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Bicovariograms and Euler characteristic I. Regular sets

Raphaël Lachièze-Rey∗

Abstract We establish an expression of the Euler characteristic of a r-regular planar set in
function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity
assumption, generalising existing local formulas for the Euler characteristic. We give also gen-
eral bounds on the number of connected components of a measurable set of R2 in terms of local
quantities. These results are then combined to yield a new expression of the mean Euler char-
acteristic of a random regular set, depending solely on the third order marginals for arbitrarily
close arguments. We derive results for level sets of some moving average processes and for the
boolean model with non-connected polyrectangular grains in R2. Applications to excursions of
smooth bivariate random fields are derived in the companion paper [23], and applied for instance
to C1,1 Gaussian fields, generalising standard results.

Keywords Euler characteristic, covariograms, intrinsic volumes, random closed sets, Serra’s
regular model

MSC Classification 52A22, 60D05, 28A75, 60G10

Introduction

Physicists and biologists are always in search of numerical indicators reflecting the microscopic
and macroscopic behaviour of tissue, foams, fluids, or other spatial structures. The Euler
characteristic, also called Euler-Poincaré characteristic, is a favoured topological index because
its additivity properties make it more manageable than connectivity indexes or Betti numbers.
It is defined on a set A ⊆ R2 by

χ(A) = #{bounded components of A} −#{bounded components of Ac}. (0.1)

It is more generally an indicator of the regularity of the set, as an irregular structure is more
likely to be shredded in many small pieces, or pierced by many holes, which results in a large
value for |χ(A)|.

As an integer-valued quantity, the Euler characteristic can be easily measured and used
in estimation and modelisation procedures. It is an important indicator of the porosity of a
random media [6, 32, 17], it is used in brain imagery [21, 36], astronomy, [26, 30, 25], and many
other disciplines. See also [1] for a general review of applied algebraic topology. In the study
of parametric random media or graphs, a small value of |Eχ(A)| indicates the proximity of the
percolation threshold, when that makes sense. See [29], or [11] in the discrete setting.

The mathematical additivity property is expressed, for suitable sets A and B, by the formula
χ(A∪B) = χ(A)+χ(B)−χ(A∩B), which applies recursively to finite such unions. In the validity
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domain of this formula, the Euler characteristic of a set can therefore be computed by summing
local contributions. The Gauss-Bonnet theorem formalises this notion for C2 manifolds, stating
that the Euler characteristic of a smooth set is the integral along the boundary of its Gaussian
curvature. Exploiting the local nature of the curvature in applications seems to be a geometric
challenge, in the sense that it is not always clear how to express the mean Euler characteristic of
a random set F under the form

Eχ(F ) = lim
ε→0

∫
R2

Eϕε(x, F )dx (0.2)

where ϕε(x, F ) only depends on B(x, ε) ∩ F . We propose in this paper a new formula of the
form above, based on variographic tools, and valid beyond the C2 realm, and then apply it in a
random setting. This paper is completely oriented towards probabilistic applications, it is not
clear wether our formula has important implications in a purely geometric framework.

Approach

In stochastic geometry and stereology, an important body of literature is concerned with provid-
ing formulas for computing the Euler characteristic of random sets, see for instance [19, 31, 22, 28]
and references therein. Defined to be 1 for every convex body, it is extended by additivity as

χ(∪iCi) = −
∑

I⊆[m],I 6=∅

(−1)#I1{∩i∈ICi 6=∅}

for finite unions of such sets. Even though this formula seems highly non-local, it is possible to
express it as a sum over local contributions using the Steiner formula, see (2.3) in [22], but it
is difficult to apply it under this form. There has also been an intensive research around the
Euler characteristic of random fields excursions [2, 7, 25, 13, 9, 36], based upon the works of
Adler, Taylor, Sammorodnitsky, Worsley, and their co-authors, see the central monograph [4].
We discuss in the companion paper [23] the application of the present results to level sets of
random fields.

In this work, we give a relation between the Euler characteristic of a bounded subset F of R2

and some variographic quantities related to F . Given any two orthogonal unit vectors u1,u2,
for ε sufficiently small,

χ(F ) = ε−2
[
Vol(F ∩ (F − εu1)c ∩ (F − εu2)c) (0.3)

−Vol(F c ∩ (F + εu1) ∩ (F + εu2))
]
,

where Vol is the 2-dimensional Lebesgue measure. This formula is valid under the assumption
that F is C1,1, i.e. that ∂F is a C1 submanifold of R2 with Lipschitz normal and finitely many
connected components. See Example 1.10 for the application of this formula to the unit disc.

In the context of a random closed set F , call Rε the right-hand member of (0.3). If
E sup06ε61Rε is finite, the value of Eχ(F ) can be obtained as limε→0 ERε. The main asset of
this formulation regarding classical approaches is that, to compute the mean Euler characteristic,
one only needs to know the third-order marginal of F , i.e. the value of

(x, y, z) 7→ P(x, y, z ∈ F ),

for x, y, z arbitrarily close. We also give similar results for the intersection F ∩W , where F is
a random regular closed set and W is a rectangular (or poly-rectangular) observation window.
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This step is necessary to apply the results to a stationary set sampled on a bounded portion of
the plane.

In the present paper, we apply the principles underlying these formulas to obtain the mean
Euler characteristic for level sets of moving averages, also called shot noise processes, where
the kernel is the indicator functions of random sets which geometry is adapted to the lattice
approximation. Even though the geometry of moving averages level sets attracted interest in
the recent literature [3, 10], no such result seems to exist yet. As a by-product, the mean Euler
characteristic of the associated boolean model is also obtained.

These formulas are successfully applied to excursions of smooth random fields in the com-
panion paper [23]. For instance, in the context of Gaussian fields excursions, one can pass (0.3)
to expectations under the requirement that the underlying field is C1 with Lipschitz deriva-
tives, and additional moment conditions. This improves upon the classical theory [4] where
fields have to be of class C2 and satisfy a.s. Morse hypotheses. Here again, the resulting formu-
las only require the knowledge of the field’s third order marginals for arbitrarily close arguments.

Discussion

Equality (0.3) gives in fact a direct relation between the Euler characteristic, also known as the
Minkowski functional of order 0, and the function (x, y) 7→ Vol(F ∩ (F + x)∩ (F + y)). We call
the latter function bicovariogram of F , or variogram of order 2, in reference to the covariogram
of F , defined by x 7→ Vol(F ∩ (F + x)) (see [24, 15] or [33] for more on covariograms). The
formula

Per(F ) = lim
ε→0

ε−1 (Vol(F )−Vol(F ∩ (F + εu))) ,

see Galerne [15], gives a direct relation between the first order variogram, and the perimeter
of a measurable set F , which is also the Minkowski functional of order 1 in the vocabulary of
convex geometry. Completing the picture with the fact that Vol(F ) is at the same time the
second-order Minkowski functional and the variogram of order 0, it seems that covariograms
and Minkowski functionals are intrinsically linked. This unveils a new field of exploration, and
raises the questions of extension to higher dimensions, with higher order variograms, and all
Minkowski functionals.

The present work is limited to the dimension 2 because, before engaging in a general theory,
one must check that, at least in a particular case of interest, existing results are improved.
In the present work and the companion paper, the results are oriented towards excursions of
bivariate Gaussian fields, as they are of high interest in the literature. Despite the technicalities
and difficulties, coming mainly from - 1 - the expression of topological estimates in terms of the
regularity of the field, and - 2 - dealing with boundary effects, obtaining a formula valid for any
random model, and relaxing the usual C2 hypotheses to C1 assumptions, provides a sufficiently
strong motivation for pushing the theory further. Also, developing methods of proof and upper
bounds in dimension 2 will help developing them in more abstract spaces.

Another motivation of the present work is that the amount of information that can be
retrieved from the variogram of a set is a central topic in the field of stereology, see for instance
the recent work [8] completing the confirmation of Matheron’s conjecture. Through relation
(0.3), the data of the bicovariogram function with arguments arbitrarily close to 0 is sufficient
to derive its Euler characteristic, and once again extension to higher dimensions is a natural
interrogation.
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Plan

The paper is organised as follows. We give in Section 1 some tools of image analysis, and the
framework for stating our main result, Theorem 1.8, which proves in particular (0.3). These
results are used to derive the mean Euler characteristic of shot noise level sets and boolean
model with polyrectangular grain. We then provide in Theorem 1.13 a uniform bound for the
number of connected components of a digitalised set, useful for applying Lebesgue’s Theorem. In
Section 2, we introduce random closed sets and the conditions under which the previous results
give a convenient expression for the mean Euler characteristic. Theorem 2.1 states hypotheses
and results for homogeneous random models.

1 Euler characteristic of regular sets

Given a measurable set A of R2, denote by Γ(A) the family of bounded connected components
of A, i.e. the bounded equivalence classes of A under the relation “x ∈ A is connected to y ∈ A
if there is a continuous path γ : [0, 1] → A such that γ(0) = x, γ(1) = y”. We use the notation
γ̃ := γ([0, 1]) to indicate the image of such a path. Call A the class of sets of R2 such that Γ(A)
and Γ(Ac) are finite. We call the sets of A the admissible sets of R2, and define for A ∈ A,

χ(A) = #Γ(A)−#Γ(Ac).

The present paper is restricted to the dimension 2, we therefore will not go further in the
algebraic topology and homology theory underlying the definition of the Euler characteristic.
The aim of this section is to provide a lattice approximation Aε of A for which χ(Aε) has a
tractable expression, and explore under what hypotheses on A we have χ(Aε)→ χ(A) as ε→ 0.

Some notation For x ∈ R2, call x[1], x[2] its components in the canonical basis. Also denote,

for x, y ∈ Rd, d > 1, by [x, y] the segment delimited by x, y, and (x, y) = [x, y] \ {x, y}.

1.1 Euler characteristic and image analysis

Practitioners compute the Euler characteristic of a set F ⊂ Rd from a digital lattice approxi-
mation F ε, where ε is close to 0. The computation of χ(F ε) is based on a linear filtering with a
patch containing 2d pixels, see [28, 34, 35, 20]. Determining wether χ(F ε) ≈ χ(F ) is a problem
with a long history in image analysis and stochastic geometry.

For ε > 0, call Zε = εZ2 the square lattice with mesh ε, and say that two points of Zε
are neighbours if they are at distance ε (with the additional convention that a point is its own
neighbour). Say that two points are connected if there is a finite path of connected points
between them. If the context is ambiguous, we use the terms grid-neighbour,grid-connected, to
not mistake it with the general R2 connectivity. Call Γε(M) the class of finite (grid-)connected
components of a set M ⊆ Zε. We define in analogy with the continuous case, for M ⊆ Zε
bounded such that Γε(M),Γε(M c) are finite,

χε(M) = #Γε(M)−#Γε(M c),

where M c = Zε \M . Remark in particular that two connected components touching exclusively
through a corner are not grid-connected.
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Call u = {u1,u2} the two canonical unit vectors or R2, and define for A ⊆ R2, x ∈ R2, ε > 0,

Φεout(x;A) = 1{x∈A,x+εu1 /∈A,x+εu2 /∈A},

Φεin(x;A) = 1{x/∈A,x−εu1∈A,x−εu2∈A},

ΦεX(x;A) = 1{x∈A;x+εu1 /∈A,x+εu2 /∈A,x+ε(u1+u2)∈A}.

Seeing also these functionals as discrete measures, define

Φεout(A) =
∑
x∈Zε

Φεout(x;A),

Φεin(A) =
∑
x∈Zε

Φεin(x;A),

ΦεX(A) =
∑
x∈Zε

ΦεX(x;A).

The subscripts in and out refer to the fact that Φεout(A) counts the number of vertices of
A ∩ Zε pointing outwards towards North-East, and Φεin(A) is the number of vertices pointing
inwards towards South-West. Define for A ⊆ R2

χε(x;A) = Φεout(x;A)− Φεin(x;A).

The functional ΦεX(A) is intended to count the number of X-configurations. Such configura-
tions are a nuisance for obtaining the Euler characteristic by summing local contributions. Call
A(Zε) the class of bounded M ⊆ Zε such that ΦεX(M) = ΦεX(M c) = 0, with M c = Zε \M .

Lemma 1.1. For M ∈ A(Zε),

χε(M) =
∑
x∈Zε

χε(x;M). (1.1)

Proof. It is well known that, viewing M as a subgraph of Z2, the Euler characteristic of M can be
computed as χ(M) = V −E+F where V is the number of vertices of M , E is its number of edges,
and F is the number of facets, i.e. of points x ∈M such that x+εu1, x+εu2, x+ε(u1+u2) ∈M .
We therefore have

χε(M) =
∑
x∈Z2

[
1{x∈M} −

2∑
i=1

1{{x,x+εui} is an edge of M} + 1{x is the bottom left corner of a facet}

]
.

For each x, the summand is in {−1, 0, 1} and can be computed in function of the configuration
(1{x∈M},1{x+εu1∈M},1{x+εu2} ∈ M,1{x+ε(u1+u2)∈M}) ∈ {0, 1}4. Enumerating all the possible
configurations and noting that the configurations (1, 0, 0, 1) and (0, 1, 1, 0) do not occur due to
the assumption M ∈ A(Zε), it yields that indeed only the configurations (1, 0, 0, 0) give +1 and
only the configurations (1, 1, 1, 0) give −1, which gives the conclusion.

This formula amounts to a linear filtering of the set by a 2× 2 discrete patch, and is already
known and used in image analysis and in physics on discrete images. Analogues of this formula
[5, 28] exist also in higher dimensional grids, but the dimension 2 seems to be the only one
where an anisotropic form is valid, see [35] for a discussion on this topic. The anisotropy is
not indispensable to the results discussed in this paper, but gives more generality and simplifies
certain formulas. An isotropic formula can be obtained by averaging over the 4 directions.
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Given a subset A of R2 and ε > 0, we are interested here in the topological properties of the
Gauss digitalisation of A, defined by [A]ε := A ∩ Zε. Define P = ε[− 1

2 ,
1
2 )2, and

Aε =
⋃

x∈[A]ε

(x+ P)

is the Gauss reconstruction of A based on Zε. In some unambiguous cases, the notation is
simplified to [A] = [A]ε. In this paper, we refer to a pixel as a set P + x, for x ∈ R2 not
necessarily in Zε.

Notation We also use the notation, for x, y ∈ Zε, Jx, yK = [x, y] ∩ Zε, Lx, yM = Jx, yK \ {x, y}.

Properties 1.2. For A ⊆ R2, Aε is connected in R2 if [A]ε is grid-connected in Z2. The
converse might not be true because of pixels touching through a corner, but this subtlety does
not play any role in this paper, because sets with X-configurations are systematically discarded.
We also have χε([A]) = χ(Aε) if [A] ∈ A(Zε) because connected components of A (resp. Ac)
can be uniquely associated to grid-connected components of [A] (resp. [Ac]).

Most set operations commute with the operators (.)ε, [·]ε. For any A,B ⊆ R2, [A ∪ B]ε =
[A]ε ∪ [B]ε, [A∩B]ε = [A]ε ∩ [B]ε, [R2 \A]ε = Zε \ [A]ε, and those properties are followed by the
reconstructions (A ∪B)ε = Aε ∪Bε, (A ∩B)ε = Aε ∩Bε, (A \B)ε = Aε \Bε.

1.2 Variographic quantities

The question raised in the next section is wether χε([A]ε) = χ(A) for ε sufficiently small, and the
result depends crucially on the regularity of A’s boundary. A remarkable asset of formula (1.1)
is its nice transcription in terms of variographic tools. Let us introduce the related notation.
For x1, . . . , xq, y1, . . . , ym ∈ R2, A a measurable subset of R2, define the polyvariogram of order
(q,m),

δy1,...,ymx1,...,xq
(A) := Vol((A+ x1) ∩ · · · ∩ (A+ xq) ∩ (A+ y1)c ∩ · · · ∩ (A+ ym)c).

The variogram of order (2, 0) is known as the covariogram of A (see [24, Chap. 3.1]), and we
designate here by bicovariogram of A the polyvariogram of order (3, 0). A polyvariogram of order
(q,m) can be written as a linear combination of variograms with orders (qi, 0) for appropriate
numbers qi 6 q. For instance for x, y ∈ R2, A ⊂ R2 measurable with finite volume, we have

δx,y0 (A) = δ0(A)− δ0,x(A)− δ0,y(A) + δ0,x,y(A).

A similar notion can be defined on Zε endowed with the counting measure: forM ⊆ Zε, x1, . . . , xq, y1, . . . , ym ∈
Zε,

δ̃y1,...,ymx1,...,xq
(M) := #((M + x1) ∩ · · · ∩ (M + xq) ∩ (M + y1)c ∩ · · · ∩ (M + ym)c).

Lemma 1.1 directly yields for M ∈ A(Zε),

χε(M) = δ̃−εu1,−εu2

0 (M)− δ̃0
εu1,εu2

(M).

We will see in the next section that for a sufficiently regular set F ⊆ R2, the analogue equality
χ(F ) = δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F ) holds for ε small.
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1.3 Euler characteristic of ρ-regular sets

It is known in image morphology that the digital approximation of the Euler characteristic is
in general badly behaved when the set F ∈ A(R2) possesses some inwards or outwards sharp
angles, i.e. we don’t have χε([F ]ε) → χ(F ) as ε → 0, the boolean model being the typical
example of such a failure, see [33, Chap. XIII - B.6] or [34]. Sets nicely behaved with respect to
digitalisation are called morphologically open and closed (MOC), or ρ-regular, see [33, Chap.V-
C],[35].

Before giving the characterisation of such sets, let us introduce some morphological concepts,
see for instance [24, 33] for a more detailed account of mathematical morphology. We state
below results in Rd because the arguments are based on purely metric considerations that apply
identically in any dimension.

Notation The ball with centre x and radius r in the ∞-metric ‖ · ‖∞ of Rd is noted B[x, r].
The Euclidean ball with centre x and radius r is noted B(x, r). For r > 0, A ⊆ Rd, define

A⊕r : = {x+ y : x ∈ A, y ∈ B(0, r)}.
A	r : = {x ∈ A : B(x, r) ⊆ A} = ((Ac)⊕r)c.

We also note ∂A, cl(A), int(A) for resp. the topological boundary, closure, and interior of a set
A. Note S1 the unit circle in R2.

Say that a closed set F has an inside rolling ball if for each x ∈ F , there is a closed Euclidean
ball B of radius r contained in F such that x ∈ B, and say that F has an outside rolling ball if
cl(F c) has an inside rolling ball.

A set F has reach at least r > 0 if for each point x at distance 6 r from F , there is a unique
point y ∈ F such that d(x, y) = d(x, F ). We note in this case y = πF (x). Call reach of F the
supremum of the r > 0 such that F has reach at least r. The proposition below gathers some
elementary facts about sets satisfying those rolling ball properties, the proof is left to the reader.

Proposition 1.3. Let ρ > 0 and F be a closed set of Rd with an inside and an outside rolling
ball of radius ρ. Then there is an outwards normal vector nF (x) in each x ∈ ∂F . For r 6 ρ,
Bx := B(x− rnF (x), r), resp. B′x := B(x+ rnF (x), r) is the unique inside, resp. outside rolling
ball in x. Also, int(B′x) ⊆ F c. Furthermore, ∂F, F and F c have reach at least r for each r < ρ.

We reproduce here partially the synthetic formulation of Blashke’s theorem by Walther [37],
which gives a connection between rolling ball properties and the regularity of the set.

Theorem 1.4 (Blashke). Let F be a compact and connected subset of Rd. Then for ρ > 0 the
following assertions are equivalent.

(i) ∂F is a compact (d− 1)-dimensional C1 submanifold of R2 such that the mapping nF (·),
which associates to x ∈ ∂F its outward normal vector to F , nF (x), is ρ−1-Lipschitz,

(ii) F has inside and outside rolling ball of radius ρ,

(iii) (F	r)⊕r = (F⊕r)	r = F , r < ρ.

Definition 1.5. Let F be a compact set of Rd. Assume that F has finitely many connected
components and satisfies either (i),(ii) or (iii) for some ρ0 > 0. Since the connected components
of F are at pairwise positive distance, each of them satisfies (i),(ii), and (iii), and therefore the
whole set F satisfies (i),(ii) and (iii) for some ρ > 0, which might be smaller than ρ0. Such a
set is said to belong to Serra’s regular class, see the monograph of Serra [33]. We will say that
such a set is ρ-regular, or simply regular.
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Polyrectangles An aim of the present paper is to advocate the power of covariograms for
computing the Euler characteristic of a regular set in the plane, we therefore need to give results
that can be compared with the literature. Since many applications are concerned with stationary
random sets on the whole plane, we have to study the intersection of random regular sets with
bounded windows, and assess the quality of the approximation.

To this end, call admissible rectangle of R2 any set W = I×J where I and J are closed (and
possibly infinite) intervals of R, and note corners(W ) its corners, which number is between 0 and
4. Then call polyrectangle a finite union W = ∪iWi where each Wi is an admissible rectangle,
and for i 6= j, corners(Wi) ∩ corners(Wj) = ∅. Call W the class of admissible polyrectangles.
For such W ∈ W , denote by corners(W ) the elements of ∪icorners(W ) that lie on ∂W . For
x ∈ ∂W \ corners(W ), note nW (x) the outward normal unit vector to W in x. We also call
edge of W a maximal segment of ∂W , i.e. a segment [x, y] ⊆ ∂W that is not strictly contained
in another such segment of ∂W (in this case, x, y ∈ corners(W )). Also call Peri(W ), i = 1, 2,
the total length of edges where the normal vector is collinear to ui, and remark that the total
perimeter of W is Per1(W ) + Per2(W ).

Using the considerations of Section 1.1, it is obvious that, for W ∈ W , χ(W ) is the cardinality
of Φout(W ), which is formed by north-east outwards corners of corners(W ), minus the cardinality
of Φin(W ), the set of south-west inwards corners of corners(W ). This remark can be used to
compute the mean Euler characteristic of random sets living in W .

Shot noise processes Let µ be a probability measure on W , and ν a probability measure on
R+ such that ν({0}) = 0. Let X be a Poisson measure on R2×W ×R+ with intensity measure
`⊗ µ⊗ ν, where ` is Lebesgue measure on R2. Introduce the random field

f(y) =
∑

(x,W,m)∈X

m1{y∈x+W}, y ∈ R2.

To make sure that the process is well defined a.s., assume that∫
R+×W

mVol(W )ν(dm)µ(dW ) <∞.

Then the law of f is stationary, i.e. invariant under spatial translations.
This type of process is called a shot noise process, or moving average, and is used in image

analysis, geostatistics, or many other fields. The geometry of their level sets are also the subject
of a heavy literature, see for instance the recent works [3, 10], but no expression seems to exist yet
for the mean Euler characteristic. We provide below such a formula under some weak technical
assumptions, see Section 3.1 for a proof.

Theorem 1.6. Let λ > 0, V ∈ W . Let W1,M1,M2, independent random variables with distri-
bution µ, ν, ν respectively. Introduce the level set F = {f > λ} and assume that EΦout(W1) <
∞,EΦin(W1) <∞,EPer(W1) <∞. Introduce

p1 = P(λ−M1 6 f(0) < λ)

p2 = P(λ−M1 −M2 6 f(0) < λ−max(M1,M2))

p′2 = P(λ−max(M1,M2) 6 f(0) < λ).

Then

Eχ(F ∩ V ) =Vol(V )

[
p1Eχ(W1) +

p2 − p2′

2
EPer1(W1)EPer2(W1)

]
+ χ(V )P(f(0) > λ)

+
p1

4
[Per1(V )EPer2(W1) + Per2(V )EPer1(W1)] . (1.2)
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• For instance, if µ is a Dirac mass in [0, a]2, a > 0, and ν is a Dirac mass in 1, Mi = 1 a.s.
and f(0) is a Poisson variable with parameter a2. The volumic part of the mean Euler
characteristic (i.e. the one multiplied by Vol(V )) is therefore

P(f(0) = dλe − 1)

(
1 +

1

2

[
dλe − 1− a2

])
• For λ ∈ (0, 1) and ν the Dirac mass in 1, F has the law of the boolean model M with

random grain distributed as the Mi and random germs given by X, therefore formula (1.2)
provides, with p1 = p′2 = P(f(0) = 0) = exp(−EVol(W1)), p2 = 0,

Eχ(M ∩ V ) =Vol(V )p1

[
Eχ1(W1)− EPer1(W1)EPer2(W1)

2

]
+ χ(V )(1− p1) +

p1

4
[Per1(V )EPer2(W1) + Per2(V )EPer1(W1)] .

Coming back to the Euler characteristic of smooth sets of R2, the following assumption needs
to be in order for the restriction of a ρ-regular set to a polyrectangle to be topologically well
behaved.

Assumption 1.7. Let F be a ρ-regular set, and W ∈ W . Assume that ∂F ∩ corners(W ) = ∅
and that for x ∈ ∂F ∩ ∂W , nF (x) is not colinear with nW (x).

If a ρ-regular set F and a polyrectangle W do not satisfy this assumption, F ∩W might have
an infinity of connected components, which makes Euler characteristic not properly defined. Let
us prove that the digitalisation is consistent if this assumption is in order.

Theorem 1.8. Let F be a ρ-regular set of R2, W ∈ W satisfying Assumption 1.7 such that
F ∩W is bounded. Then F ∩W ∈ A and there is ε(F,W ) > 0 such that for ε < ε(F,W ),

χ(F ∩W ) = χε([F ∩W ]ε)

=
∑
x∈εZ2

χε(x;F ∩W ) (1.3)

= ε−2

∫
R2

χε(x;F ∩W )dx

= ε−2
(
δ−εu1,−εu2

0 (F ∩W )− δ0
εu1,εu2

(F ∩W )
)
. (1.4)

Also, ε(F,W ) = ε(F + x,W + x) for x ∈ R2.

The proof is at Section 3.2.

Remark 1.9. (i) The apparent anisotropy of (1.3)-(1.4) can be removed by averaging over
all pairs {u1,u2} of orthogonal unit vectors of R2. Even though (1.4) does not involve the
discrete approximation, a direct proof not exploiting lattice approximation is not available
yet, and such a proof might shed light on the nature of the relation between covariograms
and Minkowski functionals.

(ii) The fact that the Euler characteristic of a regular set digitalisation converges to the right
value is already known, see [35, Section 6] and references therein, but we reprove it in
Lemma 3.3, under a slightly stronger form. The main technical difficulty of the proof of
Theorem 1.8 is to deal with the intersection points of ∂W and ∂F .

9



(iii) It is proved in Svane [35] that in higher dimensions, Euler characteristic and Minkowski
functionals of order d − 2 can be approximated through isotropic analogues of formula
(1.1). The arguments of the proof of Lemma 3.3, treating the case F ⊆ W , are purely
metric and should be generalisable to higher dimensions. On the other hand, dealing with
boundary effects in higher dimensions might be a headache.

(iv) It is clear throughout the proof that the value ε(F,W ) above for which (1.3)-(1.4) is valid
is a continuous function of ρ, the distances between the connected components F ∩W , the
distances between the points of (∂W ∩ ∂F ) ∪ (corners(W ) ∩ F ), and the angles between
nW (x) and nF (x) at points x ∈ ∂F ∩ ∂W .

Example 1.10. Before giving the proof, let us give an elementary graphical illustration of
(1.4) with F = B(0, 1) in R2. Let ε > 0. We note Γ+ = F ∩ (F + εu1)c ∩ (F + εu2)c and
Γ− = F c ∩ (F + εu1) ∩ (F + εu2). We should have for ε small

1 = χ(F ) = ε−2
[
δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F )
]
,

Vol(Γ−) = δ0
εu1,εu2

(F ), and Vol(Γ+) = δεu1,εu2

0 (F ) = δ−εu1,−εu2

0 (F ). The notation a, b, c, d, e, f
designate six distinct subsets (see Figure 1, below) such that Γ− = a ∪ b ∪ c,Γ+ = d ∪ e ∪ f .
Symmetry arguments yield that Vol(a) = Vol(f),Vol(a∪b) = Vol(c),Vol(f) = Vol(d∪e), whence

Vol(Γ+)−Vol(Γ−) = Vol(a) + Vol(b) + Vol(c)−Vol(d)−Vol(e)−Vol(f)

= 2(Vol(f) + Vol(b))−Vol(d)−Vol(e)−Vol(f)

= Vol(f)−Vol(d) + 2Vol(b)−Vol(e)

= 2Vol(b).

The shape of b is very close to that of a cube with diagonal length ε, i.e. with side length
2−1/2ε. Therefore Vol(b) ≈ ε2/2, which confirms 1 = χ(F ) = ε−2

[
δ−εu1,−εu2

0 (F )− δ0
εu1,εu2

(F )
]

(rigorously proved by Theorem 1.8).

Remark 1.11. (i) Theorem 1.8 still holds if ∂F intersects the outwards corner of W . In
particular, we can drop the corner-related part of Assumption 1.7 if W is a rectangle. This
subtlety makes the proof slightly more complicated, and such generality is not necessary
in this paper.

(ii) It should be possible to show that under the conditions of Theorem 1.8, F ∩ W and
(F ∩W )ε are homeomorphic, but we are only interested in the Euler characteristic in this
paper.

Remark 1.12. It seems difficult to deal with C1 manifolds that don’t have a Lipschitz boundary,
in a general setting. Consider for instance in R2

A =

∞⋃
n=2

B((1/n, 0), 1/n2).

Then ∂A is a C∞ embedded sub manifold of R2, but it has infinitely many connected compo-
nents, which puts A off the class A of sets that we consider admissible for computing the Euler
characteristic.

To have the convergence of Euler characteristic’s expectation for random regular sets, we
need the domination provided by Theorem 1.13 in the next section.
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Figure 1: Bicovariograms of the unit disc

1.4 Bounding the number of pixel components

Taking the expectation in formula (1.3) and switching with the limit ε→ 0 requires a uniform
upper bound in ε on the right hand side. For ε small, (1.3) consists of a lot of positive and
negative terms that cancel out. Since grouping them manually is quite intricate, this formula is
not suitable for obtaining a general upper bound on |χ(F ε)|. The most efficient way consists in
bounding the number of components of F ε and (F c)ε in terms of the regularity of the set.

The result derived below is intended to be applied to ρ-regular sets, but we cannot make
any assumption on the value of the regularity radius ρ, because the bound must be valid for
every realisation. We therefore give an upper bound on #Γ(F ε) and #Γ((F ε)c) valid for any
measurable set F .

The formula obtained bounds the number of connected components, which is a global quan-
tity, in terms of occurrences of local configurations of the set, that we call entanglement points.
Roughly, an entanglement occurs if two points of F c are close but separated by a tight portion
of F , see Figure 2. This might create disconnected components of F ε in this region although F
is locally connected.

To formalise this notion, let x, y ∈ Zε grid neighbours. Introduce Px,y ⊆ R2 the closed
square with side length ε such that x and y are the midpoints of two opposite sides. Denote
P′x,y = ∂Px,y \ {x, y}, which has two connected components. Then {x, y} is an entanglement
pair of points of F if x, y /∈ F and (P′x,y ∪ F ) ∩ Px,y is connected. We call Nε(F ) the family of
such pairs of points.

For the boundary version, given W ∈ W , we also consider grid points x, y ∈ [W ∩F ], on the
same line or column of Zε, such that

• x, y are within distance ε from one of the edges of W (the same edge for x and y)

• Lx, yM 6= ∅

• Lx, yM ⊆ [F c ∩ F⊕ε].

11



Figure 2: Entanglement point In this example, {x, y} ∈ Nε(F ) because the two connected
components of P′x,y, in lighter grey, are connected through γ ⊆ (F ∩ Px,y). We don’t have
{x, y} ∈ Nε(F

′).

The family of such pairs of points {x, y} is noted N′ε(F ;W ) .
Even though Nε(F ) and N′ε(F ;W ) are not points but pairs of points of Zε, for A ⊆ R2, we

extend the notation Nε(F ) ⊆ A, (resp. Nε(F ) ∩ A), to indicate that the points of the pairs of
Nε(F ) are contained in A (resp. the collection of pairs of points from Nε(F ) where both points
are contained in A), and idem for N′ε(F,W ).

For {x, y} ∈ Nε(F ), [x, y] ∩ F 6= ∅ and x, y ∈ F c. Therefore Nε(F ) ⊆ ∂F⊕ε. We have also
N′ε(F,W ) ⊆ (∂F⊕ε ∩ ∂W⊕ε).
Theorem 1.13. Let F be a bounded measurable set. Then

#Γ(F ε) 6 2#Nε(F ) + #Γ(F ) (1.5)

and for any W ∈ W ,

#Γ((F ∩W )ε) 6 2#Nε(F ) ∩W⊕ε + 2#N′ε(F,W ) + #Γ(F ∩W ) + 2#corners(W ). (1.6)

The proof is deferred to Section 3.3.

Remark 1.14. Properties 1.2 and (1.6) entail

#Γ(((F ∩W )ε)c) = #Γ(((F ∩W )c)ε) = #Γ(((F c ∩W ) ∪W c)ε)

= #Γ((F c ∩W )ε ∪ (W c)ε) 6 #Γ((F c ∩W )ε) + #Γ((W c)ε)

because adding a connected set B to a given set A can only decrease its number of bounded
connected components, or increase it by 1 if B is bounded. It is easy to see that #Γ((W c)ε) 6
#corners(W ) for ε sufficiently small. It follows that

|χ((F ∩W )ε)| 6max(#Γ((F ∩W )ε),#Γ((F ∩W )ε)c)

63#corners(W ) + 2 max(#Nε(F ) ∩W⊕ε,#Nε(F
c) ∩W⊕ε) (1.7)

+ 2 max(#N′ε(F,W ),#N′ε(F
c,W )) + max(#Γ(F c ∩W ),#Γ(F ∩W )).

Remark 1.15. The boundary of a ρ-regular set A is a C1 manifold, and can therefore be written
under the form ∂A = f−1({0}), and cl(A) = {f 6 0} for some C1 function f such that ∇f 6= 0
on ∂A and ‖∇f‖−1∇f is ρ−1-Lipschitz on ∂A. Such a function is said to be of class C1,1, see
[18]. One can bound the right hand members of (1.5)-(1.6) by quantities depending solely on
f . For instance, it is proved in the companion paper [23] that in the context of Gaussian fields,
E and limε can be switched in (1.3) if the derivatives of f are Lipschitz and their Lipschitz
constants have a finite moment of order 4 + η for some η > 0.
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2 Random sets

Let (Ω,A,P) be a complete probability space. Call F the class of closed sets of R2, endowed
with the σ-algebra B generated by events {G ∩ F 6= ∅, F ∈ F}, for G open. A B-measurable
mapping A : Ω → F is called a Random Closed Set (RACS). See [27] for more on RACS, and
equivalent definitions. The functional χ is not properly defined, and therefore not measurable,
on F . We introduce the subclass R of regular closed sets as defined in Definition 1.5, and endow
R with the trace topology and Borel σ-algebra, a random regular set being a RACS a.s. in R.
Taking the limit in ε→ 0 in formula (1.3) entails that χ is measurable R → R (the functionals
F 7→ #Γ(F ) and F 7→ #Γ(F c) are also measurable). If a random regular set F satisfies a.s.
Assumption 1.7 with some W ∈ W , then #Γ(F ∩W ),#Γ((F ∩W )c) and χ(F ∩W ) are also
measurable quantities.

Introduce the support supp(A) of a RACS A as the smallest closed set K such that
P(A ⊆ K) = 1. Mostly for simplification purpose, we will assume whenever relevant that
supp(A) is bounded.

It is easy to derive a result giving the mean Euler characteristic as the limit of the right hand
side expectation in (1.3) by combining Theorems 1.8 and 1.13. We treat below the example of
stationary random sets, i.e. which law is invariant under the action of the translation group. A
non-trivial stationary RACS F is a.s. unbounded, therefore we must consider the restriction of
F to a bounded window W . The main issue is to handle boundary terms stemming from the
intersection. They involve the perimeter of W and the specific perimeter of F . We introduce
the square perimeter Per∞ of a measurable set A with finite Lebesgue measure by the following.
Note C1

c the class of compactly supported functions of class C1 on R2, and define Per∞(A) =
Peru1

(A) + Peru2
(A), where

Peru(A) = sup
ϕ∈C1c :|ϕ(x)|61

∫
A

〈∇ϕ(x),u〉dx = Per−u(A), u ∈ S1,

so that we also have the expression

Per∞(A) = sup
ϕ∈C1c :‖ϕ(x)‖∞61

∫
A

div(ϕ)(x)dx.

The classical variational perimeter is defined by

Per(A) =
1

4

∫
S1

Peru(A)du,

with the Haar measure on the unit circle, it satisfies Per(A) 6 Per∞(A) 6
√

2Per(A), see [16].
We have for instance for the square W = [0, a]2, Per∞(W ) = 4a and for a ball B with unit
diameter in R2, Per∞(B) = 4.

It is proved in [15, (1)] that for any bounded measurable set A,

Peru(A) = 2 lim
ε→0

ε−1δεu0 (A) = 2 lim
ε→0

ε−1δ−εu0 (A)

and in [15],Proposition 16-(8) that for any RACS F with compact support

EPer∞(F ) = 2

2∑
i=1

lim
ε→0

ε−1Eδεui
0 (A) = 2

2∑
i=1

lim
ε→0

ε−1Eδ−εui
0 (A)

= 2

2∑
i=1

lim
ε→0

ε−1

∫
R2

P(x ∈ A, x+ εui /∈ A)dx. (2.1)
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An important feature of this formula is that the mean perimeter can be deduced from the
second order marginal distribution (x, y) 7→ P(x, y ∈ F ) in a neighbourhood of the diagonal
{(x, x);x ∈ R2}. The formulas above provide a strong connection between the perimeter, called
first-order Minkowski functional in the realm of convex geometry, the covariogram, and the
second order marginal of a random set.

It is difficult not to notice the analogy featured by the material contained in this paper.
The results in the present section emphasise the connection between the Euler characteristic, or
second-order Minkowski functional, and the bicovariogram, a functional that can be expressed
in function of the third order marginal of a random set.

The results below have been designed to provide an application in the context of random
functions excursions, a field which has been been the subject of intense research recently, see
the references in the introduction. We show in the companion paper [23] that the quantities in
(2.2) can be bounded by finite quantities under some regularity assumptions on the underlying
field, and give explicit mean Euler characteristic for some stationary Gaussian fields.

Say that a closed set F is locally regular if for any compact set W , there is a ρ-regular set
F ′ such that F ∩W = F ′ ∩W .

Proposition 2.1. Let F be a stationary random closed set, a.s. locally regular, and W ∈ W
bounded. Assume that the following local expectations are finite:

E sup
06ε61

#Nε(F ) ∩W, E sup
06ε61

#Nε(F
c) ∩W,E sup

06ε61
N′ε(F,W ), E sup

06ε61
N′ε(F

c,W ), (2.2)

E#Γ(F ∩W ), E#Γ(F c ∩W ).

Then E|Γ(F ∩W )| <∞, E|Γ((F ∩W )c)| <∞, and the following limits are finite

χ(F ) : = lim
ε→0

ε−2 [P(0 ∈ F, εu1 /∈ F, εu2 /∈ F )−P(0 /∈ F,−εu1 ∈ F,−εu2 ∈ F )] ,

Perui
(F ) : = 2 lim

ε→0
ε−1P(0 ∈ F, εui /∈ F ), i = 1, 2,

Vol(F ) : = P(0 ∈ F ).

We also have, with Per∞(F ) =
∑2
i=1 Perui

(F ),

Eχ(F ∩W ) = Vol(W )χ(F ) +
1

4

(
Peru2

(W )Peru1
(F ) (2.3)

+ Peru1
(W )Peru2

(F )
)

+ χ(W )Vol(F )

EPer∞(F ∩W ) = Vol(W )Per∞(F ) + Per(W )Vol(F ) (2.4)

EVol(F ∩W ) = Vol(W )Vol(F ). (2.5)

Proof. Let us first compute the mean volume and perimeter. A straightforward application of
Fubini’s theorem gives (2.5). Assume for now that Perui(F ) exists, for i = 1, 2 (proved later).
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We have by (2.1)

EPer∞(F ∩W ) = 2

2∑
i=1

lim
ε→0

ε−1

∫
R2

P(x ∈ F ∩W,x+ εui /∈ F ∩W )dx

= 2

2∑
i=1

lim
ε→0

ε−1

[∫
x∈W :x+εui∈W

P(x ∈ F, x+ εui /∈ F )dx+

∫
x∈W :x+εui /∈W

P(x ∈ F )dx

]

= 2

2∑
i=1

lim
ε→0

[
(Vol(W ) + o(1))ε−1P(0 ∈ F, εui /∈ F )dx+ P(0 ∈ F )ε−1δ−εui

0 (W )
]

= 2

2∑
i=1

(
Vol(W )

1

2
Perui

(F ) + Vol(F )
1

2
Perui

(W )

)
,

which gives (2.4).
Theorem 1.8 yields that (1.3) holds if a.s. nF (x) /∈ nW (x), x ∈ ∂F ∩ ∂W , and ∂F almost

never touches a corner of W . Let us prove that it is so. Call

Θ = {x[2] ∈ R : nF (x[1], x[2]) = ±u2 for some x[1] ∈ R such that (x[1], x[2]) ∈ ∂F}.

We use below Sard’s Theorem to prove that Θ is a.s. negligible.
Since ∂F is locally a C1 manifold, there is a countable family of real bounded intervals Ik

and open sets (Ωk) covering ∂F such that on each Ωk, ∂F can be represented via the implicit
function theorem by the graph of a C1 function gk : Ik ⊆ R→ R. Let K be the countable family
of k such that ∂F ∩Ωk = {(t, gk(t)); t ∈ Ik} ∩Ωk. In particular, nF (·) is not collinear to u1 on
Ωk, k ∈ K.

Sard’s theorem entails that for k ∈ K, the set of critical values of gk is negligible, whence

Θk := {y : y = gk(t) for some t ∈ Ik such that g′k(t) = 0},

has 0 Lebesgue measure. For k /∈ K, nF (·) is not collinear to u2 on Ωk, otherwise the IFT could
not be applied, whence Θ ∩ Ωk = ∅. Therefore Θ ⊆ ∪k∈KΘk has also a.s. 0 Lebesgue measure.
Fubini’s theorem then yields, noting ` the 1-dimensional Lebesgue measure,

0 = E`(Θ) =

∫
R

P(∃x[1] ∈ R : (x[1], x[2]) ∈ ∂F,nF (x[1], x[2]) = ±u2)dx[2],

whence by stationarity P(∃x[1] ∈ R : (x[1], x[2]) ∈ ∂F,nF (x[1], x[2]) = ±u2) = 0 for all x[2] ∈ R.
Since the set of x[2] ∈ R such that, for some x[1] ∈ R, (x[1], x[2]) ∈ ∂W and u2 ∈ nW (x[1], x[2])
is finite (it corresponds to the second coordinates of horizontal edges of W ), we have that
a.s. nF (x) 6= ±u2 for every x ∈ ∂W ∩ ∂F such that ±u2 ∈ nW (x). With an exact similar
reasoning, the same statement with u1 instead of u2 holds. We therefore proved that a.s., for
x ∈ ∂F ∩ ∂W,nF (x) is not colinear with nW (x), as is required in Assumption 1.7.

Since ∂F is a.s. a (d−1)−dimensional manifold, it has a.s. vanishing 2-dimensional Lebesgue
measure, whence by Fubini’s Theorem, the probability that one of the corners of W belongs to
∂F is 0. It follows that Assumption 1.7 is satisfied a.s., whence the a.s. convergence of Theorem
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1.8 holds. Lebesgue’s Theorem then yields, thanks to the domination (2.2), using also (1.3),

Eχ(F ∩W ) = lim
ε→0

∑
x∈εZ2

Eχε(x;F ∩W )

= lim
ε→0

[ ∑
x∈[W ]:x+εu1∈W,x+εu2∈W

[P(x ∈ F, x+ εu1 /∈ F, x+ εu2 /∈ F )

−
∑

x∈[W ]:x−εu1∈W,x−εu2∈W

P(x /∈ F, x− εu1 ∈ F, x− εu2 ∈ F )]

+
∑

x∈[W ]:x+εu1∈W,x+εu2 /∈W

P(x ∈ F, x+ εu1 /∈ F ) +
∑

x∈[W ]:x+εu1 /∈W,x+εu2∈W

P(x ∈ F, x+ εu2 /∈ F )

+
∑

x∈[W ]:Φε
out(x,W )=1

P(x ∈ F )−
∑

x∈Zε:Φε
in(x,W )=1

P(x− εu1 ∈ F ;x− εu2 ∈ F )

]

= lim
ε→0

[
ε−2(Vol(W ) + o(1))

[
P(0 ∈ F, εu1 /∈ F, εu2 /∈ F )

−P(0 /∈ F,−εu1 ∈ F,−εu2 ∈ F )
]

+ ε−1

(
Peru2(W )

2
+ o(1)

)
P(0 ∈ F, εu1 /∈ F )

+ ε−1

(
Peru1

(W )

2
+ o(1)

)
P(0 ∈ F, εu2 /∈ F )

+ (Φεout(W ) + o(1))P(0 ∈ F )− (Φεin(W ) + o(1))(P(−εu1 ∈ F,−εu2 ∈ F ))
]
.

Define

χε(F ) = ε−2 [P(0 ∈ F, εu1 /∈ F, εu2 /∈ F )−P(0 /∈ F,−εu1 ∈ F,−εu2 ∈ F )]

Per
ε

ui
(F ) = 2ε−1P(0 ∈ F, εui /∈ F )

αε = P(−εu1 ∈ F,−εu2 ∈ F )−P(0 ∈ F ).

Then the previous expression becomes, using χ(W ) = Φεout(W ) − Φεin(W ) for ε small enough
(easily deduced from (1.1)),

Eχ(F ∩W ) = lim
ε→0

[
Vol(W )χε(F ) +

1

4

(
Peru1(W )Per

ε

u2
(F ) + Peru2(W )Per

ε

u1
(F )
)

+χ(W )Vol(F )− αεΦin(W )
]
.

Let W,W1,W2 ∈ W simply connected such that Vol(W ) = Vol(W1) = Vol(W2),Perui
(W ) =

Perui(Wi) 6= Perui(Wi′), i = 1, 2. Subtracting the expression above for W and Wi for each
i = 1, 2 yields that Perui

ε
(F ) has a limit, as announced. Then

αε 6 |P(0 ∈ F,−εu1 ∈ F,−εu2 ∈ F )−P(0 ∈ F ) + P(0 /∈ F,−εu1 ∈ F,−εu2 ∈ F )|
6 P(0 ∈ F,−εu1 /∈ F or − εu2 /∈ F ) + max(P(0 /∈ F,−εu1 ∈ F ),P(0 /∈ F,−εu2 ∈ F ))

6 P(0 ∈ F,−εu1 /∈ F ) + P(0 ∈ F,−εu2 /∈ F ) + P(0 /∈ F,−εu1 ∈ F ) + P(0 /∈ F,−εu2 ∈ F ).

Since F is stationary, P(0 ∈ F, εui /∈ F ) = P(0 ∈ F,−εui /∈ F ) = P(0 /∈ F, εui ∈ F ). Therefore,

P(0 /∈ F, εu1 ∈ F ) + P(0 /∈ F, εu2 ∈ F ) 6 ε lim
ε→0

ε−1(Peru1

ε
+ Peru2

ε
(F ))

and αε → 0. It then follows that χε(F ) has a finite limit, which concludes the proof.
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3 Proofs

3.1 Proof of Theorem 1.6

Fubini’s theorem and EΦout(W1) < ∞,EΦin(W1) < ∞ entail that F ∩ V ∈ W a.s.. Using
EVol(W1) < ∞ also yields that Φout(F ∩ V ),Φin(F ∩ V ) have finite expectation. Therefore,
Eχ(F ∩ V ) = EΦout(F ∩ V ) − EΦin(F ∩ V ). Let us enumerate the (random) points of F ∩ V
that can belong either to Φout(F ∩ V ) or to Φin(F ∩ V ).

• A point y of Φout(V ) (resp. Φin(V )) indeed belongs to Φout(V ∩ F ) (resp. Φin(F ∩ V )) iff
f(y) > λ.

• Given (x,W,m) ∈ X, a point y ∈ Φout(x+W )∩V (resp. Φin(x+W )∩V ) is in Φout(F ∩V )
(resp. Φin(F ∩V )) iff f(y) > λ and points in the neighbourhood of y that are not in W +x
are not in F either, i.e. f(y)−m < λ.

• A point y ∈ ∂F ∩ ∂V is in Φout(F ∩ V ) if f(y) > λ, f(y)−m < λ, where m is the unique
mass such that y ∈ ∂(W + x) for some (x,W,m) ∈ X, and the boundaries of (W + x) and
V indeed form a North-East outwards angle in y.

• The last possibility is a point y ∈ ∂(W+x)∩∂(W ′+x′) for two distinct triples (x,W,m), (x′,W ′,m′) ∈
X. In this case, y ∈ Φout(F ∩ V ) if f(y) > λ, f(y)−min(m,m′) < λ, and y ∈ Φin(F ∩ V )
if λ > f(y)−m−m′;λ 6 f(y)−max(m,m′).

We have, using the stationarity of f,

E#Φout(V ) ∩ F = P(f(0) > λ)#Φout(V ), E#Φin(V ) ∩ F = P(f(0) > λ)#Φin(V ).

Then, using Mecke’s formula,

E
∑

(x,W,m)∈X

∑
y∈Φout(W+x)∩V

1{f(y)−m<λ6f(y)}

=

∫
R2×W ×R+

E
∑

y∈Φout(W+x)∩V

1{f(y)<λ6f(y)+m}dxν(dm)µ(dW )

= P(f(0) < λ 6 f(0) +M1)︸ ︷︷ ︸
p1

E
∑

y∈Φout(W1)

∫
R2

1{y∈V−x}dxµ(dW )

= p1Vol(V )E#Φout(W1),

and a similar computation holds to treat the points of the Φin(W + x). For the next term,
for W ∈ W , note ∂NW the edges of W facing North, ∂EW those facing East, and ∂+W =
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⋃
e∈∂NW∪∂EW e. Then

EΦout(V ∩ F ) ∩ ∂V = E
∑

(x,W,m)∈X

∑
y∈∂+V ∩∂+(W+x)

1{f(y)−m<λ6f(y)}

=

∫
R2×R+

E
∑

y∈∂+(W1+x)∩∂+V

1{f(y)<λ6f(y)+m}dxν(dm)

= p1E

[ ∑
e∈∂NW1,f∈∂EV

∫
R2

1{e∩(f−x) 6=∅}dx

+
∑

e∈∂EW1,f∈∂NV

∫
R2

1{e∩(f−x)6=∅}dx

]

= p1E

 ∑
e∈∂NW1,f∈∂EV

|e||f |+
∑

e∈∂EW1,f∈∂NV

|f ||e|


= p1

1

4
[Per1(V )EPer2(W1) + Per2(V )EPer1(W1)] .

It remains to compute the term stemming from the intersection of distinct grains. The expected
number of such points in Φout(F ∩ V ) is

E
∑

(x,W,m)6=(x′,W ′,m′)∈X

∑
y∈∂+(W+x)∩∂+(W ′+x′)∩V

1{f(y)−min(m,m′)<λ6f(y)}

=E

∫
(R2)2

∑
y∈∂+(W1+x)∩∂+(W2+x′)∩V

P(f(y) + max(M1,M2) < λ 6 f(y) +M1 +M2)︸ ︷︷ ︸
p2

dxdx′

=p2 E

∫
R2

[∫
R2

#
(
∂+(W1 + x) ∩ ∂+(W2 + x′) ∩ V

)
dx′
]
dx︸ ︷︷ ︸

IN+IE

where

IN = E

∫
R2

∑
e∈edgesN (W1+x)

∑
f∈edgeE(W2)

∫
R2

1{e∩V ∩(f+x′) 6=∅}dx
′dx

= E

∫
R2

∑
e∈edgesN (W1+x),f∈edgeE(W2)

|e ∩ V ||f |dx

=
EPer2(W2)

2
E

∑
e∈edgesN (W1)

∫
R2

|e ∩ (V − x)|dx =
1

4
Vol(V )EPer2(W1)EPer1(W1),

and IE = IN is computed similarly. With an analogue computation, the expected number of
such points contributing to Φin(F ∩ V ) is 1

2p
′
2Vol(V )EPer1(W1)EPer2(W1). Finally,

Eχ(F ∩ V ) =Vol(V )(p1Eχ(W1) +
p2 − p′2

2
EPer1(W1)EPer2(W2))

+ (#Φout(V )− Φin(V ))P(f(0) > λ)

+
p1

4
[Per1(V )EPer2(W1) + Per2(V )EPer1(W1)] .
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3.2 Proof of Theorem 1.8

Let ρ > 0 such that F satisfies (i),(ii) and (iii) in Theorem 1.4 (see Definition 1.5). The proof
is divided in several steps, presented as Lemmas.

Lemma 3.1. F ∩W ∈ A

Proof. Since every connected component of F contains at least one ball of radius ρ and one
cannot pack an infinity of such balls in F ∩ W , the number of connected components of F
contained in W is finite. A similar reasoning holds for F c, using Proposition 1.3.

We must still prove that F and F c have a finite number of connected components touching
the boundary, i.e. prove that ∂F ∩ ∂W is finite. If it is not so, there is a countable infinite
family of disjoint segments In = [xn, yn] of F ∩ ∂W , with xn, yn ∈ ∂F , and an infinite number
of them lie on a given edge of W because W has a finite number of edges. Up to applying
rotations and symmetries to F , assume that (x, y) is horizontal and that the ordering is such
that x[1] 6 y[1] < x[2] 6 y[2] < . . . . Then, since nF (xn)[1] 6 0 and nF (yn)[1] > 0, there is a
common limit z ∈ [x, y]∩∂F of the xn and yn such that nF (z)[1] = 0, contradicting Assumption
1.7, using the continuity of nF (·). It follows that F ∩W ∈ A.

Lemma 3.2. For ε sufficiently small, ΦεX([F ∩W ]) = 0.

Proof. Let ε <
√

2(
√

2 − 1)ρ. Elementary geometric considerations yield that we cannot find
balls Bi, i = 1, . . . , 4 such that

• 0 ∈ B1, εu1 ∈ B2, εu2 ∈ B3, ε(u1 + u2) ∈ B4

• Each ball has radius > ρ

• B1 ∩B2 = ∅, B2 ∩B3 = ∅, B3 ∩B4 = ∅, B4 ∩B1 = ∅.

The inside and outside rolling ball conditions then yield that ΦεX(0, [F ]) = 0. Reasoning
similarly in every point and summing yields ΦεX([F ]) = 0. To prove that ΦεX([F ∩W ]) = 0, let
us first remark that due to Assumption 1.7, for ε small enough, the points of ∂F ∩ ∂W are at
distance more than 2ε from corners(W ). Therefore the intersection of F with W cannot add
X-configurations, ΦεX([F ∩W ]) = 0.

We now proceed to show that F ∩W and (F ∩W )ε have the same Euler characteristic. The
proof is divided in two parts. We first prove (i) the result under the assumption that F ⊆ W ,
avoiding boundary issues, and then (ii) complete the proof without this assumption.

(i) Let us first assume that F ⊆ W , or equivalently that F is bounded and W = R2. The
following result shows that, if boundary problems are put aside, a regular set and its Gauss
approximation are homeomorphic when ε is small enough. Even though we could not locate the
result under this particular form, the fact that the topology of a ρ-regular set is preserved by
digital approximation is already known in image analysis, see [35] and references therein. We
defer the proof to the Appendix.

Lemma 3.3. Let F be a ρ-regular bounded set, and let ε < ρ/
√

2 be such that given any two
distinct connected components C,C ′ of F , d(∂C, ∂C ′) > 4ε. Then F is homeomorphic to F ε.

Proof. We start with a lemma.

Lemma 3.4. Let A be a connected set, r > 0 and 0 < ε 6 2−1/2r. Then [A⊕r]ε is connected in
Zε, whence (A⊕r)ε is connected in R2.
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Proof. Let x, y ∈ R2 such that ‖x − y‖ 6 r, B = B(x, r), B′ = B(y, r). It is clear that
[B]ε and [B′]ε are grid-connected sets. Since B ∩ B′ contains a ball with radius r/2, and
therefore a square of side-length 2−1/2r > ε, there is one point of Zε in B ∩B′, which connects
[B ∪B′]ε = [B]ε ∪ [B′]ε.

From there, given a sequence of points x1, . . . , xq ∈ A such that ‖xi−xi+1‖ 6 r, [∪iB(xi, r)]
ε

is connected. Any given two points of A can be connected by such a sequence, whence [A⊕r]ε

is connected.

Assume first that F is simply connected, or equivalently that F and F c are connected.
Covering ∂F with a finite number of balls inside which ∂F can be represented as the graph of
a C1 function, F can also be represented as the bounded complement of the simple C1 Jordan
curve formed by ∂F .

Let us prove that F ε and (F ε)c are also connected, i.e. that F ε is simply connected, and
therefore homotopy equivalent to F . Let r < ρ such that ε < 2−1/2r.

Lemma 3.5. F	r and (F c)	r are connected.

Proof. Since ∂F has reach at least r, introduce the mapping

ψr(x) =

{
π∂F (x)− rnF (π∂F (x)) if x ∈ F, d(x, ∂F ) 6 r

x if x ∈ F, d(x, ∂F ) > r.

The definition makes sense because if x is at distance exactly r from ∂F , then the normal to F
in π∂F (x) is colinear to x− π∂F (x) whence x = π∂F (x)− rnF (x) = ψr(x). We also have, using
Proposition 1.3, that if d(x, ∂F ) 6 r, d(ψr(x), ∂F ) = r.

By classical results about sets with positive reach, π∂F is continuous on ∂F⊕r, see for
instance Federer [14] Th.4.8-(4). Since nF (·) is Lipschitz on ∂F , ψr is continuous on the closed
set F ∩ (∂F )⊕r. Let x ∈ F . It is clear that ψr is continuous in x if d(x, ∂F ) 6= r. Otherwise, we
know that for ε > 0 there is η > 0 such that for y ∈ F ∩B(x, η)∩ ∂F⊕r, |ψr(x)−ψr(y)| 6 ε. It
follows that ψr is continuous on F . Therefore F	r is connected as the image of the connected
set F under the continuous mapping ψr. Defining similarly

ψ′r(x) =

{
π∂F (x) + rnF (π∂F (x)) if x ∈ F c, d(x, ∂F ) 6 r

x if x ∈ F c \ (∂F )⊕r.

provides a continuous mapping from F c to (cl(F c))	r.

It follows by Lemma 3.4 that (F )ε = ((F	r)⊕r)ε is connected, using Theorem 1.4-(iii).
Similarly (F c)ε = (F ε)c is connected, i.e. F ε is simply connected.

The fact that [F ]ε is simply grid-connected and ΦεX([F ]ε) = 0 (Lemma 3.2) yields that the
boundary of F ε can also be represented by a continuous Jordan curve. Recall the Brouwer-
Schoenflies Theorem [12], that states that given two Jordan curves in R2, the bounded compo-
nents A,A′ ⊆ R2 of the respective complements of the Jordan curves are homeomorphic. It is
not hard to modify the result to see that if A and A′ (and their complements) coincide on some
open subset B, then the homeomorphism can be chosen to be the identity on B. Therefore
there is a homeomorphism ΦF between F and F ε, that is the identity on R2 \ (∂F )⊕2ε.

Now let F ′ be another bounded simply connected ρ-regular set such that ∂F and ∂F ′ are at
distance more than 4ε. We also have that (F ′)ε is simply connected and ΦX([F ′]ε) = 0. Since
∂F ∩ ∂F ′ = ∅, we either have F ⊆ F ′, F ′ ⊆ F , or F ∩ F ′ = ∅. Since ∂((F ′)ε) ⊆ (∂(F ′))⊕2ε

and ∂(F ε) ⊆ (∂F )⊕2ε, the sets [F ]ε and [F ′]ε respect the same inclusion hierarchy as F and F ′

(i.e. either F ε ⊆ (F ′)ε, F ε ∩ (F ′)ε = ∅, or (F ′)ε ⊆ F ε). It is also clear that ΦεX([F ∪ F ′]) =
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ΦεX([F ]) + ΦεX([F ′]) = 0 because ∂F and ∂F ′ are at distance more than 4ε. The sets on which
ΦF and ΦF ′ are not the identity are resp. contained in (∂F )⊕2ε, (∂F ′)⊕2ε, whence they are
disjoint. Their composition ΦF ◦ ΦF ′ = ΦF ′ ◦ ΦF gives a homeomorphism between F ∪ F ′ and
(F ∪ F ′)ε if F and F ′ are disjoint, or between F \ F ′ and its digitalisation (F \ F ′)ε if F ′ ⊆ F .

Applying this process inductively yields that given any set A built by adding or removing
recursively a finite family of ρ-regular connected components Ci satisfying d(∂Ci, ∂Cj) > 4ε for
i 6= j, A and Aε are homeomorphic.

The connected components of F and F c are indeed ρ-regular, and their boundaries are by
hypothesis at pairwise distance > 4ε. Studying the inclusion hierarchy of the elements of Γ(F )
and Γ(F c) yields that F can be built by adding or removing those components in such a way,
whence the result is proved for any ρ-regular set F with r, ε chosen like above.

(ii) We now have to deal with the intersection with W . Drop the assumption that ∂F∩∂W =
∅. Introduce the set E = (∂F ∩ ∂W ) ∪ (corners(W ) ∩ F ). We will “round” the sharpness that
F ∩W has in each point of E to have a new set F ′ ⊆W that is ρ-regular in the neighbourhood
of E and coincides with F ∩W away from E, and prove that it does not modify the topology
of F ∩W , or that of [F ∩W ]ε.

For z ∈ ∂F ∩ ∂W, an application of the Implicit Function Theorem around z yields that for
r small enough, ∂F ∩B[z, r] can be represented as the graph of a univariate C1 function ϕ. The
Lipschitzness of nF (·) yields the Lipschitzness of ϕ′, which in turn yields that for r, ε sufficiently
small, ∂F ∩W ∩B[z, r] is connected and [F ∩W ]ε ∩B[z, r] ∩W 6= ∅. Fix 0 < r < ρ such that

• For x ∈ ∂F ∩ ∂W and r′ 6 r, ∂F ∩ B[x, r′] ∩W is connected, and for ε 6 r′ sufficiently
small, [F ∩W ]ε ∩B[z, r′] ∩W 6= ∅ and [F c ∩W ]ε ∩B[z, r′] ∩W 6= ∅, see above.

• Points of E are at pairwise ‖ · ‖∞-distance strictly more than 2r.

• For x ∈ ∂F ∩ ∂W, y ∈ B[x, r] ∩ ∂F , nF (y) is not colinear with nW (x).

Let z ∈ ∂F ∩ ∂W . Up to doing rotations, assume that nW (z) = −u2. Below and in the
sequel of the proof, B := B[z, r]. We introduce a result proving that removing F ∩W ∩ int(B)
form F ∩W does not change its Euler characteristic. Denote, for x ∈ R2, Lx := {x− tu1; t > 0},
the half-line on the left of x.

Lemma 3.6. Let A ∈ A be such that

1. for x ∈ A ∩B, (Lx ∩B) ⊆ A

2. A ∩ ∂B is non-empty and connected

3. B \A 6= ∅.

Then A \ int(B) ∈ A and χ(A) = χ(A \ int(B)).

Proof. The first hypothesis yields A∩B = ∪x∈A∩BLx∩B. Since ∂B∩A is connected, two points
x, x′ of B∩A are connected in A through ((Lx∪Lx′)∩B)∪(∂B∩A). Removing A∩ int(B) from
A∩B amounts to removing a piece of the connected component of A containing ∂B∩A, without
splitting it (because ∂B ∩ A keeps it connected). Therefore, #Γ(A) = #Γ(A \ int(B)). Since
∂B \ A is not empty and connected, a similar representation involving the Rx := {x+ tu1, t >
0}, x ∈ B yields #Γ(Ac) = #Γ(Ac \ int(B)). We also easily have that Ac∩∂B is non-empty and
simply connected, thus #Γ(Ac \ int(B)) = #Γ(Ac ∪ int(B)). It then yields

#Γ(Ac) = #Γ(Ac ∪ int(B)) = #Γ((A \ int(B))c),

and χ(A) = χ(A \ int(B)).
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We apply this Lemma to A = F ∩W . The definition of r yields that ∂F ∩ B is connected
and that nF (·)[1] > 0 on ∂F ∩ B. Let us prove that for x ∈ A, (Lx ∩ B) ⊆ A. The fact that
(Lx ∩B) ⊆W stems from the fact that the closest corners of W are at ‖ · ‖∞-distance at least
2r by hypothesis on r. Let s = inf{t > 0 : x − tu1 /∈ F}. Put y = (x[1], x[2] − s), y is in ∂F .
Since the part of Lx immediately on the right of y is in F , the outside rolling ball of F in y
contains a portion of Lx on the left of y, whence the unit vector between y and the centre of
this ball, nF (y), satisfies nF (y)[1] < 0. It follows that y /∈ B, whence (Lx ∩ B) ⊆ F . This
property, combined with the connectedness of ∂F ∩ B, entails that ∂F ∩ B ∩W is connected,
whence Lemma 3.6 applies. The same reasoning still holds if the value of r is decreased.

Call

Cr =
⋃
z∈E

B[z, r].

Repeat the procedure above for every point of E. Even though points of corners(W )∩F are not
points of ∂F ∩ ∂W , they can geometrically be treated in the same way. As the B[z, r], z ∈ E,
don’t overlap, χ(F ∩W ) = χ((F ∩W ) \ int(Cr)), and this equality holds for smaller values of r.

The idea is now to replace F ∩W by a smooth connected set F ′ that coincides with F ∩W
outside B, and do the same around every other point of E. Let 0 < r′ < r/5. Introduce

F ′ = ((F ∩W )	r
′
)⊕r

′
,

and put B′ = B[z, 3r′]. Recall that by Theorem 1.4-(iii), since r′ < ρ, F = (F	r
′
)⊕r

′
. Let

x ∈W \ ∂W⊕2r′ . Note that every y such that x ∈ B(y, r′) satisfies B(y, r′) ⊆W . Then,

x ∈ F ′ ⇔ x ∈ B(y, r′) for some y ∈ F ∩W such that B(y, r′) ⊆ F ∩W
⇔ x ∈ B(y, r′) for some y ∈ F such that B(y, r′) ⊆ F

⇔ x ∈ (F	r
′
)⊕r

′
= F,

⇔ x ∈ F ∩W.

This yields

F ′ \ ∂W⊕2r′ = (F ∩W ) \ ∂W⊕2r′ . (3.1)

For similar reasons, if x ∈ W is at distance more than 2r′ from ∂F or from a corner of W ,
then x ∈ F ′ ⇔ x ∈ (F ∩W ). This yields

F ′ \ (∂F ∪ corners(W ))⊕2r′ = (F ∩W ) \ (∂F ∪ corners(W ))⊕2r′ . (3.2)

Intersecting (3.1) and (3.2) yields (F ∩W ) \C2r′ = F ′ \C2r′ . It entails in particular ∂B′ ∩F ′ =
∂B′ ∩ (F ∩W ), and it is a connected set because r′ 6 r.

Therefore, to apply Lemma 3.6 to F ′ and B′, it remains to show that for x ∈ F ′ ∩ B′,
(Lx ∩ B′) ⊆ F ′. A point x of B′ is in F ′ if there is a ball B(y, r′) ⊆ (F ∩ W ) such that
x ∈ B(y, r′). Since x ∈ B′ and 5r′ < r, B(y, r′) ⊆ (F ∩W ) ∩B. We already proved that for all
point w of B(y, r′), since w ∈ F ∩W ∩ B, (Lw ∩ B) ⊆ F ∩W , whence in particular, for t > 0,
(B(y − tu, r′) ∩ B) ⊆ (F ∩W ∩ B). Each point w = x − tu1 of Lx ∩ B′ is in B(y − tu, r′),
whence it is in F ′. Therefore, Lemma 3.6 applies. Applying the same reasoning in each point
of E entails

χ(F ′) = χ(F ′ \ int(C2r′)) = χ((F ∩W ) \ int(C2r′)) = χ(F ∩W ).
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Since F ′ satisfies Theorem 1.4-(iii), F ′ is ρ-regular. Let us decrease the value of ε so that
2ε < r′ and (F ′)ε is homeomorphic to F ′ (see Lemma 3.3). In particular, χ((F ′)ε) = χ(F ′) =
χ(F ∩W ). The end of the proof consists in showing χ((F ′)ε) = χ((F ∩W )ε), and computing
the latter quantity.

Using the fact that Lemma 3.6 applies to F ′ and B′, we can easily prove that given a
point x ∈ (F ′)ε ∩ B′, all the points x − tu1, t > 0 that are in B′ are also in (F ′)ε. Recall
that r, ε have been chosen so that [F ∩W ]ε ∩ B[z, s] 6= ∅, [F c ∩W ] ∩ B[z, s] 6= ∅ for s 6 r.
Therefore, applying Lemma 3.6 gives χ((F ′)ε) = χ((F ′)ε \C2r′). A similar reasoning gives that
χ((F ∩W )ε) = χ((F ∩W )ε \ int(C2r′)) = χ((F ∩W )ε \ int(C2r′)).

Since F ′ and F ∩W coincide outside of B[z, 2r′], only pixels centred in B[z, 2r′] can differ-
entiate [F ′]ε and [F ∩W ]ε. Since 2r′ + 2ε < 3r′, a pixel centred in B[z, 2r′] cannot reach ∂B′,
whence

(F ′)ε \ int (B′) = (F ∩W )ε \ int (B′),

and applying a similar reasoning in every point of E yields that χ(F ∩W ) = χ(F ′) = χ((F ′)ε) =
χ((F ∩W )ε). Remark that, as announced, this equality holds for ε smaller than some value
ε(F,W ) that is invariant under simultaneous translations of F and W .

Proof of (1.4). Let ε < ε(F,W ) = ε(F+εy,W+εy), y ∈ R2. We proved that ΦεX([F∩W ]ε) =
0, whence χ(F ∩W )ε) = χε([F ∩W ]ε). Using (1.1) yields (1.3), and

χ(F ∩W ) =

∫
[0,1)2

χ((F ∩W ) + εy)dy =

∫
[0,1)2

χε([(F ∩W ) + εy]ε)dy

=
∑
x∈εZ2

∫
[0,1)2

χε(x, F ∩W + εy)dy

=
∑
x∈Z2

∫
[0,1)2

χε(εx, F ∩W + εy)dy

=
∑
x∈Z2

∫
[0,1)2

χε(ε(x− y), F ∩W )dy =

∫
R2

χε(εy, F ∩W )dy

= ε−2

∫
R2

χε(y, F ∩W )dy = ε−2(δεu1,εu2

0 − γ0
−εu1,−εu2

)(F ∩W ).

3.3 Proof of Theorem 1.13

We call D1, . . . , Dm the connected components of (F ∩W ) ∪ (F ∩W )ε, and for 1 6 i 6 m,
call Cεi,j , 1 6 j 6 ki, the connected components of (F ∩ W )ε hitting Di. Since a connected

component of (F ∩W )ε cannot hit 2 distinct Di’s, we have #Γ((F ∩W )ε) =
∑m
i=1 ki. Since a

connected component of F ∩W cannot hit two distinct Di’s either, m 6 #Γ(F ∩W ). We yet
have to control the number of components of (F ∩W )ε that hit a given Di. Define Ci,j = [Cεi,j ]

(not necessarily connected in εZ2 as pixels of Cεi,j might only touch through a corner, but it has
no consequences).

The plan of the rest of the proof is the following: we are going to associate to each Ci,j , 1 6
i 6 m, j > 1, either a corner of W , an element of N′ε(F,W ), or an element of Nε(F ) ∩W⊕ε,
in such a way that this element cannot be associated to more than two distinct Ci,j . This will
indeed yield the bound (1.6).

Here again, the boundary effects of the intersection with W are cumbersome for the proof,
and require to introduce some notation. Recall that ∂ε[W ] stands for the set formed by the
elements of [W ]ε that have at least one grid neighbour outside W . Assume that some Ci,j , j > 1,
touches ∂ε[W ]. Call root of Ci,j (or Cεi,j) a horizontal or vertical pixel interval Jx, yK such that
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Figure 3: A set where two disjoint components Ci,j have roots. One component has two roots
and another has only one. The pixels centred in roots are coloured in grey, root overlap is
represented in darker grey.

• Jx, yK ⊆ ∂ε[W ]

• Jx, yK ∩ Ci,j 6= ∅

• every z ∈ Jx, yK has at least a grid neighbour in F

• for (i′, j′) 6= (i, j), Jx, yK ∩ Ci′,j′ = ∅

• it is maximal, in the sense that no other pixel interval satisfying these properties strictly
contains Jx, yK.

Call Ci,j ⊆ Zε the union of Ci,j with its roots, and Cεi,j the union of pixels centred in Ci,j .

See Figure 3 for examples. Fix 1 6 i 6 m, such that ki > 1, and let 1 < j 6 ki. We distinguish
between three cases.

(i) If a root of Ci,j contains a corner at one of its extremities (as is the case for instance for
a root of the big component in Figure 3), associate this corner to Cεi,j , and remark that a corner
cannot be associated to more than two connected components of (F ∩W )ε, using the fact that
a root of a Ci,j cannot contain a root of a Ci′,j′ , (i′, j′) 6= (i, j).

(ii) Assume that no corner can be associated to Cεi,j , i.e. that none of its roots touches a
corner, but that for some (i′, j′) 6= (i, j), Ci,j ∩ Ci′,j′ 6= ∅. Let I = Lx, yM ⊆ (Ci,j ∩ Ci′,j′) be a
maximal grid interval of this intersection, with x, y ∈ Zε. Since any root of Ci,j does not touch
Ci′,j′ , and vice-versa, I ⊆ [F c]. There is an example of such a root intersection in Figure 3.

One extremity of I, say x, is in Ci,j , and the other, y, is in Ci′,j′ . Since Lx, yM ⊆ (Ci,j \Ci,j),
the definition of a root entails that all the points of Lx, yM are in [F c] and are at distance 6 ε
from F . Therefore {x, y} ∈ N′ε(F,W ). Also, {x, y} can only be associated to Ci,j and Ci′,j′ in
this manner.

(iii) Assume that Ci,j does not fit in (i) or in (ii). Recall that we assumed ki > 1 and
1 < j 6 ki. There is a continuous path γ : [0, 1] → Di going from F ε \ Cεi,j to Cεi,j with
γ((0, 1)) ⊆ F \F ε. In particular, γ((0, 1)) avoids [F ]. Discarding the two first cases means that
somehow γ cannot arrive to Cεi,j from another component Cεi,j′ , j

′ 6= j, by creeping along an
edge of W adjacent to Ci,j , if there is such. More precisely, There is no (i, j′) 6= (i, j) such that
Ci,j ∩ Ci,j′ 6= ∅.

Now, say that x, y ∈ Zε form a boundary pair for Ci,j , denoted {x, y} ∈ ∆Ci,j , if the square
Px,y has exactly one edge touching Cεi,j . Remark that only one of the two edges not containing
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x or y can fulfill this condition, and the corresponding component of P′x,y, denoted Pinx,y, touches
Cεi,j , while the other, denoted Pout

x,y , does not.

The point γ(0) is on the boundary of a pixel that is not contained in Cεi,j , but γ(·) eventually

enters in such a pixel. Therefore, studying possible local configurations of Cεi,j ’s boundary entails

that there is t > 0 such that γ(t) ∈ Pout
x,y for some {x, y} ∈ ∆Ci,j . Let tout be the latest such

time. The rest of the proof consists in showing {x, y} ∈ Nε(F ).
Since Cεi,j is only in contact with such Px,y through Pinx,y, γ(t) will eventually have to get

out of the pixel Px,y at some time tin, without touching Pout
x,y because the latest such time has

already been reached, therefore γ(tin) ∈ Pinx,y, and γ([tout, tin]) ⊆ Px,y (also note that γ cannot
pass through x or y because γ((0, 1)) ⊆ (F \Zε)). Therefore γ̃ ⊆ F connects the two components
of P′x,y through Px,y. This is the primary condition for {x, y} ∈ Nε(F ).

To complete the proof that {x, y} ∈ Nε(F )∩W⊕ε, it remains to show that x, y ∈ [F c]∩W⊕ε.
Since x, y ∈ γ̃⊕ε and γ̃ ⊆ W , x, y ∈ W⊕ε. None of them is in [F ∩W ] otherwise it would be
in a different component Cεi′,j′ that would touch Cεi,j (eventually through a corner), possibility
that has been treated in (i) or (ii). They cannot be both outside W because γ̃ ∩ [x, y] 6= ∅ and
γ̃ ⊆W . The two last possibilities are that x, y ∈ [F c], or y ∈ [W ∩F c] and x ∈ [F ∩W c] (or the
other way around). The second possibility is also discarded because it entails y ∈ Ci,j , which

contradicts {x, y} ∈ ∆Ci,j (also using the fact that no corner lies in a root of Cεi,j).
We associate this pair {x, y} ∈ Nε(F ) ∩ W⊕ε to Cεi,j and note that since x and y lie at

‖ · ‖∞-distance ε/2 from Cεi,j , {x, y} cannot be associated to more than two components in this

way, and this concludes the proof of (1.6).
The first inequality can easily be derived in the same way in the case W = R2; noting that

in this case W has no edge and no corners.
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