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Bicovariograms and Euler characteristic of random fields

excursions

Raphaël Lachièze-Rey ∗

Abstract

Let f be a C1 bivariate function with Lipschitz derivatives, and F = {x ∈ R2 : f(x) > λ}
an upper level set of f , with λ ∈ R. We present a new identity giving the Euler charac-
teristic of F in terms of its three-points indicator functions. A bound on the number of
connected components of F in terms of the values of f and its gradient, valid in higher
dimensions, is also derived. In dimension 2, if f is a random field, this bound allows to
pass the former identity to expectations if f ’s partial derivatives have Lipschitz constants
with finite moments of sufficiently high order, without requiring bounded conditional den-
sities. This approach provides an expression of the mean Euler characteristic in terms of
the field’s third order marginal. Sufficient conditions and explicit formulas are given for
Gaussian fields, relaxing the usual C2 Morse hypothesis.

MSC classification: 60G60, 60G15, 28A75, 60D05, 52A22

keywords: Random fields, Euler characteristic, Gaussian processes, covariograms, intrinsic
volumes, C1,1 functions

1 Introduction

The geometry of random fields excursion sets has been a subject of intense research over the
last two decades. Many authors are concerned with the computation of the mean [3, 4, 5, 8] or
variance [13, 11] of the Euler characteristic, denoted by χ here.

As an integer-valued quantity, the Euler characteristic can be easily measured and used in
many estimation and modelisation procedures. It is an important indicator of the porosity of a
random media [7, 17, 24], it is used in brain imagery [19, 26], astronomy, [11, 22, 23], and many
other disciplines. See also [2] for a general review of applied algebraic topology.

Most of the available works on random fields use the results gathered in the celebrated
monograph [6], or similar variants. In this case, theoretical computations of the Euler charac-
teristic emanate from Morse theory, where the focus is on the local extrema of the underlying
field instead of the set itself. For the theory to be applicable, the functions must be C2 and
satisfy the Morse hypotheses, which conveys some restrictions on the set itself.

The expected Euler characteristic also turned out to be a widely used approximation of the
distribution function of the maximum of a Morse random field, and attracted much interest in
this direction, see [3, 8, 9, 26]. Indeed, for large r > 0, a well-behaved field rarely exceeds r, and
if it does, it is likely to have a single highest peak, which yields that the level set of f at level
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r, when not empty, is most often simply connected, and has Euler characteristic 1. Thereby,
Eχ({f > r}) ≈ P(sup f > r), which provides an additional motivation to compute the mean
Euler characteristic of random fields.

Even though [4] provides an asymptotic expression for some classes of infinitely divisible
fields, most of the tractable formulae concern Gaussian fields. One of the ambitions of this
paper is to provide a formula that is tractable in a rather general setting, and also works in
the Gaussian realm. There seems to be no particular obstacle to extend these ideas to higher
dimensions in a future work.

Given a set A ⊂ R2, let Γ(A) be the class of its bounded arc-wise connected components.
We say that a set A is admissible if Γ(A) and Γ(Ac) are finite, and in this case its Euler
characteristic is defined by

χ(A) = #Γ(A)−#Γ(Ac),

where # denotes the cardinality of a set. The theoretical results of Adler and Taylor [6] regard-
ing the Euler characteristic of random excursions require second order differentiability of the
underlying field f , but the expression of the mean Euler characteristic only involves the first-
order derivatives, suggesting that second order derivatives do not matter in the computation
of the Euler characteristic. In the words of Adler and Taylor (Section 11.7), regarding their
Formula (11.7.6), it is a rather surprising fact that the [mean Euler characteristic of a Gaussian
field] depends on the covariance of f only through some of its derivatives at zero, the latter
referring to first-order partial derivatives. We present here a new method for which the second
order differentiability is not needed. The results are valid for C1 fields with locally Lipschitz
derivatives, also called C1,1 fields, relaxing slightly the classical C2 Morse framework.

Our results exploit the findings of [21] connecting smooth sets Euler characteristic and var-
iographic tools. For some λ ∈ R and a bi-variate function f , define for x ∈ R2 the event

δη(x, f, λ) = 1{f(x)>λ,f(x+ηu1)<λ,f(x+ηu2)<λ}, η ∈ R,

where (u1,u2) denotes the canonical basis of R2, assuming f is defined in these points. When
f is a random field, let δ̄η(x, f, λ) denote the event {δη(x, f, λ) = 1}. Let us write a corollary
of our main result here, a more general statement can be found in Section 3. Denote by Vol2

the Lebesgue measure on R2. For W ⊂ R2 and a function f : W → R2, introduce the mapping
R2 → R2,

f[W ](x) =

{
−∞ if x /∈W
f(x) otherwise,

so that the intersections of level sets of f with W are the level sets of f[W ].

Theorem 1. Let W = [0, a] × [0, b] for some a, b > 0, f be a C1 real random field on R2 with
locally Lipschitz partial derivatives ∂1f, ∂2f , λ ∈ R, and let F = {x ∈ W : f(x) > λ}. Assume
furthermore that the following conditions are satisfied:

(i) For some κ > 0, for x ∈ R2, the random vector (f(x), ∂1f(x), ∂2f(x)) has a density
bounded by κ from above on R3.

(ii) There is p > 6 such that

E[Lip(f,W )p] <∞, E[Lip(∂if,W )p] <∞, i = 1, 2,

where Lip(g,W ) denotes the Lipschitz constant of a vector-valued function g on W .
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Then E[#Γ(F )] <∞,E[#Γ(F c)] <∞, and

E[χ(F )] = lim
ε→0

∑
x∈εZ2

[P(δ̄ε(x, f[W ], λ))−P(δ̄−ε(x,−f[W ],−λ))] (1)

= lim
ε→0

ε−2

∫
R2

[
P(δ̄ε(x, f[W ], λ))−P(δ̄−ε(x,−f[W ],−λ))

]
dx. (2)

If f is furthermore stationary, we have

E[χ(F )] = χ(f, λ)Vol2(W ) + Per(f, λ)Per(W ) + Vol2(f, λ)χ(W )

where the volumic Euler characteristic, perimeter and volume χ, Per,Vol2 are defined in Theo-
rem 9, they only depend on the behavior of f around the origin.

The right hand side of (2) is related to the bicovariogram of the set F , defined by

δx,y0 (F ) = Vol2(F ∩ (F + x)c ∩ (F + y)c), x, y ∈ R2, (3)

in that (2) can be reformulated as

Eχ(F ) = lim
ε→0

ε−2(E[δ−εu1,−εu2

0 (F )]−E[δεu1,εu2

0 (F c)]).

This approach seems to be new in the literature. It highlights the fact that under suitable
conditions, the mean Euler characteristic of random level sets is linear in the field’s third order
marginal. In [15, Corollary 6.7], Fu gives an expression for the Euler characteristic of a set with
positive reach by means of local topological quantities related to the height function. If the set
is the excursion of a random field, this approach is of a different nature, as passing Fu’s formula
to expectations would not lead to an expression depending directly on the field’s marginals.

We also give in Theorem 3 a bound on the number of connected components of the excursion
of f , valid in any dimension, which is finer than just bounding by the number of critical points;
we could not locate an equivalent result in the literature. This topological estimate is interesting
in its own and also applies uniformly to the number of components of 2D-pixel approximations
of the excursions of f . We therefore use it here as a majoring bound in the application of
Lebesgue’s theorem to obtain (1)-(2).

It is likely that the results concerning the planar Euler characteristic could be extended to
higher dimensions. See for instance [25], that paves the way to an extension of the results of
[21] to random fields on spaces with arbitrary dimension. Also, the uniform bounded density
hypothesis is relaxed and allows for the density of the (d + 1)-tuple (f(x), ∂1f(x), . . . , ∂df(x))
to be arbitrarily large in the neighborhood of (λ, 0, . . . , 0). Theorem 7 features a result where
f is defined on the whole space and the level sets are observed through a bounded window W ,
as is typically the case for level sets of non-trivial stationary fields, but the intersection with
∂W requires additional notation and care. See Theorem 9 for a result tailored to deal with
excursions of stationary fields.

Theorem 11 features the case where f is a Gaussian field assuming only C1,1 regularity (clas-
sical literature about random excursions require C2 Morse fields in dimension d > 2, or C1 fields
in dimension 1). Under the additional hypothesis that f is stationary and isotropic, we retrieve
in Theorem 13 the classical results of [6].

Let us explore other consequences of our results. Let h : R → R be a C1 test function with
compact support, and F as in Theorem 1. Using the results of our paper, it is shown in the
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follow-up article [20] that for any deterministic C2 Morse function f on R2,∫
R
χ(F )h(λ)dλ = −

2∑
i=1

∫
W

1{∇f(x)∈Qi}[h
′(f(x))∂if(x)2 + h(f(x))∂iif(x)]dx+ boundary terms

(4)

where

Q1 = {(x, y) ∈ R2 : y < x < 0}, Q2 = {(x, y) ∈ R2 : x < y < 0},

yielding applications for instance to shot-noise processes. In the context of random functions,
no marginal density hypothesis is required to take the expectation, at the contrary of analogous
results, including those from the current paper. Biermé & Desolneux [10, Section 4.1] later gave
another interpretation of (4), showing that if it is extended to a random isotropic stationary
field which gradient does not vanish a.e. a.s., it can be rewritten as a simpler expression, after
appropriate integration by parts, namely

E

[∫
U

χ({f > λ};U)h(λ)dλ

]
= Vol2(U)E

[
h(f(0))[−∂11f(0) + 4∂12f(0)∂1f(0)∂2f(0)‖∇f(0)‖−2]

]
,

where U is an appropriate open set, and χ({f > λ;U}) is the total curvature of the level set
{f > λ} within U , generalizing the Euler characteristic. They obtained this result by totally
different means, via an approach involving Gauss-Bonnet theorem, without any requirement on
f apart from being C2.

2 Topological approximation

Let f be a function of class C1 over some window W ⊂ Rd, and λ ∈ R. Define

F := Fλ(f) = {x ∈W : f(x) > λ}, Fλ+(f) = {x ∈W : f(x) > λ}.

Remark that Fλ+(f) = (F−λ(−f))c. If we assume that ∇f does not vanish on f−1({λ}), then
∂Fλ(f) = ∂Fλ+(f) = f−1({λ}), and this set is furthermore Lebesgue-negligible, as a (d − 1)-
dimensional manifold.

According to [14, 4.20], ∂Fλ(f) is regular in the sense that its boundary is C1 with Lipschitz
normal, if ∇f is locally Lipschitz and does not vanish on ∂Fλ(f). This condition is necessary to
prevent F from having locally infinitely many connected components, which would make Euler
characteristic not properly defined in dimension 2, see [21, Remark 2.11]. We call C1,1 function
a differentiable function whose gradient is a locally Lipschitz mapping. Those functions have
been mainly used in optimization problems, and as solutions of some PDEs, see for instance [18].
They can also be characterized as the functions which are locally semiconvex and semiconcave,
see [12].

The results of [21] also yield that the Lipschitzness of ∇f is sufficient for the digital approx-
imation of χ({f > λ}) to be valid. It seems therefore that the C1,1 assumption is the minimal
one ensuring the Euler characteristic to be computable in this fashion.

2.1 Observation window

An aim of the present paper is to advocate the power of variographic tools for computing intrinsic
volumes of random fields excursions. Since many applications are concerned with stationary
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random fields on the whole plane, we have to study the intersection of excursions with bounded
windows, and assess the quality of the approximation.

To this end, call rectangle of Rd any set W = I1 × · · · × Id where the Ik are possibly infinite
closed intervals of R with non-empty interiors, and let corners(W ), which number is between 0
and 2d, be the points having extremities of the Ii as coordinates. Then call polyrectangle a finite
union W = ∪iWi where each Wi is a rectangle, and for i 6= j, corners(Wi) ∩ corners(Wj) = ∅.
Call Wd the class of polyrectangles.

For W ∈ Wd and x ∈ W , let Ix(W ) = {1, . . . , d} if x ∈ int(W ), and otherwise let Ix(W ) ⊂
{1, . . . , d} be the set of indices i such that x+ εui ∈ ∂W and x− εui ∈ ∂W for arbitrarily small
ε > 0, where ui is the i-th canonical vector of Rd. Say then that x is a k-dimensional point
of W if |Ix(W )| = k. Denote by ∂kW the set of k-dimensional points, and call k−dimensional
facets the connected components of ∂kW . Remark that Ix(W ) is constant over a given facet.
Note that ∂dW = int(W ) and ∂W = ∪d−1

k=0∂kW . We extend the notation corners(W ) = ∂0W.
An alternative definition is that a subset F ⊂ W is a facet of W if it is a maximal relatively
open subset of a affine subspace of Rd.

Definition 2. Let W ∈ Wd, and f : W → R be of class C1,1. Say that f is regular within W
at some level λ ∈ R if for 0 6 k 6 d, {x ∈ ∂kW : f(x) = λ, ∂if(x) = 0, i ∈ Ix(W )} = ∅, or
equivalently if for every k-dimensional facet G of W , the k-dimensional gradient of the restriction
of f to G does not vanish on f−1({λ}) ∩G.

For such a function f in dimension 2, it is shown in [21] that the Euler characteristic of its
excursion set F = Fλ(f) ∩W can be expressed by means of its bicovariograms, defined in (3).
For ε > 0 sufficiently small

χ(F ) = ε−2[δ−εu1,−εu2

0 (F )− δεu1,εu2

0 (F c)]. (5)

The proof is based on the Gauss approximation of F :

F ε =
⋃

x∈εZ2∩F

(
x+ ε[−1/2, 1/2)2

)
.

According to [21, Theorem 2.7], for ε sufficiently small,

χ(F ) = χ(F ε)

=
∑
x∈εZ2

(δε(x, f[W ], λ)− δ−ε(x,−f[W ],−λ))

= ε−2

∫
R2

(δε(x, f[W ], λ)− δ−ε(x,−f[W ],−λ))dx.

If f is a random field, the difficulty to pass the result to expectations is to majorize the right
hand side uniformly in ε by an integrable quantity, and this goes through bounding the number
of connected components of F and its approximation F ε. This is the object of the next section.

2.2 Topological estimates

The next result, valid in dimension d > 1, does not concern directly the Euler characteristic.
Its purpose is to bound the number of connected components of Fλ(f) ∩W by an expression
depending on f and its partial derivatives. It turns out that a similar bound holds for the
excursion approximation (Fλ(f)∩W )ε in dimension 2, uniformly in ε, enabling the application
of Lebesgue’s theorem to the point-wise convergence (5).
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Traditionally, see for instance [13, Prop. 1.3], the number of connected components of the
excursion set, or its Euler characteristic, is bounded by using the number of critical points, or
by the number of points on the level set where f ’s gradient points towards a predetermined
direction. Here, we use another method based on the idea that in a small connected component,
a critical point is necessarily close to the boundary, where f−λ vanishes. It yields the expression
(6) as a bound on the number of connected components. It also allows in Section 3, devoted to
random fields, to relax the usual uniform density assumption on the marginals of the (d+1)-tuple
(f, ∂if, i = 1, . . . , d), leaving the possibility that the density is unbounded around (λ, 0, . . . , 0).

Denote by Lip(g;A) ∈ R+∪{∞}, or just Lip(g), the Lipschitz constant of a mapping g going
from a metric space A to another metric space. Let W ∈ Wd, g : W → R, C1 with Lipschitz
derivatives. Denote by Hkd the k-dimensional Hausdorff measure in Rd. Define the possibly
infinite quantity, for 1 6 k 6 d,

Ik(g;W ) : = max(Lip(g),Lip(∂ig), 1 6 i 6 d)k
∫
∂kW

Hkd(dx)

max (|g(x)|, |∂ig(x)|, i ∈ Ix(W ))
k
,

and I0(g;W ) := #corners(W ). Put Ik(g;W ) = 0 if Lip(g) = 0 and g vanishes, 1 6 k 6 d.

Theorem 3. Let W ∈ Wd, and f : W → R be a C1,1 function. Let F = Fλ(f) or F = Fλ+(f)
for some λ ∈ R. Assume that f is regular at level λ in W .

(i) For d > 1,

#Γ(F ∩W ) 6
d∑
k=0

2kκ−1
k Ik(f − λ;W ), (6)

where κk is the volume of the k-dimensional unit ball.

(ii) If d = 2,

#Γ((F ∩W )ε) 6 C

2∑
k=0

Ik(f − λ;W ) (7)

for some C > 0 not depending on f, λ, or ε.

The proof is given in Section 5.

Remark 4. Theorem 7 gives conditions on the marginal densities of a bivariate random field
ensuring that the term on the right hand side has finite expectation.

Remark 5. Similar results hold if partial derivatives of f are only assumed to be Hölder-
continuous, i.e. if there is δ > 0 and Hi > 0, i = 1, . . . , d, such that ‖∂if(x) − ∂if(y)‖ 6
Hi‖x− y‖δ for x, y such that [x, y] ⊂W . Namely, we have to change constants and replace the
exponent k in the max by an exponent kδ. We do not treat such cases here because, as noted
at the beginning of Section 2, if the partial derivatives are not Lipschitz, the upper level set is
not regular enough to compute the Euler characteristic from the bicovariogram, but the proof
is similar to the C1,1 case.

Remark 6. Calling B the right hand term of (7) and noticing that Fλ+(f)c is an upper level
set of −f , an easy reasoning yields (see [21, Remark 2.13])

|χ((Fλ(f) ∩W )ε)| 6 2B.
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3 Mean Euler characteristic of random excursions

We call here C1 random field over a set Ω ⊆ Rd a separable random field (f(x);x ∈ Ω), such
that in each point x ∈ Ω, the limits

∂if(x) := lim
s→0

f(x+ sui)− f(x)

s
, i = 1, 2,

exist a.s., and the fields (∂if(x), x ∈ Ω), i = 1, . . . , d, are a.s. separable with continuous sample
paths. See [1, 6] for a discussion on the regularity properties of random fields. Say that the
random field is C1,1 if the partial derivatives are a.s. locally Lipschitz.

Many sets of conditions allowing to take the expectation in (5) can be derived from Theorem
3. We give below a compromise between optimality and compactness.

Theorem 7. Let W ∈ Wd bounded, and let f be a C1,1 random field on W , λ ∈ R, F = {x ∈W : f(x) > λ}.
Assume that the following conditions are satisfied:

(i) For some κ > 0, α > 1, for 1 6 k 6 d, x ∈ ∂kW, I ⊂ Ik, the random (k + 1)-tuple
(f(x)− λ, ∂if(x), i ∈ I) satisfies

P(|f(x)− λ| 6 ε, |∂if(x)| 6 ε, i ∈ I) 6 κεαk, ε > 0,

(ii) for some p > dα(α− 1)−1,

E[Lip(f)p] <∞, E[Lip(∂if)p] <∞, i = 1, . . . , d.

Then E[#Γ(F )] <∞,E[#Γ(F c)] <∞ and f is a.s. regular within W at level λ. In the context
d = 2, (1)-(2) give the mean Euler characteristic.

Remark 8. In the case where the Lip(f),Lip(∂if), i = 1, . . . , d have a finite moment of order
> d(d+1), the hypotheses are satisfied if for instance (f(x)−λ, ∂if(x), 1 6 i 6 d) has a uniformly
bounded multivariate density, in which case α = (d+ 1)/d is suitable. If α < (d+ 1)/d, higher
moments for the Lipschitz constants are required.

The proof is deferred to Section 5. We give an explicit expression in the case where f is
stationary. Boundary terms involve the perimeter of F , introduced below. Denote by C1

c the
class of compactly supported C1 functions on R2 endowed with the norm ‖ϕ‖ = supx∈R2 |ϕ(x)|.
For a measurable set A ⊂ R2, and u ∈ S1, the unit circle in R2, define the variational perimeter
of A in direction u by

Peru(A) = sup
ϕ∈C1c :‖ϕ‖61

∫
A

〈∇ϕ(x),u〉dx.

Recall that (u1,u2) is the canonical basis of R2, and introduce the ‖ · ‖∞-perimeter

Per∞(A) = Peru1
(A) + Peru2

(A),

named so because it is the analogue of the classical perimeter when the Euclidean norm is
replaced by the ‖ · ‖∞-norm, see [16].

Theorem 9. Let f be a C1,1 stationary random field on R2, λ ∈ R, W ∈ W2 bounded. Assume
that (f(0), ∂1f(0), ∂2f(0)) has a bounded density, and that there is p > 6 such that

E
[
Lip(f ;W )p

]
<∞, E

[
Lip(∂if ;W )p

]
<∞, i = 1, 2.
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Then the following limits exist:

χ(f, λ) := lim
ε→0

ε−2
[
P(δ̄ε(0, f, λ))−P(δ̄−ε(0,−f,−λ))

]
,

Perui(f, λ) := lim
ε→0

ε−1P(f(0) > λ, f(εui) < λ), i = 1, 2,

Vol2(f, λ) := P(f(0) > λ),

and we have, with Per∞ = Peru1 + Peru2 ,

E[χ(Fλ(f) ∩W )] = Vol2(W )χ(f, λ) +
1

4
(Peru2

(W )Peru1
(f, λ) + Peru1

(W )Peru2
(f, λ))

+ χ(W )Vol2(f, λ) (8)

E[Per∞(Fλ(f) ∩W )] = Vol2(W )Per∞(f, λ) + Per∞(W )Vol2(f, λ) (9)

E[Vol2(Fλ(f) ∩W )] = Vol2(W )Vol2(f, λ). (10)

The proof of this result requires notation contained in the proof of Theorem 7, it is therefore
placed at Section 5.3.

4 Gaussian level sets

Let (f(x), x ∈W ) be a centred Gaussian field on some W ∈ Wd. Let the covariance function be
defined by

σ(x, y) = E[f(x)f(y)], x, y ∈W.

Say that some real function h satisfies the Dudley condition on D ⊂ W if for some α > 0,
|h(x)− h(y)| 6 | log(‖x− y‖)|−1−α for x, y ∈W . We will make the following assumption on σ:

Assumption 10. Assume that x ∈ W 7→ ∂2σ(x, x)/∂xi∂yi exists and satisfies the Dudley
condition for i = 1, . . . , d, that the partial derivatives ∂4σ(x, x)/∂xi∂xj∂yi∂yj , x ∈ W , 1 6 i, j 6
d, exist and that for some finite partition {Dk} of W they satisfy the Dudley condition over
each Dk.

Theorem 11. Let W ∈ Wd bounded. Assume that σ satisfies Assumption 10 and that for
x ∈ W , (f(x), ∂if(x), i = 1, . . . , d) is non-degenerate. Then for any λ ∈ R, F = Fλ(f) satisfies
the conclusions of Theorem 7.

Proof. Assumption 10 and [1, Theorem 2.2.2] yield that for i = 1, . . . , d, (∂if(x);x ∈ W ) is
well defined in the L2 sense and is a Gaussian field with covariance functions E[∂if(x)∂if(y)] =
∂2σ(x, y)/∂xi∂yi for x, y ∈ W . Since the latter covariance functions satisfy Dudley condition,
Theorem 1.4.1 in [6] implies the sample-paths continuity of the partial derivatives.

Using again [1, Theorem 2.2.2], for 1 6 i, j 6 d, (∂i,jf(x), x ∈ D) is a well-defined Gaussian
field with covariance E[∂i,jf(x)∂i,jf(y)] = ∂4σ(x, y)/∂xi∂yi∂xj∂yj . For each k, [6, Theorem
1.4.1] again yields that ∂i,jf is continuous and bounded over Dk, hence ∂i,jf is bounded over
W . Finally, formula (2.1.4) in [6] yields that E [supx∈W |∂i,jf(x)|p] < ∞ for p > 0. Since
Lip(∂if) 6 dmaxj=1,...,d ‖∂ijf‖, Condition (ii) of Theorem 7 is satisfied for any α > 1.
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To prove (i), put for notational convenience f (0) := f, f (i) = ∂if, i = 1, . . . , d. We have for
i, j ∈ {0, . . . , d},

|Ef (i)(x)f (j)(x)− f (i)(y)f (j)(y)|

6
∣∣∣E [(f (i)(x)− f (i)(y)

)
f (j)(x)

]∣∣∣+
∣∣∣E [f (i)(y)

(
f (j)(x)− f (j)(y)

)]∣∣∣
6 E

[
sup
W
|f (j)|Lip(f (i))

]
‖x− y‖+ E

[
sup
W
|f (i)|Lip(f (j))

]
‖x− y‖,

which yields that the covariance function with values in the space of (d+ 1)× (d+ 1) matrices,

x 7→ Σ(x) := cov(f(x), ∂if(x), 1 6 i 6 d)

is Lipschitz on W . In particular, since det(Σ(x)) does not vanish on W , it is bounded from below
by some c > 0, whence the density of (f(x), ∂1f(x), ∂2f(x)), x ∈ W , is uniformly bounded by
(2π)−d/2c−1/2, and assumption (i) from Theorem 7 is satisfied with α = (d+ 1)/d.

Example 12. Random fields that are C1,1 and not C2 naturally arise in the context of smooth
interpolation. Let E = {xi; i ∈ Z} be a countable set of points of R, such that xi < xi+1, i ∈ Z.
Let (W (x), x ∈ E) be a random field on E, and Ax, Bx, x ∈ E be random variables on the same
probability space. Define

g(y) =
∑
i∈Z

1{y∈[xi,xi+1)}

[
Axi

(
y − xi

xi+1 − xi

)2

+Bxi
y − xi

xi+1 − xi
+W (xi)

]
.

Straightforward computations yield that, with ∆x = W (xi+2)− 2W (xi+1) +W (xi), if

• Axi+1
= ∆xi −Axi , i ∈ Z,

• Bxi = W (xi+1)−W (xi)−Ax, i ∈ Z,

then with probability 1, g is a C1,1 and in general not twice differentiable field on (limi→−∞ xi, limi→∞ xi)
such that g(xi) = W (xi), i ∈ Z. If for some i0 ∈ Z, (Axi0 ;W (xi), i ∈ Z) is a Gaussian process,
g is furthermore a Gaussian field.

Given a Gaussian process (g(k); k ∈ Zd), it should be possible to carry out a similar approx-
imation scheme in Rd by defining g =

∑
k∈Zd 1{x∈(k+[0,1)d)}gk where gk is a bicubic polynomial

interpolation of Gaussian variables W (j), j ∈ (k + {0, 1}d) on k + [0, 1)d. A possible follow-up
of this work could be to investigate the asymptotic properties of topological characteristics of g
when it is the smooth interpolation of an irregular Gaussian field as the grid mesh converges to
0.

Let us give the mean Euler characteristic in dimension 2 under the simplifying assumptions
that the law of f is invariant under translations and rotations of R2. This implies for instance
that in every x ∈ R2, f(x), ∂1f(x) and ∂2f(x) are independent, see for instance [6] Section
5.6 and (5.7.3). Assumption 10 is simpler to state in this context: x 7→ ∂2σ(x, x)/∂xi∂yi and
x 7→ ∂4σ(x, x)/∂xi∂xj∂yi∂yj should exist and satisfy Dudley’s condition in 0. It actually yields
that f has C2 sample paths, and it is not clear wether this is equivalent to C1,1 regularity in this
framework. For this reason we state the result with the abstract conditions of Theorem 9 .

Theorem 13. Let f = (f(x);x ∈ R2) be a C1,1 stationary isotropic centred Gaussian field on
R2 with E[Lip(∂if)p] < ∞, for some p > 6. Let λ ∈ R, F = {x : f(x) > λ}, and let W ∈ W2
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bounded. Let µ = E[∂1f(0)2], and Φ(λ) = 1√
2π

∫∞
λ

exp(−t2/2)dt. Then

E[Vol2(F ∩W )] = Vol2(W )Φ(λ), (11)

E[Per∞(F ∩W )] = Vol2(W )2

√
µ

π
exp(−λ2/2) + Per∞(W )Φ(λ), (12)

E[χ(F ∩W )] =

(
Vol2(W )

µλ

(2π)3/2
+ Per∞(W )

√
µ

4π

)
e−λ

2/2 +
1√
2π

Φ(λ)χ(W ). (13)

Remark 14. If W is a square, the relation (13) coincides with [6, (11.7.14)].

Proof. (10) immediately yields (11). To prove (13), first remark that the stationarity of the field

and the fact that it is not constant a.s. entail that (f(0), ∂1f(0), ∂2f(0))
(d)
= (f(x), ∂1f(x), ∂2f(x)), x ∈

R2 is non-degenerate. Let us show

χ(F ) = lim
ε→0

ε−2
[
P
(
δ̄ε(0, f, λ)

)
−P

(
δ̄−ε(0,−f,−λ)

)]
=
µλ exp(−λ2/2)

(2π)3/2
. (14)

Fix ε > 0. LetMε be the 3×3 covariance matrix of (f(0), f(εu1), f(εu2)). Since Cov(f(0), f(εui)) =
1− µε2/2 +O(ε4),Cov(f(εu1), f(εu2)) = 1− µε2 +O(ε4), straightforward computations show
that det(Mε) = ε4µ2 + o(ε4), and

M−1
ε =

1

det(Mε)

(
ε2Wε + ε4Dε

)
, (15)

where the sum of each line and each column of Wε is 0, for ε > 0, and as ε→ 0

Wε →W := µ

 2 −1 −1
−1 1 0
−1 0 1

 , Dε → D :=
µ2

4

 −4 2 2
2 −1 1
2 1 −1

 .

Denote by 1 the row vector (1, 1, 1), and let Λ = λ1, Q = {(t, s, z) : t > 0, s < 0, z < 0}. Denote
by A′ the transpose of a matrix (or a vector) A. We have

P(δ̄ε(0, f, λ)) =
1√

(2π)3 det(Mε)

∫
Q+Λ

exp

(
−1

2
(t, s, z)′M−1

ε (t, s, z)

)
dtdsdz

and by isotropy and symmetry, for λ ∈ R,

P(δ̄−ε(0,−f,−λ)) = P(δ̄ε(0,−f,−λ)) = P(δ̄ε(0, f,−λ)).

Therefore, (8) yields that χ(F ) = limε→0 ε
−2
(
P(δ̄ε(0, f, λ))−P(δ̄ε(0, f,−λ))

)
. LetX = (t, s, z) ∈

Q,Y = ε√
det(Mε)

X. Since ΛWε and WεΛ are 0, we have

(X + Λ)′M−1
ε (X + Λ) = Y ′(Wε + ε2Dε)Y︸ ︷︷ ︸

=:γε(Y )

+
2ε3√

det(Mε)
Y ′DεΛ +

ε4

det(Mε)
Λ′DεΛ

P(δ̄ε(0, f, λ)) =

(√
det(Mε)

ε

)3

exp
(
−λ2 ε4

2 det(Mε)
1′Dε1

)
√

(2π)3 det(Mε)

∫
Q

exp

(
−1

2
γε(Y )− ε3λ

Y ′Dε1√
det(Mε)

)
dY

10



and, for some θ = θ(ε, Y, λ) ∈ [−ε3 det(Mε)
−1/2, ε3 det(Mε)

−1/2],

exp

(
− ε

3λY ′Dε1√
det(Mε)

)
− exp

(
ε3λY ′Dε1√

det(Mε)

)
=− 2

ε3λY ′Dε1√
det(Mε)

exp(θλ1′DεY ).

Therefore, as ε→ 0, ε−2(P(δ̄ε(0, f, λ))−P(δ̄ε(0, f,−λ))) is equivalent to

ε−2 exp(−λ2/2) det(Mε)

ε3
√

(2π)3

∫
Q

exp(−γε(Y )/2)
−2ε3Y ′Dελ1√

det(Mε)
exp (θY ′Dελ1) dY

∼ − exp(−λ2/2)µ√
2π3

∫
Q

exp(−γε(Y )/2)Y ′Dελ1 exp(θY ′Dελ1)dY. (16)

For Y = (x, y, z) ∈ Q, we have

Y ′WY

µ
= 2x2 + y2 + z2 − 2xy − 2xz =2x2 + y2 + z2 + 2|xy|+ 2|xz| > ‖Y ‖2.

Since Wε + ε2Dε →W as ε→ 0, γε(Y ) > µ‖Y ‖2/2 for ε sufficiently small, uniformly in Y ∈ Q.
This yields a clear majoring bound and Lebesgue’s theorem gives χ(F ) = −µ exp(−λ2/2)I(2π3)−1/2

with I =
∫
Q

exp(− 1
2Y
′WY )Y ′DΛdY = 2λJ where

J =

∫
Q

exp(−(2t2 + s2 + z2 − 2ts− 2tz))(s+ z)dtdsdz = −1/4

with the change of variables u = t− s, v = t− z, w = t. The statement (14) is therefore proved.
The computation of Per∞(F ) is similar and simpler and is omitted here.

5 Proofs

5.1 Proof of Theorem 3

(i) Assume without loss of generality λ = 0 in the proof. Recall that Γ(F∩W ) is the collection of
bounded connected components of F ∩W . For 0 6 k 6 d, denote by Γk(F ∩W ) the elements of
Γ(F ∩W ) that hit ∂kW , and define recursively Γ+

k (F ;W ) = Γk(F ∩W )\Γ+
k−1(F ;W ), 1 6 k 6 d

(with Γ+
0 (F ;W ) := F ∩ corners(W )).

Let 1 6 k 6 d,C ∈ Γ+
k (F ;W ), C ′ arbitrarily chosen in Γ(C ∩∂kW ). Since C ′ does not touch

∂k−1W , it is included in the relative interior of ∂kW within the affine k-dimensional tangent
space to ∂W that contains C ′, hence it is contained in some facet G. Let I ∈ Ik such that for
x ∈ G, Ix(W ) = I. Let xC ∈ cl(C ′) be such that f(xC) = supC′ f . Since the k-dimensional
gradient ∇(f|G) does not vanish on ∂C ′, f(xC) > 0 and the Lagrange multipliers Theorem yields
that ∂if(xC) = 0 for i ∈ I. Call rC the maximal radius such that BC := (B(xC , rC)∩G) ⊂ C ′.
Since BC touches ∂F , f has a zero on BC . It follows that |f(x)| 6 2Lip(f)rC and |∂if(x)| 6
Lip(∂if)rC for x ∈ BC , i ∈ I. Define

M(x) = max

(
|f(x)|

2Lip(f)
,
|∂if(x)|
Lip(∂if)

, i ∈ I
)
∈ R+, x ∈ ∂kW.

Since M(x) 6 rC on BC , we have

1 =
1

Hkd(BC)

∫
BC

1{M(x)6rC}H
k
d(dx) = κ−1

k r−kC

∫
BC

1{r−1
C 6M(x)−1}H

k
d(dx)

6 κ−1
k

∫
BC

M(x)−kHkd(dx).

11



Since the BC are pairwise disjoint, summing over all the C ∈ Γ+
k (F ;W ) and k ∈ {1, . . . , d} gives

#Γ(F ∩W ) 6
d∑
k=0

Γ+
k (F ;W ) 6

d∑
k=0

∑
C∈Γ+

k (F ;W )

κ−1
k

∫
BC

M(x)−kHkd(dx) 6
d∑
k=0

κ−1
k

∫
∂kW

M(x)−kHkd(dx).

with M(x)−0 = 1 by convention on corners(W ). The result follows by noticing that

M(x) > min

(
1

2Lip(f)
,

1

Lip(∂if)
, i ∈ I

)
max(|f(x)|, |∂if(x)|, i ∈ I) >

max(|f(x)|, |∂if(x)|, i ∈ I)

2 max(Lip(f),Lip(∂if), i ∈ I)
.

(ii) Theorem 2.12 in the companion paper [21], in the context d = 2, features a bound on
χ((F ∩W )ε) in terms of the number of occurrences of local configurations called entanglement
points of F . Roughly speaking, an entanglement point occurs when two close points of F are
connected by a tight path in F . As a consequence, if F is sampled with an insufficiently high
resolution in this region, the connecting path is not detected, and F looks locally disconnected.
For formal definitions, for x, y ∈ εZ2 at distance ε, introduce Px,y the closed square with side-
length ε such that x and y are the midpoints of two opposite sides. Let P′x,y = ∂Px,y \ {x, y},
which has two connected components. Then {x, y} is an entanglement pair of points of F if
x, y /∈ F and (P′x,y ∪ F ) ∩ Px,y is connected. We call Nε(F ) the family of such pairs of points.
See Figure 1 for an example.

Figure 1: Entanglement point: In this example, {x, y} ∈ Nε(F ) because the two connected
components of P′x,y, in grey, are connected through γ ⊆ (F ∩ Px,y). We have {x, y} /∈ Nε(F

′).

Let Lx, yM = εZ2 ∩ [x, y] \ {x, y}, for x, y ∈ εZ2. For A ⊂ R2, note A⊕ε = {x ∈ Rd : d(x,A) 6
ε}. To account for boundary effects, we also consider grid points x, y ∈ εZ2 ∩W ∩ F , on the
same line or column of εZ2, such that

• x, y are within distance ε from one of the edges of W (the same edge for x and y)

• Lx, yM 6= ∅

• Lx, yM ⊆ εZ2 ∩ F c ∩ F⊕ε.

The family of such pairs of points {x, y} is denoted by N ′
ε (F ;W ) . It is proved in [21, Theorem

2.12] that

#Γ((F ∩W )ε) 6 2#(Nε(F ) ∩W⊕ε) + 2#N ′
ε (F,W ) + #Γ(F ∩W ) + 2#corners(W ). (17)
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It therefore only remains to bound #(Nε(F )∩W⊕ε) and #N ′
ε (F,W ) to achieve (7). For m > 1

and a function g : A ⊆ Rm → R, introduce the continuity modulus

ω(g,A) = sup
x 6=y∈A

|g(x)− g(y)|.

The bound will follow from the following lemma.

Lemma 15. (i) For {x, y} ∈ Nε(F ), we have for some i ∈ {1, 2}, and i′ = i+ 1 mod 2,

|f(x)| 6 ω(f, [x, y]) 6 Lip(f)ε

|∂if(x)| 6 ω(∂if, [x, y]) 6 Lip(∂if)ε

|∂i′f(x)| 6 2ω(∂if,Px,y) + ω(∂i′f,Px,y) 6
√

2ε(2Lip(∂if) + Lip(∂i′f)),

and idem for y.
(ii) For x, y ∈ N ′

ε (F,W ), there is z = z(x, y) ∈ Lx, yM, i ∈ {1, 2}, such that

|f(z)| 6 Lip(f)ε

|∂if(z)| 6 Lip(∂if)ε.

The lemma is proved later for convenience. To obtain the integral upper bounds from (7),
note that there is c > 0 such that for ε > 0 sufficiently small, for every x, y ∈W , neighbours in
εZ2, Vol2((B(x, ε) ∪B(y, ε)) ∩W ) > ε2/c. Define the possibly infinite quantity, for z ∈W,

M(z) = max

(
|f(z)|

2Lip(f)
,
|∂if(z)|

2Lip(∂if)
,

|∂i′f(z)|
2
√

2(Lip(∂1f) + Lip(∂2f))

)
.

Lemma 15 yields that for {x, y} ∈ Nε(F ) and z ∈ B(x, ε) ∪B(y, ε), M(z) 6 ε. Then

#Nε(F ) 6
∑

{x,y}∈Nε(F )

1{∀z∈B(x,ε)∪B(y,ε)∩W,M(z)6ε}

6
∑

{x,y}∈Nε(F )

∫
(B(x,ε)∪B(y,ε))∩W

cε−21{ε−16M(z)−1}dz

6 4c

∫
W

M(z)−2dz 6 c′I2(f ;W ),

for some c′ > 0, because for every z ∈W there are at most 4 couples {x, y} ∈ Nε(F ) such that
z ∈ B(x, ε) ∪B(y, ε).

Now, given w ∈ ∂W , there can be at most 3 pairs {x, y} ∈ N ′
ε (F ) such that w is on the

closest edge of W parallel to [x, y] and z = z(x, y) (defined in Lemma 15) is within distance 3ε
from w, and in this case |f(w)| 6 4Lip(f)ε and |∂if(w)| 6 4Lip(∂if)ε for some i ∈ {1, 2}. We
have H1

2(B(z, 3ε) ∩ ∂W ) > ε, because z is within distance 2ε from a segment of ∂W parallel to
[x, y]. It follows that, with Mi(w) = max(|f(w)|/4Lip(f), |∂if(w)|/4Lip(∂if))

#N ′
ε (F,W ) 6

∑
{x,y}∈N ′

ε (F,W )

2∑
i=1

1{∀w∈B(z,3ε)∩∂W,Mi(w)6ε}

6
2∑
i=1

∑
{x,y}∈N ′

ε (F )

1

ε

∫
∂W∩B(z,3ε)

1{Mi(w)−1>ε−1}H1
2(dw)

6
2∑
i=1

3

∫
∂W

Mi(w)−1H1
2(dw) 6 24I1(f ;W ).
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Proof of Lemma 15. For x ∈ R2, denote by (x[1], x[2]) its coordinates in the canonical basis, not
to be mistaken with a pair of vector of R2, denoted by (x1, x2). If ϕ is a mapping with values
in R2, denote its coordinates by (ϕ(·)[1], ϕ(·)[2]).

(i) Let x, y ∈ Nε(F ). The definition of Nε(F ) yields a connected path γ ⊆ (F ∩Px,y) going
through some z ∈ [x, y] and connecting the two connected components of P′x,y. Since f(x) > 0
and f(z) 6 0, there is a point z′ of [x, y] satisfying f(z′) = 0, hence |f(x)| 6 ω(f, [x, y]). Note
for later that for t ∈ Px,y |f(t)| 6 ω(f,Px,y) 6 Lip(f)

√
2ε.

We assume without loss of generality that [x, y] is horizontal. Let [z′, z′′] be the (also hori-
zontal) connected component of F ∩ [x, y] containing z. After choosing a direction on [x, y], z′

and z′′ are entry and exit points for F , and their normal vectors nF (z′),nF (z′′) point towards
the outside of F . Therefore they satisfy nF (z′)[1]nF (z′′)[1] 6 0, and so ∂1f(z′)∂1f(z′′) 6 0.
This gives us by continuity the existence of a point w ∈ [x, y] such that 0 = ∂1f(w), whence
|∂1f(x)| 6 ω(∂1f, [x, y]). Note for later that |∂1f(t)| 6 ω(∂1f,Px,y) on Px,y. If [x, y] is vertical,
∂2f verifies the inequality instead. Let us keep assuming that [x, y] is horizontal for the sequel
of the proof.

We claim that |∂2f(x)| 6 2ω(∂1f,Px,y) + ω(∂2f,Px,y), and consider two cases to prove it.

• First case ∂2f(z′)∂2f(z′′) 6 0, and by continuity we have w ∈ [x, y] such that 0 = ∂2f(w),
whence |∂2f(·)| 6 ω(∂2f,Px,y) on the whole pixel Px,y. The desired inequality follows.

• Second case ∂2f(z′) > 0, ∂2f(z′′) > 0 (equivalent treatment if they are both < 0). Assume
for instance that z′ is the leftmost point, and that |∂2f(x)| > 2ω(∂1f,Px,y) +ω(∂2f,Px,y),
otherwise the claim is proved. It implies in particular that |∂2f(·)| > 2ω(∂1f,Px,y) on
the whole pixel Px,y. Since |∂1f(·)| 6 ω(∂1f,Px,y) on Px,y, the implicit function theorem
yields a unique function ϕ (resp. ψ): [z′[1], z

′′
[1]]→ R such that ϕ(z′[1]) = z′[2] (resp. ψ(z′′[1]) =

z′′2 = z′[2]), |ϕ
′| 6 1/2, (resp. |ψ′| 6 1/2), ϕ([z′[1], z

′′
[1]]) ⊂ (z′[2] + (−ε/2, ε/2)), (resp.

ψ([z′[1], z
′′
[1]]) ⊂ (z′[2] + (−ε/2, ε/2))) and the graph of ϕ (resp. ψ) coincides with ∂F ∩

([z′[1], z
′′
[1]] × (z′[2] + [−ε/2, ε/2]). In particular, ϕ = ψ, and its graph cannot touch the

upper half of ∂Px,y. Applying this to every maximal segment [z′, z′′] ⊂ (F ∩ [x, y]), we
see that every connected component of F touching [x, y], and hence γ, cannot meet the
upper half of Px,y. In particular, it contradicts the definition of Nε(F ), whence indeed
the assumption is proved by contradiction.

(ii)Let now {x, y} be an element of N ′
ε (f,W ). We know that Lx, yM∩F c 6= ∅. Let [z′, z′′] ⊂ [x, y]

be a connected component of F c ∩ [x, y]. If [z′, z′′] is, say, horizontal, since nF (·)[1] changes sign
between z′ and z′′, so does ∂1f , and by continuity there is w ∈ [z′, z′′] where ∂1f(w) = 0.
Calling z the closest point from w in Lx, yM, ‖z − w‖ 6 ε, and by definition of N ′

ε (F,W ), z is
also at distance ε from ∂F = {f = 0}. It follows that the result holds with i = 1 : |∂1f(z)| 6
Lip(∂1f)ε, |f(z)| 6 Lip(f)ε. A similar argument holds for i = 2 if [z′, z′′] is vertical.

5.2 Proof of Theorem 7

Assume without loss of generality λ = 0. Let us prove that f is a.s. regular within W at level
0. For 0 6 k 6 d, I ∈ Ik, define

θk,I = {x ∈ ∂kW : f(x) = 0, ∂if(x) = 0, i ∈ I}.

We must prove that θk,I = ∅ a.s.. Define M(y) = max(|f(y)|/Lip(f), |∂if(y)|/Lip(∂if), i ∈ I).
For x ∈ θk,I , y ∈ B(x, ε), we have M(y) 6 ε. Since W is a polyrectangle, there is cW > 0 such
that the following holds for ε > 0 sufficiently small: there is a partition {Cεi ; 1 6 i 6 nε} of
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∂kW such that for each i, Cεi ⊂ B(xεi , ε/2) for some xεi ∈ ∂kW , and Hkd(Cεi ) > εk/cW . Then for
any η > 0,

#θk,I = lim
ε→0

#{1 6 i 6 nε : θk,I ∩ Cεi 6= ∅}

= lim
ε→0

nε∑
i=1

∫
Cεi

1{M(y)6ε}
Hkd(dy)

Hkd(Cεi )

6 lim inf
ε→0

cW
εk

∫
∂kW

1{M(y)6ε}Hkd(dy)

6cW lim inf
ε→0

εη
∫
∂kW

M(y)−(k+η)Hkd(dy).

For any numbers a1, . . . , aq, b1, . . . , bq > 0, we have

max
i

(ai/bi) > max
i

(ai min
j

(1/bj)) = min
j

(1/bj) max
i

(ai) =
maxi(ai)

maxi(bi)
.

Hence, with L := max(Lip(f),Lip(∂if), i ∈ I),my := max(|f(y)|, |∂if(y)|, i ∈ I), M(y) >
my/L. Fatou’s lemma yields,

E[#θk,I ] 6cW lim inf
ε→0

εη
∫
∂kW

E

[
Lk+η

mk+η
y

]
Hkd(dy).

Since p > αd
α−1 > αk

α−1 , we can choose q ∈ ((1 − k/p)−1, α). It satisfies q > 1 and q′k < p, with

q′ = (1 − q−1)−1. In particular, if η is chosen > 0 sufficiently small, C := E[Lq
′(k+η)] < ∞ for

1 6 k 6 d. Using Hölder’s inequality, E(θk,I) = 0 follows from the following bound, uniform in
y:

E[m−q(k+η)
y ] 6

∫
R+

P(my 6 t−1/(q(k+η)))dt

6
∫
R+

P(|f(y)| 6 t−1/(q(k+η)), |∂if(y)| 6 t−1/(q(k+η)), i ∈ I)dt

6c
∫
R+

1 ∧ t−
αk

q(k+η) dt.

Assume without loss of generality that η > 0 is chosen so that q(k+ η) < αk, so that indeed for
all 1 6 k 6 d, the previous bound is finite (uniformly in y).

The proof that the Ik(f ;W ) have finite expectation for 1 6 k 6 d is similar. We have

E[Ik(f ;λ)] 6 (E[Lkq
′
])

1
q′

∫
∂kW

(E[m−kqy ])
1
qHkd(dy).

The finiteness follows by the exact same computation as before, with η = 0.
Therefore, if d = 2, using (5), χ(F ∩W ) = limε→0 χ((F ∩W )ε) holds a.s. According to

Theorem 3, the finiteness of E[I1(f ;W )] and E[I2(f ;W )] enable us to apply Lebesgue’s theorem
and show that this limit can be passed to expectations, yielding (1)-(2).

5.3 Proof of Theorem 9

According to the previous proof, the quantities Ik(f ;λ), 0 6 k 6 2, have finite expecta-
tion on any bounded W ∈ W2. Hence according to the proof of Theorem 3, the quan-
tities E[sup0<ε61 #(Nε(F ) ∩ W )], E[sup0<ε61 #(Nε(F

c) ∩ W )], E[sup0<ε61 #(N ′
ε (F,W ))],
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E[sup0<ε61 #(N ′
ε (F c,W ))], E[#Γ(F ∩ W )], E[#Γ(F c ∩ W )] are finite. Therefore Theorem

9 is a consequence of [21, Proposition 3.1].
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[9] J. Azäıs and M. Wschebor. A general expression for the distribution of the maximum of
a Gaussian field and the approximation of the tail. Stoc. Proc. Appl., 118(7):1190–1218,
2008.
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