [START_REF] Adler | Persistent homology for random fields and complexes[END_REF] + [-ε/2, ε/2]). In particular, ϕ = ψ, and its graph cannot touch the upper half of ∂P x,y . Applying this to every maximal segment [z , z ] ⊂ (F ∩ [x, y]), we see that every connected component of F touching [x, y], and hence γ, cannot meet the upper half of P x,y . In particular, it contradicts the definition of N ε (F ), whence indeed the assumption is proved by contradiction.

(ii)Let now {x, y} be an element of N ε (f, W ). We know that x, y ∩F c = ∅. Let [z , z ] ⊂ [x, y] be a connected component of F c ∩ [x, y]. If [z , z ] is, say, horizontal, since n F (•) [START_REF] Adler | The Geometry of Random fields[END_REF] changes sign between z and z , so does ∂ 

Proof of Theorem 7

Assume without loss of generality λ = 0. Let us prove that f is a.s. regular within W at level 0. For 0 k d, I ∈ I k , define

θ k,I = {x ∈ ∂ k W : f (x) = 0, ∂ i f (x) = 0, i ∈ I}.
We must prove that θ k,I = ∅ a.s.. Define M (y) = max(|f (y)|/Lip(f ), |∂ i f (y)|/Lip(∂ i f ), i ∈ I). For x ∈ θ k,I , y ∈ B(x, ε), we have M (y) ε. Since W is a polyrectangle, there is c W > 0 such that the following holds for ε > 0 sufficiently small: there is a partition {C ε i ; 1 i n ε } of ∂ k W such that for each i, C ε i ⊂ B(x ε i , ε/2) for some For any numbers a 1 , . . . , a q , b 1 , . . . , b q > 0, we have Since p > αd α-1 αk α-1 , we can choose q ∈ ((1 -k/p) -1 , α). It satisfies q > 1 and q k < p, with q = (1 -q -1 ) -1 . In particular, if η is chosen > 0 sufficiently small, C := E[L q (k+η) ] < ∞ for 1 k d. Using Hölder's inequality, E(θ k,I ) = 0 follows from the following bound, uniform in y:

x ε i ∈ ∂ k W ,
E[m -q(k+η) y ] R+ P(m y t -1/(q(k+η)) )dt R+ P(|f (y)| t -1/(q(k+η)) , |∂ i f (y)| t -1/(q(k+η)) , i ∈ I)dt c R+ 1 ∧ t -αk q(k+η) dt.

Assume without loss of generality that η > 0 is chosen so that q(k + < αk, so that indeed for all 1 k d, the previous bound is finite (uniformly in y).

The proof that the I k (f ; W ) have finite expectation for 1 k d is similar. We have

E[I k (f ; λ)] (E[L kq ]) 1 q ∂ k W (E[m -kq y ]) 1 q H k d (dy).
The finiteness follows by the exact same computation as before, with η = 0. Therefore, if d = 2, using (5), χ(F ∩ W ) = lim ε→0 χ((F ∩ W ) ε ) holds a.s. According to Theorem 3, the finiteness of E[I 1 (f ; W )] and E[I 2 (f ; W )] enable us to apply Lebesgue's theorem and show that this limit can be passed to expectations, yielding (1)-(2).

Proof of Theorem 9

According to the previous proof, the quantities I k (f ; λ), 0 k 2, have finite expectation on any bounded W ∈ W 2 . Hence according to the proof of Theorem 3, the quantities E[sup 0<ε 1 #(N ε (F ) ∩ W )], E[sup 0<ε 1 #(N ε (F c ) ∩ W )], E[sup 0<ε 1 #(N ε (F, W ))],

Remark 8 .

 8 and f is a.s. regular within W at level λ. In the context d = 2, (1)-[START_REF] Adler | Persistent homology for random fields and complexes[END_REF] give the mean Euler characteristic. In the case where the Lip(f ), Lip(∂ i f ), i = 1, . . . , d have a finite moment of order > d(d+1), the hypotheses are satisfied if for instance (f (x)-λ, ∂ i f (x), 1 i d) has a uniformly bounded multivariate density, in which case α = (d + 1)/d is suitable. If α < (d + 1)/d, higher moments for the Lipschitz constants are required.

  Assume without loss of generality λ = 0 in the proof. Recall that Γ(F ∩W ) is the collection of bounded connected components of F ∩ W . For 0 k d, denote by Γ k (F ∩ W ) the elements of Γ(F ∩ W ) that hit ∂ k W , and define recursively Γ

Figure 1 :

 1 Figure 1: Entanglement point: In this example, {x, y} ∈ N ε (F ) because the two connected components of P x,y , in grey, are connected through γ ⊆ (F ∩ P x,y ). We have {x, y} / ∈ N ε (F ).

  1 f , and by continuity there is w ∈ [z , z ] where ∂ 1 f (w) = 0. Calling z the closest point from w in x, y , z -w ε, and by definition of N ε (F, W ), z is also at distance ε from ∂F = {f = 0}. It follows that the result holds with i = 1 :|∂ 1 f (z)| Lip(∂ 1 f )ε, |f (z)| Lip(f )ε. A similar argument holds for i = 2 if [z , z ] is vertical.

M

  and Hk d (C ε i ) ε k /c W . Then for any η 0, #θ k,I = lim ε→0 #{1 i n ε : θ k,I ∩ C ε i (y) -(k+η) H k d (dy).

  max i (a i /b i ) max i (a i min j (1/b j )) = min j (1/b j ) max i (a i ) = max i (a i ) max i (b i ) .Hence, withL := max(Lip(f ), Lip(∂ i f ), i ∈ I), m y := max(|f (y)|, |∂ i f (y)|, i ∈ I), M (y) m y /L. Fatou's lemma yields, E[#θ k,I ] c W lim inf

  verifies the inequality instead. Let us keep assuming that [x, y] is horizontal for the sequel of the proof.We claim that |∂ 2 f (x)| 2ω(∂ 1 f, P x,y ) + ω(∂ 2 f, P x,y ), and consider two cases to prove it.

• First case ∂ 2 f (z )∂ 2 f (z ) 0, and by continuity we have w ∈

[x, y] such that 0 = ∂ 2 f (w), whence |∂ 2 f (•)| ω(∂ 2 f, P x,y

) on the whole pixel P x,y . The desired inequality follows.

• Second case ∂ 2 f (z ) > 0, ∂ 2 f (z ) > 0 (

equivalent treatment if they are both < 0). Assume for instance that z is the leftmost point, and that |∂ 2 f (x)| > 2ω(∂ 1 f, P x,y ) + ω(∂ 2 f, P x,y ), otherwise the claim is proved. It implies in particular that |∂ 2 f (•)| > 2ω(∂ 1 f, P x,y ) on the whole pixel P x,y . Since |∂ 1 f (•)| ω(∂ 1 f, P x,y ) on P x,y , the implicit function theorem yields a unique function ϕ (resp. ψ