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Bicovariograms and Euler characteristic II.
Random fields excursions

Raphaël Lachièze-Rey∗

Abstract Let f be a C1 bivariate function with Lipschitz derivatives, and
F = {x : f(x) 6 λ} a level set of F , with λ ∈ R. We give an expression of the
Euler characteristic of F in terms of the three-points indicator functions of the
set. If f is a two-dimensional C1 random field and the derivatives of F have
Lipschitz constants with finite moments of sufficiently high order, taking the
expectation provides an expression of the mean Euler characteristic in terms
of the third order marginal of the field. We provide sufficient conditions and
explicit formulas for Gaussian fields, relaxing the usual C2 Morse hypothesis.

Keywords Euler characteristic, Random fields, Gaussian processes, covar-
iograms, intrinsic volumes, C1,1 functions

MSC Classification 60G60, 60G15,28A75,60G10,60D05,52A22

Introduction

The geometry of random fields excursion sets has been a subject of intense
research over the last fifteen years. Many authors are concerned with the
computation of the mean [5] or variance [19, 11] of the Euler characteristic,
denoted by χ here.

As an integer-valued quantity, the Euler characteristic can be easily mea-
sured and used in many estimation and modelisation procedures. It is an
important indicator of the porosity of a random media [6, 23, 14], it is used
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in brain imagery [16, 24], astronomy, [20, 22, 19], and many other disciplines.
See also [2] for a general review of applied algebraic topology.

Most of the available works on random fields use the results gathered in
the book [5], or similar variants. In this case, theoretical computations of
the Euler characteristic emanate from Morse theory, where the focus is on
the local extrema of the underlying field [7], instead of the set itself. For
the theory to be applicable, the functions must be C2 and satisfy the Morse
hypotheses, which conveys some restrictions on the set itself.

The expected Euler characteristic also turned out to be a widely used ap-
proximation of the distribution function of the maximum of a Morse random
field, and attracted much interest in this direction, see [3, 8, 24]. Indeed, for
large r > 0, a well-behaved field rarely exceeds r, and if it does, it is likely to
have a single highest peak, which yields that the level set of f at level r, when
not empty, is most often simply connected, and has Euler characteristic 1.
In this fashion, Eχ({f > r}) ≈ P(sup f > r), which provides an additional
motivation to compute the mean Euler characteristic of random fields.

Even though [4] provides an asymptotic expression for some classes of
infinitely divisible fields, most of the tractable formulae concern Gaussian
fields. One of the ambition of this paper is to provide a formula that can be
applied to an arbitrary bivariate random field under rather general settings,
and also works in the Gaussian realm.

Approach

Given a set A ⊂ R2, let Γ(A) be the class of its bounded connected compo-
nents. We say that a set A is admissible if Γ(A) and Γ(Ac) are finite, and in
this case its Euler characteristic is defined by

χ(A) = #Γ(A)−#Γ(Ac),

where in all the paper # denotes the cardinality of a set. The theoretical
results of Adler and Taylor [5] regarding random excursions require second
order differentiability of the underlying field f , but the expression of the
mean Euler characteristic only involves the first-order derivatives, suggesting
that second order derivatives do not matter in the computation of the Euler
characteristic. In the words of Adler and Taylor (Section 11.7), regarding
Formula (11.7.6), it is a rather surprising fact that the [mean Euler char-
acteristic of a Gaussian field] depends on the covariance of f only through
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some of its derivatives at zero, that is, only through the variance and second-
order spectral moments. This is particularly surprising in view of the fact
that the definition of the µk depends quite strongly on the fi,j, where the µk
are topological indexes depending on the Morse structure of f . We present
here a method for which the second order differentiability is not needed. The
results are valid for C1 fields with Lipschitz derivatives, also called C1,1 fields,
relaxing slightly the classical C2 Morse hypothesis.

Our main result relies on a preliminary work [17] connecting smooth sets
Euler characteristic and variographic tools. For m, q > 1, points x1, . . . , xm,
y1, . . . , yq of R2 and A ⊂ R2, note the corresponding polyvariogram

δy1,...,yqx1,...,xm
(F ) = Vol((F + x1) ∩ · · · ∩ (F + xm) ∩ (F + y1)c ∩ · · · ∩ (F + yq)

c).

The function x 7→ δ0,x(F ) is called covariogram, and the function (x, y) 7→
δ0,x,y the bicovariogram of F . See [18, Chap. 3.1] for more insights on
variographic tools.

Note by ∂A the topological boundary of a set A ⊂ R2. We call here
regular set a compact set F such that ∂F is a C1 submanifod of R2 and the
mapping associating a point x ∈ ∂F to the outward normal vector of F in x,
nF (x), is Lipschitz. Call u1,u2 the canonical unit vectors of R2. It is proved
in [17, Th. 1.6] that under these conditions, for ε small enough,

χ(F ) = ε−2(δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F )).

This expression could be equivalently expressed directly in terms of bicovar-
iograms, using the relation δx,y0 = δ0 − δ0,x − δ0,y + δ0,x,y, x, y ∈ R2.

If F = {x : f(x) 6 λ} for some λ ∈ R and a sufficiently smooth bi-variate
function f , the formula above becomes

χ(F ) = ε−2

∫
R2

[
δε(x, f, λ)− δ−ε(x,−f,−λ)

]
dx, (0.1)

where

δη(x, f, λ) = 1{f(x)6λ,f(x+ηu1)>λ,f(x+ηu2)>λ}, η ∈ R.

In the context of a random field f , we see that, under suitable conditions,
one can compute the mean Euler characteristic of random level sets solely in
terms of the values taken by the third order marginal of the field in triples of
arbitrarily close arguments, when classical methods usually require to know

3



the distribution of the Hessian matrix of the field at each point. Let us write
a simplified form of our main result here. A more general statement can be
found in section 2.

Theorem 0.1. Let W = [0, a] × [0, b], a, b > 0. Let f be a C1 real random
field on W with locally Lipschitz partial derivatives ∂1f, ∂2f , λ ∈ R, and
F = {f 6 λ}. Assume furthermore that the following conditions are satisfied:

(i) For some κ > 0, for x ∈ W , the density of the random vector (f(x), ∂1f(x), ∂2f(x))
is bounded by κ on R3.

(ii) There is p > 3, α ∈ (2/p, 1− 1/p), η > 0 such that for i = 1, 2,

E[Lip(f)αpLip(∂if)p(2−α)+η] <∞.

Then χ(F ) is a well-defined integrable random variable and

Eχ(F ) = lim
ε→0

∑
x∈εZ2

Eδε(x, f, λ)− Eδ−ε(x,−f,−λ) (0.2)

= lim
ε→0

ε−2

∫
R2

[
Eδε(x, f, λ)− Eδ−ε(x,−f,−λ)

]
dx. (0.3)

Theorem 2.1 actually features a result where f is defined on the whole
plane and the level sets of F are observed through a bounded window W ,
as is typically the case for level sets of non-trivial stationary fields, but the
intersection with ∂W requires additional notation and care. See Theorem
2.2 for a result tailored to deal with stationary fields excursions.

Theorem 2.4 is specialised to the case where f is a Gaussian field. Under
the additional hypotheses that f is stationary and isotropic, we retrieve in
Theorem 2.5 the standard results of [5], assuming only C1,1 regularity.

1 C1,1 functions

Let f be a function of class C1 over some domain W ⊂ R2, and λ ∈ R. Define

F := Fλ(f) = {x ∈ W : f(x) 6 λ}, Fλ−(f) = {x ∈ W : f(x) < λ}.

Remark that Fλ−(f) = (F−λ(−f))c. If we assume that ∇f does not van-
ish on ∂Fλ(f), ∂Fλ(f) = ∂Fλ−(f) = f−1({λ}), and this set is furthermore
negligible, as a 1-dimensional manifold.

4



According to [12, 4.20], ∂Fλ(f) is regular, in the sense given in the in-
troduction, if and only if ∇f is locally Lipschitz and does not vanish on
∂Fλ(f). This condition is necessary to prevent F from having infinitely many
connected components, which would make Euler characteristic not properly
defined, see [17, Remark 1.15]. We call C1,1 function a differentiable function
which gradient is a locally Lipschitz mapping. Those functions have been
mainly used in optimisation problems, and as solutions of some PDEs, see
for instance [15]. They can also be characterised as the functions which are
locally semiconvex and semiconcave, see [10].

The result presented below, a transcription of [17, Theorem 1.7] for level
sets of C1,1 functions, shows that Lipschitzness of ∇f is also sufficient for
the approximation (0.1) to hold. It seems therefore that the assumptions of
Theorem 1.1, below, are the minimal ones ensuring the Euler characteristic to
be computable with the covariogram method.

Observation window An aim of the present paper is to advocate the
power of variographic tools for computing the Euler characteristic of random
fields excursions, we therefore need to give results that can be compared with
the literature. Since many applications are concerned with stationary random
fields on the whole plane, we have to study the intersection of excursions with
bounded windows, and assess the quality of the approximation.

To this end, call admissible rectangle of R2 any set W = I × J where I
and J are closed (and possibly infinite) intervals of R, and note corners(W )
its corners, which number is between 0 and 4. Then call polyrectangle a
finite union W = ∪iWi where each Wi is an admissible rectangle, and for
i 6= j, corners(Wi) ∩ corners(Wj) = ∅. Call W the class of polyrectangles.

We note by corners(W ) the set of apparent corners of W , and for x ∈
∂W \corners(W ), note nW (x) the outward normal unit vector of W in x. We
also call edge of W a maximal segment of ∂W , i.e. a segment [x, y] ⊂ ∂W
that is not strictly contained in another such segment of ∂W (in this case,
x, y ∈ corners(W )).

Given a measurable set A ⊂ R2 and ε > 0, we introduced in the compan-
ion paper the Gauss approximation Aε of A, and formula (0.1) is the result of
the fact that for ε sufficiently small, χ((Fλ(f) + x)ε) = χ(Fλ(f)) for x ∈ R2

for a suitable function f . Even though it does not matter in the present
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paper, we recall that this approximation is defined by

Aε =
⋃

x∈εZ2∩A

(
x+ ε[−1/2, 1/2)2

)
, A ⊂ R2.

Theorem 1.1. Let f be a C1,1 function of R2, and W ∈ W. Let λ ∈ R such
that

1. F := Fλ(f) ∩W is bounded

2. For x ∈ W such that f(x) = λ, ∇f(x) 6= 0

3. For x ∈ corners(W ), f(x) 6= λ.

4. For x ∈ ∂W such that f(x) = λ, nF (x) is not colinear with nW (x).

Then for ε sufficiently small

χ(F ) = χ(F ε) (1.1)

= ε−2
∑
x∈εZ2

δε(x, f, λ)− δ−ε(x,−f,−λ)

= ε−2

∫
R2

[
δε(x, f, λ)− δ−ε(x,−f,−λ)

]
dx

= ε−2[δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F )].

The proof is a direct application of [17, Theorem 1.7] to F , using also the
fact that for a.e. x ∈ R2, δε(x,−f,−λ) = 1{f(x)>λ,f(x+εu1)6λ,f(x+εu2)6λ}.

1.1 Topological estimates

The next result is very general and does not concern directly the Euler char-
acteristic. Its purpose is to bound the number of connected components of
(Fλ(f) ∩W )ε in view of applying Lebesgue’s theorem to the point-wise con-
vergence (1.1). It also provides a general bound for controlling the number of
connected components of the excursion of a regular function, independently
of the grid mesh.

Theorem 1.16 in the companion paper [17] features a bound on χ(F ∩W )
in terms of the number of occurrences of local configurations called entan-
glement points of F , formally introduced through the notations Nε(F ) and
N′ε(F,W ). Roughly, an entanglement point occurs when two close points of
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F are connected by a tight path in F . As a consequence, if F is sampled
with an insufficiently high resolution in this region, the connecting path is
not detected, and F looks locally disconnected. The formal definitions of
these quantities are recalled in due course along the proof of the following
result. Denote by Lip(g) the Lipschitz constant of a Lipschitz function g
going from a metric space to another.

Theorem 1.2. Let W ∈ W, and f : W → R be a C1,1 function. Let
F = Fλ(f) or F = Fλ−(f) for some λ ∈ R. Assume that F ∩W is bounded.
Let α, β, α′, β′ > 0 such that α + 2β > 2, α′ + β′ > 1. Let

Iα,β : = Lip(f)α(Lip(∂1f)2β + Lip(∂2f)2β)

∫
W

1

|f(x)|α|∂1f(x)∂2f(x)|β
dx

I ′α′,β′ : = Lip(f)α
′

2∑
i=1

[
Lip(∂if)β

′
∫
∂W

1

|f(x)|α′ |∂if(x)|β′
H1(dx)

]
where H1 is the 1-dimensional Hausdorff measure. Then there is C > 0
depending on diam(F ∩ W ), and some quantity ε(W ) > 0 such that for
0 < ε < ε(W ),

max(#Γ((F ∩W )ε),#Γ(F ∩W )) 6 C(Iα,β + I ′α′,β′ + #corners(W )). (1.2)

Let us give a few remarks before the proof.

Remark 1.3. In the case where W = R2, only the first term remains on the
right hand side of (1.2).

Remark 1.4. Similar results hold if f ’s partial derivatives are only assumed
to be Holder, i.e. if there is δ > 0 and Hi > 0, i = 1, 2 such that ‖∂if(x) −
∂if(y)‖ 6 Hi‖x−y‖δ for x, y such that [x, y] ⊂ W . We don’t treat such cases
here because, as noted at the beginning of Section 1, if the partial derivatives
are not Lipschitz, the level set is not regular enough to compute the Euler
characteristic from the bicovariogram.

Remark 1.5. Calling Bε the right hand term of (1.2) and noticing that
Fλ−(f)c is a level set of −f , an easy reasoning yields (see [17, Remark 1.17])

|χ((Fλ(f) ∩W )ε)| 6 2Bε.
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Notation We need some general notation before turning to the proof. De-
note by S1 the set of unit vectors in R2. For a set A ⊂ R2, and r > 0, call
A⊕r = {x : d(x,A) 6 r}, where d(x,A) is the Euclidean distance between x
and A. We also note, for x ∈ R2, (x[1], x[2]) its coordinates in the canonical
basis. If ϕ is an application with values in R2, denote its coordinates by
(ϕ(·)[1], ϕ(·)[2]).

We also denote by cl(A), int(A) the topological closure and interior of a
set A ⊂ R2.

At some point in the proof, and later in the article, we need the following
simple but very convenient notation: For i ∈ {1, 2}, write

i′ =

{
2 if i = 1,

1 if i = 2.

Proof of Theorem 1.2. We make only the proof for λ = 0 for notational
simplification. Let us first bound #Γ(F ∩ W ). Call in this proof Γ :=
{C : C ∈ Γ(F ∩W ), C ⊆ W} and Γ′ := {C : C ∈ Γ(F ∩ ∂W )}, so that
#Γ(F ∩W ) 6 #Γ + #Γ′.

Let C ∈ Γ. Let xC ∈ cl(C) such that f(xC) = infC f . Since ∇f 6= 0 on
∂C, xC ∈ int(C), whence ∇f(xC) = 0. Denote by B[x, r] the ball centred
in x with radius r for the ∞-norm on R2, i.e. the square with center x
and side-length 2r. Call rC = sup{r > 0 : B[xC , r] ⊆ C} > 0, and let
BC = B[xC , rC ] ⊂ F ∩W . It is clear that for C,C ′ ∈ Γ distinct, C ∩C ′ = ∅.
Call for n ∈ Z

Γn = {C ∈ Γ : rC ∈ [2−n, 2−n+1)}.

Since F is bounded, there is n0 = n0(diam(F ∩W )) such that Γn = ∅ for
n < n0.

For each C ∈ Γn, there is x ∈ 2−nZ2 ∩ BC ⊂ W and this is the only BC

to which x belongs. Also, since ∂F hits B[xC , rC ], it also hits B[xC , 2
−n+1],
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and for x ∈ B[xC , 2
−n+1], ∂F ∩B[x, 2−n+2] 6= ∅. Then

#Γ =
∑
n>n0

#Γn(F ∩W )

6
∑
n>n0

∑
x∈2−nZ2∩W

1{x∈BC for some C∈Γn}

6
∑
n>n0

∑
x∈2−nZ2∩W

1{there is xC∈B[x,2−n+1]∩W :∇f(xC)=0 , there is z∈∂F∩B[x,2−n+2]}

6
∑
n>n0

∑
x∈2−nZ2∩W

1{f,∂1f,∂2f vanish in B[x,2−n+2]∩W}

6
∑
n>n0

∑
x∈2−nZ2∩W

1

Vol(B[x, 2−n] ∩W )

∫
B[x,2−n]∩W

1{f,∂1f,∂2f vanish on B[y,2−n+3]∩W}dy.

There is c = c(W ) > 0 such that for n > n0, Vol(B[x, 2−n] ∩W ) > 4−n/c.
Then

#Γ 6 c
∑
n>n0

4n
∫
W

1{|f(y)|62−n+4Lip(f) , |∂1f(y)|62−n+4Lip(∂1f) , |∂2f(y)|62−n+4Lip(∂2f)}dy

(1.3)

6 c
∑
n>n0

4n
∫
W

∣∣∣∣Lip(f)2−n+4

f(y)

∣∣∣∣α ∣∣∣∣Lip(∂1f)2−n+4

∂1f(y)

∣∣∣∣β ∣∣∣∣Lip(∂2f)2−n+4

∂2f(y)

∣∣∣∣β dy
6 c′

∑
n>n0

(2−n)−2+α+2βIα,β,

where c′ noes not depend on α, β (using the fact that α, β ∈ [0, 1]).
Let us now bound #Γ′ with a similar method, adapted to the dimension

1. Let C ∈ Γ′ that does not touch corners(W ). Let i ∈ {1, 2} such that ui
is orthogonal to nW (x), rC > 0 maximal such that IC = (xC − rCui, xC +
rCui) ⊆ F ∩ ∂W . The function f reaches an infimum on C in some point
xC ∈ IC . Lagrange multipliers yields that ∇f(xC) is colinear with nW (x),
i.e. that ∂i′f(xC) = 0.

Let Γ′n = {C ∈ Γ′ : C ∩ corners(W ) = ∅, rC ∈ [2−n, 2−n+1)}. We have
n′0 = n′0(W ) such that Γ′n = ∅ for n < n′0. For n > n′0, let Pn be a 2−n-
maximal packing of ∂W , i.e. a subset of ∂W such that every point of ∂W is
within distance < 2−n from Pn, but no two points of Pn are within distance
2−n. Standard results from Geometric Measure Theory yield that #Pn 6 c2n
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for some c > 0. For C ∈ Γ′n, IC ∩ Pn 6= ∅. Also, there is c′ > 0 such that
H1(∂W ∩B[x, 2−n]) > 2−n/c′ for x ∈ ∂W, n > 1. Then

#Γ′ 6
∑
n>n′0

#Γ′n

6
∑
n>n′0

∑
x∈Pn

1{x∈IC for some C∈Γ′n}

6
∑
n>n′0

∑
x∈Pn

1{there is i∈{1,2},xC∈B(x,2−n)∩∂W :∂if(xC)=0;there is z∈B(xC ,2−n+1)∩∂W :f(z)=0}

6
∑
n>n′0

∑
x∈Pn

1{f,∂if vanish on B(x,2−n+2)∩∂W for some i∈{1,2}}

6
∑
n>n′0

∑
x∈Pn

1

H1(∂W ∩B(x, 2−n))

∫
∂W∩B(x,2−n)

1{f,∂if vanish on B(y,2−n+3)∩∂W for some i∈{1,2}}dy

6
2∑
i=1

∑
n>n′0

c′2n2

∫
∂W

1{f,∂if vanish on B(y,2−n+3)}H1(dy)

6 c′′
2∑
i=1

∑
n>n′0

(2−n)−1+α+β

∫
∂W

∣∣∣∣Lip(f)

f(y)

∣∣∣∣α ∣∣∣∣Lip(∂if)

∂if(y)

∣∣∣∣βH1(dy),

with a technique similar to (1.3). Since only components touching corners(W )
have not been accounted for in the previous computations, this yields the first
part of the inequality, #Γ(F ∩W ) 6 C(Iα,β + I ′α,β + #corners(W )).

We use [17, Theorem 1.16] to bound #Γ((F ∩W )ε), for that we recall the
definition of Nε(F ),N′ε(F,W ). For x, y ∈ R2, introduce Px,y the closed square
with side-length ε such that x and y are the midpoints of two opposite sides.
Denote P′x,y = ∂Px,y \ {x, y}, which has two connected components. Then
{x, y} is an entanglement pair of points of F if x, y /∈ F and (P′x,y ∪F )∩Px,y
is connected. We call Nε(F ) the family of such pairs of points. See Figure 1
for an example.

We introduce the notation Lx, yM = εZ2 ∩ [x, y] \ {x, y}, for x, y ∈ εZ2.
For the boundary version we also consider grid points x, y ∈ εZ2 ∩W ∩ F ,
on the same line or column of εZ2, such that

• x, y are within distance ε from one of the edges of W (the same edge
for x and y)
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Figure 1: Entanglement point In this example, {x, y} ∈ Nε(F ) because the
two connected components of P′x,y, in lighter grey, are connected through
γ ⊆ (F ∩ Px,y). We don’t have {x, y} ∈ Nε(F

′).

• Lx, yM 6= ∅

• Lx, yM ⊆ εZ2 ∩ F c ∩ F⊕ε.

The family of such pairs of points {x, y} is noted N′ε(F ;W ) .
It is proved in [17, Theorem 1.16] that given any measurable set A,

#Γ((A ∩W )ε) 6 2#Nε(A) ∩W⊕ε + 2#N′ε(A,W ) + #Γ(A ∩W ) + 2#corners(W ).
(1.4)

It therefore only remains to bound Nε(F ) ∩W⊕ε and N′ε(F,W ) to achieve
(1.2). For m > 1 and a function g : A ⊆ Rm → R, ε > 0, introduce the
continuity modulus

ω(g, A) = sup
x6=y∈A

‖g(x)− g(y)‖.

We also note in the sequel

Lip(g, A) = sup
x 6=y∈A

|g(x)− g(y)|
‖x− y‖

if A is not the largest domain on which g is defined. The bound will follow
from the following lemma.
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Lemma 1.6. (i) For {x, y} ∈ Nε(F ), we have for some i ∈ {1, 2},

|f(x)| 6 ω(f, [x, y]) 6 Lip(f)ε

|∂if(x)| 6 ω(∂if, [x, y]) 6 Lip(∂if)ε

|∂i′f(x)| 6 2ω(∂if,Px,y) + ω(∂i′f,Px,y)Px,y 6
√

2ε(2Lip(∂1f) + Lip(∂2f)),

and idem for y.
(ii)For x, y ∈ N′ε(F,W ), there is z = z(x, y) ∈ Lx, yM, i ∈ {1, 2}, such

that

|f(z)| 6 Lip(f)ε

|∂if(z)| 6 Lip(∂if)ε.

Proof. (i) Let x, y ∈ Nε(F ). The definition of Nε(F ) yields a connected path
γ ⊆ F going through some z ∈ [x, y] and connecting the two connected
components of P′x,y. Since f(x) > 0 and f(z) 6 0, there is a point z′ of
[x, y] satisfying f(z′) = 0. The mean value theorem yields the first point:
|f(x)| 6 ω(f, [x, y]). Note for later that for t ∈ Px,y |f(t)| 6 ω(f,Px,y).

We assume without loss of generality that [x, y] is horizontal. Let [z′, z′′]
be the (also horizontal) connected component of F ∩[x, y] containing z. After
choosing a direction on [x, y], z′ and z′′ are entry and exit points for F , and
their normal vectors nF (z′),nF (z′′) point towards the outside of F . Therefore
they satisfy nF (z′)[1]nF (z′′)[1] 6 0, and so ∂1f(z′)∂1f(z′′) 6 0. This gives us
by continuity the existence of a point w ∈ [x, y] such that 0 = ∂1f(w), whence
|f1(x)| 6 ω(∂1f, [x, y]). Note for later that |∂1f(t)| 6 ω(∂1f,Px,y) on Px,y.
If [x, y] is vertical, ∂2f verifies the inequality instead. Let us keep assuming
that [x, y] is horizontal for the sequel of the proof.

We claim that |∂2f(x)| 6 2ω(∂1f,Px,y) + ω(∂2f,Px,y), and consider two
cases to prove it.

• First case ∂2f(z′)∂2f(z′′) 6 0, and by continuity we have w ∈ [x, y]
such that 0 = ∂2f(w), whence |∂2f(·)| 6 ω(∂2f,Px,y) on the whole
pixel Px,y. The desired inequality follows.

• Second case ∂2f(z′), ∂2f(z′′) > 0 (equivalent treatment if they are both
< 0). Assume for instance that z′ is the leftmost point, and that
|∂2f(x)| > 2ω(∂1f,Px,y) + ω(∂2f,Px,y), otherwise the claim is proved.
It implies in particular that |∂2f(·)| > 2ω(∂1f,Px,y) on the whole pixel
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Px,y. For simplification purpose, and up to translating the whole prob-
lem, assume that the Euclidean coordinates of z′ are (t1, 0) and that of
z′′ are (t2, 0), for some −ε/2 6 t1 6 t2 6 ε/2. We can apply the implicit
function theorem on I ⊆ [−ε/2, ε/2] to yield a C1 function ϕ : I → R
such that ϕ(t1) = 0 and f(t, ϕ(t)) = 0 for t ∈ I. Differentiating in t
yields

ϕ′(t) = −∂1f(t, ϕ(t))

∂2f(t, ϕ(t))
.

We already proved that |∂1f(t, ϕ(t))| < ω(∂1f,Px,y) as long as (t, ϕ(t)) ∈
Px,y, and our hypotheses led us to |∂2f(·, ϕ(·))| > 2ω(∂1f,Px,y), whence
|ϕ′(t)| < 1

2
as long as t ∈ I, |ϕ(t)| 6 ε/2. It implies that we can choose

I = [−ε/2, ε/2], and still have |ϕ′(t)| < 1/2, |ϕ(t)| < ε/2 on I. Rea-
soning similarly around z′′, there is ψ smooth defined on I such that
|ψ(t)| < 1

2
ε. The functions ϕ and ψ never reach the upper bound-

ary of the pixel. Give the explicit names Pupx,y and Pdownx,y to the two
open halves of the pixel, and remark that due to the construction of
z′, z′′ and ϕ′(t1) > 0, ψ′(t2) < 0 the graphs of ϕ and ψ on (t1, t2) are
contained in Pupx,y. On resp. a left neighbourhood of t1 (resp. right
neighbourhood of t2), the graph of ϕ (resp. ψ) is contained in Pdownx,y .
We have therefore ϕ, ψ > 0 on (t1, t2) because [z′, z′′] ⊆ F . Since also
ϕ(t2) < ε/2, ψ(t1) < ε/2, the two graphs necessarily meet on (t1, t2)
at some value < ε/2 (one can actually prove that ϕ = ψ on (t1, t2),
but it is not necessary for our purpose). It follows that the connected
component C of F ∩ Pupx,y containing z, z′, z′′ is a subset of

{(t, r) with t ∈ [t1, t2] and r 6 ϕ(t)} ⊆ [t1, t2]× [0, ε/2).

In particular, C does not meet the upper component of P′x,y. At this
point, up to changing z, we can assume that z is the last crossing point
of γ with [x, y] before reaching Pupx,y, but then γ cannot be contained in
C, which brings us to a contradiction.

We indeed proved that |∂2f(x)| 6 2ω1(∂2f,Px,y) + ω2(∂2f,Px,y).
(ii)Let now {x, y} be an element of N′ε(f,W ). We know that Lx, yM∩F c 6=

∅. Let [z′, z′′] ⊂ [x, y] a connected component of F c ∩ [x, y]. If [z′, z′′] is, say,
horizontal, since nF (·)[1] changes sign between z′ and z′′, so does ∂1f , and by
continuity there is w ∈ [z′, z′′] where ∂1f(w) = 0. Calling z the closest point
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from w in Lx, yM, ‖z − w‖ 6 ε, and by definition of N′ε(F,W ), z is also at
distance ε from ∂F = {f = 0}. It follows that |∂1f(z)| 6 Lip(∂1f)ε, |f(z)| 6
Lip(f)ε.

To obtain the integral upper bounds from (1.2), note that given a point
z ∈ W , there can be at most 12 distinct couples {x, y} ∈ Nε(F ) such that z
is within distance ε from {x, y}, and there is c > 0 such that for every such
x, y ∈ W , Vol(B(x, ε) ∪ B(y, ε) ∩W ) > ε2/c. It follows that, using Lemma
1.6,

Nε(F ) 6
∑

x,y∈Nε(F )

2∑
i=1

1{for z∈B(x,ε)∪B(y,ε),|f(z)|62Lip(f)ε,|∂if(z)|62Lip(∂if)ε,|∂i′f(z)|6
√

2(Lip(∂1f)+Lip(∂2f))ε}

6
2∑
i=1

∑
x,y∈Nε(F )

c

ε2∫
(B(x,ε)∪B(y,ε))∩W

1{f(z)|62Lip(f)ε,|∂if(z)|62Lip(∂if)ε,|∂i′f(z)|6
√

2(Lip(∂1f)+Lip(∂2f))ε}dz

6 12cε−2

2∑
i=1

∫
W

1{f(z)|62Lip(f)ε,|∂if(z)|62Lip(∂if)ε,|∂i′f(z)|6
√

2(Lip(∂1f)+Lip(∂2f))ε}dz,

which gives Nε(F ) 6 CIα,β with a technique similar to (1.3), using α+2β > 2,
and Lip(∂1f)βLip(∂2f)β 6 Lip(∂1f)2β + Lip(∂2f)2β.

Now, given w ∈ ∂W , there can be at most 3 pairs {x, y} ∈ N′ε(F ) such
that w is on the closest edge of W parallel to [x, y] and z = z(x, y) (defined in
Lemma 1.6) is within distance 3ε from w. We have H1(B(z, 3ε) ∩ ∂W ) > ε,
because t is within distance 2ε from ∂W . It follows that

#N′ε(F,W ) 6
∑

x,y∈N′ε(F,W )

2∑
i=1

1{for w∈B(z,3ε)∩∂W,|f(w)|64Lip(f)ε,|∂if(w)|64Lip(f)ε}

6
2∑
i=1

∑
x,y∈N′ε(F )

1

ε

∫
∂W∩B(z,3ε)

1{|f(w)|64Lip(f)ε,|∂if(w)|64Lip(f)ε ; w∈B(z,3ε)∩∂W}H1(dw)

6
2∑
i=1

3

ε

∫
∂W

1{|f(w)|64Lip(f)ε,|∂if(w)|64Lip(∂if)ε}H1(dw),
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which gives #N′ε(F,W ) 6 CI ′α,β with a technique similar to (1.3), using
α + β > 1.

2 Mean Euler characteristic of random ex-

cursions

To avoid measurability issues, we call here C1 random field over a set Ω ⊆ R2

the data of a family of random variables {f(x);x ∈ Ω}, such that in each
point x ∈ Ω, the variables

∂if(x) := lim
s→0

f(x+ sui)

s
, i = 1, 2,

exist a.s., and the fields (∂if(x), x ∈ Ω), i = 1, 2, are a.s. continuous. See
[1, 5] for a discussion on the regularity properties of random fields. Say that
the random field is C1,1 if the partial derivatives are a.s. Lipschitz.

Many sets of conditions allowing to take the expectation in (1.1) can be
derived from Theorem 1.2, we give below a compromise between optimality
and compactness. Given a random closed set F , call supp(F ) the smallest
compact set K satisfying F ⊂ K a.s. See the companion paper [17], or [21]
for a formal introduction to the theory of random closed sets.

Theorem 2.1. Let f be a C1,1 random field, λ ∈ R, and F = {f 6 λ}.
Let W ∈ W such that supp(F ) ∩W is bounded. Assume that the following
conditions are satisfied:

(i) For some κ > 0, for x ∈ W , the density of the random vector (f(x), ∂1f(x), ∂2f(x))
is bounded by κ on R3.

(ii) There is p > 3, α ∈ (2/p, 1− 1/p), η > 0 such that for i = 1, 2,

E[Lip(f)αpLip(∂if)p(2−α)+η] <∞.

Then F ∩W ∈ A a.s., E|χ(F ∩W )| 6 E#Γ(F ∩W )+E#Γ((F ∩W )c) <∞,
and (0.2)-(0.3) holds.

Before giving the proofs, we give an explicit expression, in the case where
f is stationary, which is the adaptation of [17, Proposition 2.1]. Boundary
terms will involve the perimeter of F , so we introduce the related notation
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below. Note C1
c the class of compactly supported functions on R2. For a

measurable set A, and u ∈ S1, define the variational perimeter of A in
direction u by

Peru(A) = sup
ϕ∈C1c :‖ϕ(x)‖61

∫
A

〈∇ϕ(x),u〉dx,

and the ‖ · ‖∞-perimeter

Per∞(A) = Peru1(A) + Peru2(A),

named like this because it is the analogue of the classical perimeter when the
Euclidean norm is replaced by the ‖ · ‖∞-norm, see [13].

Theorem 2.2. Let f be a C1,1 stationary random field, λ ∈ R, and W ∈ W
bounded. Assume that (f(0), ∂1f(0), ∂2f(0)) has a bounded density, and that
there is p > 3, α ∈ (2/p, 1− 1/p), η > 0 such that for i = 1, 2,

E
[
Lip(f ;W )αpLip(∂if ;W )p(2−α)+η

]
<∞.

Then the following limits exist:

χ(f ;λ) := lim
ε→0

ε−2
[
Eδε(0, f, λ)− Eδ−ε(0,−f,−λ)

]
Perui

(f ;λ) := lim
ε→0

ε−1P(f(0) 6 λ, f(εui) > λ)

Vol(f ;λ) := P(f(0) 6 λ),

and we have, with Per∞ = Peru1 + Peru2 ,

Eχ(F ∩W ) = Vol(W )χ(F ) +
1

4
(Peru2(W )Peru1(F ) + Peru1(W )Peru2(F ))

+ χ(W )Vol(F ) (2.1)

EPer∞(F ∩W ) = Vol(W )Per∞(F ) + Per∞(W )Vol(F ) (2.2)

EVol(F ∩W ) = Vol(W )Vol(F ). (2.3)

The proof of Theorem 2.1, given below, establishes that the expectations
contained in [17, (2.2)] are finite. Therefore the result above is a consequence
of that proof and [17, Proposition 3.1].
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Remark 2.3. This formula should give tractable results even for fields that
are not Gaussian. A work in preparation will feature the application of
this formula to infinitely divisible fields, following the papers of [4, 9] where
asymptotic or one-dimensional formulae are given for some shot noise models.

Proof of Theorem 2.1. Assume without loss of generality λ = 0. We must
first prove that F is a.s. locally regular. For W compact, let ψ be a function
of class C∞ constant equal to 1 on W ∩ supp (F ) and vanishing on ((W ∩
supp(F ))⊕1)c. Then the level sets of fψ are regular and coincide with the

level sets of f on W , therefore the level sets of f are locally regular.
Let us prove that F satisfies a.s. the hypotheses of Theorem 1.1. Define

Θ1 = {x ∈ W : f(x) = 0,∇f(x) = 0}
Θ2,i = {x ∈ ∂W : f(x) = 0, ∂if(x) = 0}, i = 1, 2,

Θ3 = {x ∈ corners(W ) : f(x) = 0}.
We will prove that E#Θ = E#Θ2,i = E#Θ3 = 0, which yields that these
sets are a.s. empty, and therefore that F satisfies a.s. the hypotheses of
Theorem 1.1. We define P = ε[−1/2, 1/2)2. We have a.s.

#Θ1 = lim
ε→0

∑
x∈εZ2

1{Θ1∩(x+P)6=∅}

6 lim
ε→0

∑
x∈εZ2∩W⊕ε

1{d(x,f−1({0}))6ε,d(x,∂1f−1({0}))6ε,d(x,∂2f−1({0}))6ε}

6 lim
ε→0

∑
x∈εZ2∩W⊕1

1{|f(x)|6Lip(f)ε,|∂1f(x)|6Lip(∂1f)ε,|∂2f(x)|6Lip(∂2f)ε}.

Let β > 0. Fatou’s lemma yields,with α, p like in the theorem statement,
and p′ := 1− 1/p,

E#Θ1 6 lim inf
ε→0

∑
x∈εZ2∩W⊕ε

E1{|f(x)|6Lip(f)ε,|∂1f(x)|6Lip(∂1f)ε,|∂2f(x)|6Lip(∂2f)ε}

6 lim inf
ε→0

εα+2β
∑

x∈εZ2∩W⊕ε

E

[(
Lip(f)

|f(x)|

)α(
Lip(∂1f)

|∂1f(x)|

)β (
Lip(∂2f)

|∂2f(x)|

)β]
6 lim inf

ε→0
εα+2β

∑
x∈εZ2∩W⊕ε

(
E
[
Lip(f)αpLip(∂1f)βpLip(∂2f)βp

])1/p

(2.4)(
E

[
1

|f(x)αp′∂1f(x)βp′∂2f(x)βp′ |

])1/p′

.
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We have similarly

E#Θ2,i 6 lim inf
ε→0

εα+β
∑

x∈εZ2∩∂W⊕ε

E

[(
Lip(f)

|f(x)|

)α(
Lip(∂if)

|∂if(x)|

)β]
, i = 1, 2,

E#Θ3 6
∑

x∈corners(W )

εαE

(
Lip(f)

|f(x)|

)α
.

Let η′ > 0 and assume β = 1− α/2 + η′. Then

E
[
Lip(f)αpLip(∂1f)βpLip(∂2f)βp

]
6
√

E [Lip(f)αpLip(∂1f)2βp] E [Lip(f)αpLip(∂2f)2βp]

and 2βp = (2 − α + 2η′)p. Since E
[
Lip(f)αpLip(∂1f)(2−α)p+η

]
< ∞, and η′

can be arbitrarily small,

E
[
Lip(f)αpLip(∂if)2βp

]
<∞, i = 1, 2. (2.5)

Then, ELip(f)αpLip(∂if)βp < ∞,ELip(f)αp < ∞. To prove that the other
expectation of (2.4) is also finite we need the following result. For any random
vector (U1, U2, U3) ∈ R3, which density is bounded by κ, and γ1, γ2, γ3 > 0
we have

EU−γ11 U−γ22 U−γ33 6
∑

P⊆{1,2,3}

E

[
1{Ui61,i∈P ; Ui>1,i/∈P}

∏
i∈P

U−γii

]

6
∑

P⊆{1,2,3}

κ
∏
i∈P

∫
[−1,1]

x−γidx

6 C(κ, γ1, γ2, γ3). (2.6)

The latter quantity is finite if γi < 1, i = 1, 2, 3. If we assume in the display
above that U3 is independent of (U1, U2), then it yields that EU−γ11 U−γ22 and
EU−γ33 have a similar bound.

We have 2/p < α < 1 − 1/p, and 1/p′ = 1 − 1/p, whence α < 1/p′, and
1− 1/p > 1− α/2, i.e. 1/p′ > β for η′ sufficiently small. Therefore

E

[
1

|f(x)αp′∂1f(x)βp′∂2f(x)βp′|

]
6 C(κ, αp′, βp′, βp′) <∞.

It ultimately follows that for some C ′, C ′′ > 0,

E#Θ1 6 lim inf
ε→0

C ′ε2+η′#[W⊕ε]ε 6 lim inf
ε→0

C ′′ε2η′ = 0.
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The expectations of Θ2,i,Θ3 are handled similarly, noting that α + β > 1,
whence a.s. F satisfies the hypotheses of Theorem 1.1.

Defining Iα,β like in Theorem 1.2, we have

EIα,β 6 E

[
Lip(f)α(Lip(∂1f)2β + Lip(∂2f)2β)

∫
W

1

|f(t)|α
1

|∂1f(t)∂2f(t)|β
dt

]

6
[
E
(
Lip(f)pα(Lip(∂1f)2βp + Lip(∂2f)2βp)

)]1/p [
E

(∫
W

dt

|f(t)|α|∂1f(t)∂2f(t)|β

)p′]1/p′

6
[
E
(
Lip(f)pα(Lip(∂1f)2βp + Lip(∂2f)2βp)

)]1/p[
E

(
Vol(W )p

′/p

∫
W

dt

|f(t)|αp′|∂1f(t)∂2f(t)|βp′
)]1/p′

6 Vol(W )1/p
[
E
(
Lip(f)pα(Lip(∂1f)2βp + Lip(∂2f)2βp)

)]1/p(∫
W

E

[
1

|f(t)|αp′ |∂1f(t)∂2f(t)|βp′
]
dt

)1/p′

<∞,

using (2.5), (2.6). Similarly, taking α′ = β′ = 1/2,

EI ′α′,β′ 6
2∑
i=1

ELip(f)1/2Lip(∂if)1/2

∫
∂W

1

|f(t)|1/2|∂if(t)|1/2
H1(dt)

6
2∑
i=1

(
ELip(f)3/2Lip(∂1f)3/2

)1/3
Per(W )1/3

(∫
∂W

E

[
1

|f(t)|3/4|∂1f(t)|3/4

]
H1(dt)

)2/3

<∞,

whence Remark 1.5 yields,

E sup
0<ε<ε(W )

|χ((F ∩W )ε)| <∞.

Therefore, applying Lebesgue’s Theorem to the almost sure convergence (1.1)
gives the result.

2.1 Gaussian level sets

Let (f(x), x ∈ W ) be a Gaussian field on some W ∈ W. We assume
throughout the section, mostly for notational simplification, that each vari-
able f(x), x ∈ W , is centred and has variance 1. Let the covariance function
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be defined by

σ(x, y) = Ef(x)f(y), x, y ∈ W.

The book [1] gives some background on Gaussian fields and their regularity.
Theorem 2.2.2 states that if the derivative ∂2σ(x, y)/∂x[i]∂y[i] exists and is
finite at each point (x, x), x ∈ W , the limits

∂if(x) := lim
ε→0

f(x+ εui)− f(x)

ε
, i = 1, 2,

exist in the L2 sense, and they form a Gaussian field. Also, the covariance
function of ∂if is (x, y) 7→ ∂2σ(x, y)/∂x[i]∂y[i], i = 1, 2.

We are interested here in the case where f is of class C1,1. For W bounded,
since ‖∂if‖ := supx∈W |∂if(x)| is a.s. finite, ‖∂if‖ has finite moments of every
order, see (2.1.4) in [5].

Theorem 2.4. Let f be a C1,1 Gaussian field on a bounded closed set W ∈ W.
Assume that for x ∈ W , (f(x), ∂1f(x), ∂2f(x)) is non-degenerate, and that
for some η > 0, for i = 1, 2,

ELip(∂if)4+η <∞.

Then for any λ ∈ R, F = Fλ(f) satisfies the hypotheses of Theorem 2.1.

Proof. Since Lip(f) = supW ‖∇f‖ and E‖∇f‖q <∞ for any q > 1,

ELip(f)q <∞.

Then, for some η′ > 0, define p = 3 + η′, α = 1 − 1/p − η′, q = 1/η′, q′ =
1/(1− η′). For i ∈ {1, 2},

ELip(f)pαLip(∂if)p(2−α)+η′ 6 (ELip(f)pαq)1/q(ELip(∂if)(3+η′)(1+1/(3+η′)+η′)/(1−η′))1−η′

6 (ELip(f)pαq)1/q(ELip(∂if)4+η′′)

where η′′ 6 η if η′ is chosen small enough, whence indeed Theorem 2.1-(ii) is
satisfied.

Put for notational convenience f (0) := f, f (i) = ∂if, i = 1, 2. We have for
i, j ∈ {0, 1, 2},

|Ef (i)(x)f (j)(x)− f (i)(y)f (j)(y)|
6
∣∣E [(f (i)(x)− f (i)(y)

)
f (j)(x)

]∣∣+
∣∣E [f (i)(y)

(
f (j)(x)− f (j)(y)

)]∣∣
6 E sup

W
|f (j)|Lip(f (i))‖x− y‖+ E sup

W
|f (i)|Lip(f (j))‖x− y‖,
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which yields that the covariance function with values in the space of 3 × 3
matrices,

x 7→ Σ(x) := cov(f(x), ∂1f(x), ∂2f(x))

is Lipschitz on W . In particular, since det(Σ(x)) does not vanish on W , it is
bounded from below by some c > 0, whence the density of (f(x), ∂1f(x), ∂2f(x)),
x ∈ W , is uniformly bounded by κ := (2π)−3/2c−1/2, and assumption (i) from
Theorem 2.1 is also satisfied.

Let us give the mean Euler characteristic under the simplifying assump-
tions that the law of f is invariant under translations and rotations of R2.
In combination with the constant variance assumption, it eases certain com-
putations. This implies for instance that in every x ∈ R2, f(x), ∂1f(x) and
∂2f(x) are pairwise independent, see for instance [5] Section 5.6 and (5.7.3).
A nice feature of the following result is that the hypotheses on f match the
result, in the sense that the mean Euler characteristic only depends on the
properties of ∇f , and that the number of times f should be continuously
differentiable is only 1.

Theorem 2.5. Let f = (f(x);x ∈ R2) be a stationary isotropic centred
Gaussian field on R2 with constant variance equal to 1, λ ∈ R, and F = {x :
f(x) 6 λ}, and let W ∈ W bounded. Assume that f has almost surely C1,1

trajectories and that

ELip(∂1f,W )4+η <∞

for some η > 0. Define µ = E∂1f(0)2, and Φ(λ) = 1√
2π

∫ λ
0

exp(−t2/2)dt.
Then

EVol(F ∩W ) = Vol(W )Φ(λ), (2.7)

EPer∞(F ∩W ) = Vol(W )2

√
µ

π
exp(−λ2/2) + Per∞(W )Φ(λ), (2.8)

Eχ(F ∩W ) =

(
−Vol(W )

µλ

(2π)3/2
+ Per∞(W )

√
µ

4π

)
e−λ

2/2 +
1√
2π

Φ(λ)χ(W ).

(2.9)

Remark 2.6. If W is a square, the relation 2.9 coincides with [5, (11.7.14)],
obtained under stronger requirements for f .
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Proof. (2.3) immediately yields (2.7). Let us compute the volumic perimeter
Per∞(F ). To take advantage of the stationarity and isotropy, we study the
reduced form of the covariance σ(r) := Ef(0)f(rui), r > 0, which does not
depend on i by isotropy. We have, provided E and limε can be switched,

µ = E∂1f(0)2 = E

(
lim
ε→0

f(εu1)− f(0)

ε

)2

= 2 lim
ε

1− σ(ε)

ε2
.

This is so if we have a finite bound on

E sup
0<ε61

(
f(0)− f(εu)

ε

)2

6 E sup
W
|∂1f |2,

which is indeed finite. Put differently, σ(ε) = 1 − 1
2
µεε

2 where µε → µ as
ε→ 0, for some u ∈ S1. Let us first estimate pε := P(f(0) 6 λ, f(εu) > λ),
for some u ∈ S1, ε > 0. Let

M =

(
1 σ(ε)

σ(ε) 1

)
be the covariance matrix of (f(0), f(εu1)). We have

det(M) = 1− σ(ε)2 = (1− (1− 1

2
µε2 + o(ε2))2) = (1− (1− µε2 + o(ε2))) = µε2 + o(ε2),

M−1 =
1

det(M)
(A+ µεε

2B)

where

A =

(
1 −1
−1 1

)
, B =

(
0 1

2
1
2

0

)
and the density kernel of (f(0), f(εu1)) is

ϕε(t, s) =
1

2π
√

det(M)
exp

(
−1

2
(t, s)M−1(t, s)′

)
, t, s ∈ R2,

where here and in all the rest of the proof, the transposed matrix of any
matrix H is denoted H ′.
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Let t, s ∈ R. Denote Λ = (λ, λ), X = (t, s), and remark that Λ′A =
AΛ′ = 0. This yields

ϕε(t+ λ, s+ λ) =
1

2π
√

det(M)
exp

(
− 1

2det(M)
(X ′AX + (X + Λ)′µεε

2B(X + Λ))

)
=

1

2π
√

det(M)
exp

(
− 1

2 det(M)
(X ′AX)

)
exp

(
− µεε

2

2 det(M)
(2Λ′BX +X ′BX)

)
exp

(
− µεε

2

2 det(M)
λ2

)
,

therefore,

pε =
1

2π
√

det(M)

∫
t6λ,s>λ

ϕε(t, s)dtds =
1

2π
√

det(M)

∫
t60,s>0

ϕε(t+ λ, s+ λ)dtds

=
1

2π
√

det(M)
exp(−(1 + o(1))λ2/2)∫
t60,s>0

exp

(
− 1

2 det(M)
X ′AX

)
exp

(
− µεε

2

2 det(M)
(2Λ′BX +X ′BX)

)
dX

=
exp(−λ2/2)

√
det(M)

π
(I +Rε)(1 + o(1)),

where

I =

∫
t60,s>0

exp(−(t− s)2)dtds

Rε =

∫
t60,s>0

exp(−X ′AX)

exp

−µεε2

[√
2Λ′BX√
det(M)

+X ′BX

]
︸ ︷︷ ︸

δε

− 1

 dX.
The integrand in Rε goes point-wise to 0 as ε → 0. For t 6 0, s > 0,
(t− s)2 = t2 + s2 + 2|ts| > t2 + s2. For ε sufficiently small, t, s ∈ R2,

δε 6
1

2
(t2 + s2).

Therefore, the integrand in Rε is uniformly bounded by

exp(−(t− s)2)
t2 + s2

2
exp

(
t2 + s2

2

)
,
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which is integrable, whence Rε → 0. The change of variables u = t− s, v =
t+ s, with Jacobian 2, gives

I =
1

2

∫
u+v<0,v−u>0

exp(−u2)dudv =
1

2

∫
u>0

2u exp(−u2)du =
1

2
.

Therefore ε−1pε → ε
√
µ

2π
exp(−λ2/2) as ε→ 0, whence

Perui
(F ) =

√
µ

π
exp(−λ2/2), Per∞(F ) = 2

√
µ

π
exp(−λ2/2). (2.10)

Using (2.2), we obtain (2.8). In the isotropic case, (2.1) becomes

Eχ(F ∩W ) = Vol(W )χ(F ) +
1

2
Per∞(W ) lim

ε
ε−1pε + χ(W )Vol(F ).

To prove (2.9), first remark that the stationarity of the field and the fact that

it is not constant a.s. entail that (f(0), ∂1f(0), ∂2f(0))
(d)
= (f(x), ∂1f(x), ∂2f(x)), x ∈

R2 is non-degenerated. It therefore remains to show

χ(F ) = lim
ε→0

ε−2E
[
δε(0, f, λ)− δ−ε(0,−f,−λ)

]
= −µλ exp(−λ2/2)

(2π)3/2
. (2.11)

Fix ε > 0. Let M be the 3×3 covariance matrix of (f(0), f(εu1), f(εu2)).
Then M = U − 1

2
µεε

2V where

U =

 1 1 1
1 1 1
1 1 1

 , V =

 0 1 1
1 0 2
1 2 0

 .

We need a good estimate of the determinant and inverse of M . For that we
have the following lemma.

Lemma 2.7. For N > 1, 1 6 i, j 6 N , and a N × N matrix H, let H i,j =
(H i,j

k,l)16k,l6N−1 be the (N − 1)× (N − 1) matrix obtained by removing line i

and column j, and |H i,j| its determinant. For H a 3 × 3 matrix, define the
matrix H∗ by

H∗i,j = (−1)i+j
2∑

k,l=1

(−1)k+lH i,j
kl , 1 6 i, j 6 3.
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Then,

det(U +H) =
1

2
Tr(HH∗) + det(H).

If this determinant is not 0,

(U +H)−1 =
1

det(U +H)
(H∗ + com(H)).

Furthermore, the sum of each line or each column of H∗ is 0.

Proof. det(U +H) is a third degree polynomial in the coefficients Hi,j of H.
U has rank 1, whence the constant term is 0, and the first-order term as well,
using the formula

′
det(U) ·H = Tr(com(U)H) = 0,

where det′(U) is the derivative of the determinant at point U . For the second
term, we must differentiate twice the determinant. Given any 3× 3 matrices
H,K,

′
det(U +K) ·H =

3∑
i,j=1

(−1)i+j|(U +K)i,j|Hi,j

=
3∑

i,j=1

(−1)i+j
(
|U i,j|+ Tr(com(U i,j)Ki,j + o(K))

)
Hi,j

=
3∑

i,j=1

(−1)i+jHi,j

2∑
kl=1

com(U i,j)klK
i,j
kl + o(KH)

=
3∑

i,j=1

(−1)i+jHi,j

2∑
kl=1

(−1)k+l |(U i,j)kl|︸ ︷︷ ︸
1

Ki,j
kl + o(HK)

=
3∑

i,j=1

Hi,jK
∗
i,j + o(HK) = Tr(HK∗) + o(HK).
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The third order term can be computed directly. For the inverse we have

(U +H)−1
i,j =

(−1)i+j

det(U +H)
|(U +H)i,j|

=
(−1)i+j

det(U +H)

(
(1 +H i,j

11 )(1 +H i,j
22 )− (1 +H i,j

21 )(1 +H i,j
12 )
)

=
1

det(U +H)
(H∗i,j + (−1)i+j|H i,j|)

=
1

det(U +H)
(H∗i,j + com(H)i,j).

We have

C := V ∗ =

 −4 2 2
2 −2 0
2 0 −2

 , D := com(V ) =

 −4 2 2
2 −1 1
2 1 −1

 ,

whence by Lemma 2.7

det(M) = ε4µ
2
ε

8
Tr(V V ∗)− ε6

8
µ3
εdet(V ) = ε4µ2

ε −
ε6

2
µ3
ε, (2.12)

non-zero for ε sufficiently small, whence

M−1 =
1

2 det(M)

(
−µεε2V ∗ +

ε4

2
µ2
εD

)
. (2.13)

We have by isotropy and symmetry, for λ ∈ R,

Eδε(0, f, λ) = Eδ−ε(0, f, λ) = Eδε(0,−f, λ) = P(f(0) 6 λ, f(εu) > λ, f(εv) > λ)

=
1√

(2π)3 det(M)

∫
t6λ,s>λ,z>λ

exp

(
−1

2
(t, s, z)′M−1(t, s, z)

)
dtdsdz.

Therefore, (2.1) yields that

χ(F ) = lim
ε→0

ε−2 (Eδε(0, f, λ)− Eδε(0, f,−λ)) .
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Note Q = {(t, s, z) : t 6 0, s > 0, z > 0}. Let t, s, z ∈ R, put X =

(t, s, z),Λ = (λ, λ, λ), Y =
√

µεε2

det(M)
X, then

(X + Λ)′M−1(X + Λ) =
1

2 det(M)

[
−µεε2X ′CX + µ2

ε

ε4

2
X ′DX + µ2

εε
4Λ′DX +

µ2
εε

4

2
Λ′DΛ

]
=

µ2
εε

4

4 det(M)
Λ′DΛ− 1

2
Y ′CY +

µεε
2

4
Y ′DY +

µ2
εε

4

2 det(M)

√
det(M)

µεε2
Λ′DY.

Therefore, with αε = µ
3/2
ε ε2

4
√

det(M)
→
√
µ

4
,

Eδε(f, λ) =
1√

(2π)3 det(M)

∫
Q

exp

(
−1

2
(X + Λ)′M−1(X + Λ)

)
dX

=

(√
det(M)

µεε2

)3

1√
(2π)3 det(M)

exp(−(1 + o(1))λ2/2)∫
Q

exp

(
1

4
Y ′CY

)
exp

(
−µεε

2

8
Y ′DY

)
exp (−αεεΛ′DY ) dY

and, for some θ = θ(ε, Y ) ∈ [−1, 1],

Eδε(f, λ)− Eδε(f,−λ)

=
exp(−λ2/2) det(M)(1 + o(1))

(2π)3/2µ3/2ε3
(2.14)∫

Q

exp

(
1

4
Y ′CY

)
exp

(
−µεε

2

8
Y ′DY

)
(−2αεεΛ

′DY ) exp (−αεεθΛ′DY ) dY

= −µε
2 exp(−λ2/2)(1 + o(1))

2(2π)3/2
(I +Rε) (2.15)

where I =
∫
Q

exp(1
4
Y ′CY )Λ′DY dY and

|Rε| 6
∫
Q

exp

(
1

4
Y ′CY

)
exp

(
−µεε

2

8
Y ′DY

)
νε|Λ′DY |2 exp(νε|Λ′DY |)dY

for some ν > 0. The integrand of Rε decreases point-wise to 0. The matrix
−C is positive definite, whence for ε sufficiently small, Rε < ∞. It follows
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by the monotone convergence theorem that Rε → 0 as ε → 0. We have
I = λ(

√
2)42J where

J =

∫
Q

exp(−(2t2 + s2 + z2 − 2ts− 2tz))(s+ z)dtdsdz

=

∫
Q

exp(−(t− s)2 − (t− z)2)(s+ z)dtdsdz.

The change of variables
u = t− s
v = t− z
w = t

⇔


t = w
s = w − u
z = w − v

with Jacobian 1 yields J = 2J1 − 2J2 where

J1 = 2

∫
u<v<0

exp(−u2 − v2)

∫
v<w<0

wdwdudv

J2 =

∫
u,v<0

exp(−u2 − v2)u

∫ 0

max(u,v)

dwdudv

= −
∫
u<v<0

exp(−u2 − v2)uvdudv −
∫
v<u<0

exp(−u2 − v2)u2dudv

= −
∫
v<0

v exp(−v2)

(
−1

2

)
[exp(−u2)]v−∞ + J1

= −1

8
+ J1,

which finally yields J = 1
4
. Reporting in (2.15) entails

χ(F ) = −µλ exp(−λ2/2)

(2π)3/2

which indeed proves (2.11).
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