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Heredity for generalized power domination
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In this paper, we study the behaviour of the generalized power domination number of a graph by small changes on the
graph, namely edge and vertex deletion and edge contraction. We prove optimal bounds for yp 1 (G — €), yp,x(G/e)
and for yp (G — v) in terms of vp 1 (G), and give examples for which these bounds are tight. We characterize all
graphs for which p (G — €) = vp 1 (G) + 1 for any edge e. We also consider the behaviour of the propagation radius
of graphs by similar modifications.
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1 Introduction

Domination is now a well studied graph parameter, and a classical topic in graph theory. To address the
problem of monitoring electrical networks with phasor measurement units (see [3]), power domination was
introduced as a variation of the classical domination [11]. The originality of power domination is the in-
troduction of an additional propagation possibility, relative to the possible use of Kirchhoff’s laws in an
electrical network. From this propagation, a vertex can end up to be monitored even though it is at a large
distance from any vertex selected to carry a phasor measurement unit. The original status of this new pa-
rameter and its applied motivation makes a subject of increasing interest from the community.

All graphs G = (V(G), E(Q)) considered are finite and simple, that is, without multiple edges or loops.
The open neighbourhood of a vertex v of GG, denoted by N¢(v), is the set of vertices adjacent to v. The
closed neighbourhood of v is Ng[v] = Ng(v) U {v}. For a subset S of vertices, the open (resp. closed)
neighbourhood Ng(S) (resp. N¢[S]) of S is the union of the open (resp. closed) neighbourhoods of its
elements. A vertex v in a graph is said to dominate its closed neighbourhood Ng[v]. A subset S C V(G)
of vertices is a dominating set if Ng[S] = V(G), that is if every vertex in the graph is dominated by some
vertex of S. The minimum size of a dominating set in a graph G is called its domination number, denoted
by v(G).

We now define the generalized version of power domination, the case when k& = 1 coincides with the orig-
inal power domination. For k-power domination, we define iteratively a set Pé_’k(S ) of vertices monitored
by an initial set S (of PMU). The initial set of vertices monitored by S is defined as the set of dominated
vertices 7387 x(S) = N¢[S]. This step is sometimes called the domination step. Then this set is iteratively
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extended by including the whole neighbourhood of all vertices that are monitored and have at most k non-
monitored neighbours. This second part is called the propagation rule. More formally, we define directly
the set of monitored vertices for k-power domination following the notation of [4] :

Definition 1 (Monitored vertices) Let G be a graph, S C V(G) and k > 0. The sets (735 k(S))i>0 of
vertices monitored by S' at step ¢ are defined as follows: -

P& 1 (S) = Na[S] (domination step), and
Pgr;(S) = U{Ne[v]: v € Pg 1.(S) such that |Ng[v] \Pé;7k(5)| < k} (propagation steps).

Let us make some observations about this definition. First, the set of monitored vertices is monotone by
inclusion, i.e. P ;. (S) € 772',1 (S). This is easy to check by induction, using the fact that whenever N¢ [v]
has been included in P, ;. (S), it is included in P&J“,i (:S). This also implies that P, . (S) is always a union of
neighbourhoods. Observe also that if for some integer i, Pé?’k(S) = Pg)j;l (S), then Pak(S) = Pg))k(S)
for all j > ip. We thus denote this set Pg)) 1(S) by P&, (S). When the graph G is clear from the context,

we simplify the notation to P¢(S) and P ().

Definition 2 (k-power dominating set) A set S is a k-power dominating set of G (abbreviated k-PDS) if
P&(S) = V(G). The least cardinality of such a set is called the k-power domination number of G, denoted
by vp 1k (G). A vp k(G)-set is a k-PDS in G of cardinality vyp 1.(G).

Observe that k-power domination is also a generalization of domination, that we obtain when we set
k = 0. In [4], the authors showed along with some early results about k-power domination that some
bounds, extremal graphs and properties can be expressed for any k, including the case of domination. In [8],
a bound from [17] on regular graphs is also generalized to any k.

The computational complexity of the power domination problem was considered in [1, 2, 10, 11], in
which it was proved to be NP-complete on bipartite and chordal graphs as well as for bounded propagation
variants. Linear-time algorithms are known for computing minimum k-power dominating sets in trees [4]
and in block graphs [16]. The problem of characterizing the power domination number of a graph is non
trivial for simple families of graphs. Early studies try to characterize it for products of paths/grids [7, 6]
though do not reach complete characterization in a few cases. Other studies propose closed formulas for the
power domination number in hexagonal grids [9] or in Sierpinski graphs [5].

In general, it remains difficult to prove lower bounds on the power domination number of a graph. One
reason why it is so is that power domination does not behave well when taking subgraphs. In this paper, we
explore in detail the behaviour of the power domination number of a graph when small changes are applied
to the graph, e.g. removing a vertex or an edge, or contracting an edge. (Recall that the graph obtained by
contraction of an edge e = xy, denoted by G/e, is obtained from G — e by replacing = and y by a new
vertex v, (contracted vertex) which is adjacent to all vertices in Ng_.(z) U Ng—.(y).) In particular, we
prove in Section 2 that though the behaviour of the power domination is similar to the domination in the
case of the removal of a vertex, the removal of an edge can decrease the power domination number and
the contraction of an edge can increase the power domination number, both phenomena that are impossible
in usual domination. We characterize the graphs for which the removal of any edge increases the k-power
domination number.

Another recent but natural question about power domination is related to the propagation radius. In a
graph, a vertex that is arbitrarily far apart from any vertex in the set S may eventually get monitored by S
as in the case of paths. However, in the applied circumstances of the monitoring of an electrical network,
applying too many times Kirchhoff’s laws successively would induce an unreasonable cumulated margin
of error. With this consideration in mind, it is natural to consider power domination with bounded time
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constraints, as was first studied in [1], and then in [15]. Inspired by this study, the k-propagation radius of
a graph G was introduced in [5] as a way to measure the efficiency of a minimum k-power dominating set
(k-PDS). It gives the minimum number of propagation steps required to monitor the entire graph over all

¥p k(G)-sets.
Definition 3 The radius of a k-PDS S of a graph G is defined by

radp (G, S) = 1+ min{i: P (S) =V(G)}.
The k-propagation radius of a graph G as defined in [5] can be expressed as

radp x(G) = min{radp 1 (G, S), Sisa k-PDS of G, |S| = v x(G)}.

We finally recall a few graph notations that we use in the following. We denote by K,, the complete
graph on n vertices, by K, ,, the bipartite complete graph with partite sets of order m and n. The path and
cycle on n vertices are denoted by P,, and C,,, respectively. For two graphs G and H, G O H denotes the
Cartesian product of G and H, that is the graph with vertex set V (G) x V(H ) and where two vertices (g, h)
and (¢, h') are adjacent if and only if either g = ¢’ and hh' € E(H), or h = b/ and g¢’ € E(G).

2 Variations on the power domination number

Before considering the different cases of vertex removal, edge removal and edge contraction, we propose
the following technical lemma which should prove useful. It states that if two graphs differ only on parts
that are already monitored, then propagation in the not yet monitored parts behave the same. For a graph
G = (V, E) and two subsets X and Y of V, we denote by F¢(X,Y) the set of edges uv € E(G) such that
u € X andv € Y. Note that if X C Y, E¢(X,Y) contains in particular all edges of the induced subgraph
G[X] of G on X. All along the rest of the paper, k denotes a positive integer.

Lemma4 Let G = (Vg,Eg) and H = (Vi, Ex) be two graphs, S a subset of vertices of G and i a
non-negative integer. Define X = Vg \ Pé?, «(S) and the subgraph G’ with vertex set N[ X| and edge set
EG(X7 NG[X])

Suppose there exists a subset Y C Vy such that the subgraph H' = (Ng|[Y], Eg(Y, Ng[Y))) is iso-
morphic to G' with a mapping ¢ : Ng[X] — Ng[Y] that maps X precisely to Y. Then, if for some
k-power dominating set T C Vi and some integer j, Y C Vi \ P}, .(T), then S is a k-PDS of G and
I‘adpyk(G, S) < i—j+radp_,k(H, T) ’

Proof: For / > 0, denote by X* and Y respectively the sets X N Pé;)r,f(S Jand Y N Pf;,f (T'). We prove by
induction that for all £, Y* C (X*).

By hypothesis, X° = () and so p(X?) = ) = Y, so it holds for £ = 0. Now assume that the property is
true for some ¢ > 0. Suppose that some vertex v = p(u) € Ny[Y] satisfies the conditions for propagation
in H atstep j+/4,i.e. v € Pf;,f(T) and | Ny [v] \P};r,f (T)] < k. We show that u also satisfies the conditions
for propagationin G. First, remark that v is monitored at step 7+¢: indeed, if u ¢ X, then by definition of X,
u € Péi,f, otherwise if u € X, thenv € Y N Pf{,f (T) = Y*, and thus by induction, u € X* C Pg,f Now
consider any neighbour v’ of u not yet dominated. Then v’ € X \ X*and p(u’) € Y'\ Y. Moreover, by the
isomorphism between G’ and H’, ¢(u') is also adjacent to v, and was among the at most k£ non monitored
neighbours of v in H. Therefore, v has at most £ non monitored neighbours in G, and also propagates in G.
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Applying this statement to all vertices in G/, we infer that Y*1 C (X *+1). By induction, this is also true
for ¢ = radp (H,T) — j — 1, and we deduce that

X = i) € (¥ - (P Ty ) € (X0 = (P ) 1),

and thus that S is a k-power dominating set of G and radp (G, S) < i — j + radp x(H,T). a

We now use this lemma to state how the k-power domination number of a graph may change with atomic
variations of the graph.

2.1 Vertex removal

We denote by G — v the graph obtained from G by removing a vertex v and all its incident edges. Similar to
what happens for domination (see [12]), we have the following:

Theorem 5 Let G be a graph and v be a vertex in G. There is no upper bound for vp (G — v) in terms of
vp,x(G). On the other hand, we have yp 1,(G —v) > vp 1(G) — 1. Moreover, if yp 1(G—v) = vp 1 (G) — 1,
then radp ,(G) < radp (G — v).

Proof: We first prove the lower bound, using Lemma 4. We define H = G — v with the obvious mapping
¢ from V(G) \ v to V(H). Let T be a power dominating set of H = G — v, that induces the minimum
propagation radius. Then for the set S = T U {v}, the conditions of Lemma 4 hold already from : = 0
and j = 0 and the bound follows. Moreover, we also get that radp (G, S) < j — i + radp x(H,T) =
radp (G — v) . For proving there is no upper bound for vp (G — v) in terms of yp 1 (G), we can consider
the star with n leaves K ,, for which the removal of the central vertex increases the k-power domination
number from 1 to n. O

We now describe examples that tighten the lower bound of the above theorem or illustrate better the
absence of upper bound (in particular for graphs that remain connected). A first example for which the
tightness of the lower bound can be observed is the 4 x 4 grid Py O Py, for which we getyp 1 (P4 O Py) = 2
(see [7]) and vp 1 ((P4 O Py) — v) = 1 for any v. Simple examples for larger k are the graphs K2 12,
for which the removal of any vertex drops the k-power domination number from 2 to 1 (those were the only
exceptions in [8]), as well as the complete bipartite graph K} 3 ;3 minus a perfect matching.

We now describe infinite families of graphs to illustrate these bounds. The family of graphs Dy, ,, was
defined in [4]. It is made of n copies of k£ + 3-cliques minus an edge, organized into a cycle, and where
the end-vertices of the missing edges are linked to the corresponding vertices in the adjacent cliques in the
cycle (see Fig. 1). Note that yp 1 (Dg.) = n, as each copy of Kj13 — e must contain a vertex of a k-power
dominating set. Its propagation radius is 1 since Dy, ,, has a dominating set of size n. The removal of an end-
vertex of the edges linking two cliques (e.g. v in Fig. 1) does not change its k-power domination number, but
the removal of any other vertex (e.g. v in Fig. 1) decreases it by one, and increases the propagation radius
from 1 to 2. So this forms an infinite family tightening the lower bound for any value of k and yp 1 (G).

Now, an infinite family of graphs proving the absence of a upper bound is a generalization Wy, ,, of the
wheel (depicted in Fig. 1). It is made of Dy, ,, together with a vertex c adjacent to three vertices of degree
k + 2 in one particular clique and to one vertex of degree k + 2 in all the other cliques. Observe that for
n > k + 2, {c} is the only power dominating set of W}, ,, of order 1, and thus we get radp (W) =
radp i (Wi,n, {c}) = 2+3[ 251 | +2((n—1) mod 2). The removal of ¢ induces the graph Dy, ,,, increasing
the k-power domination number from 1 to n, and dropping the propagation radius from roughly 37" to 1.

More constructions could be proposed to show that the propagation radius of a graph can evolve quite
freely when a vertex is removed, and there is little hope for other bounds on this parameter when a vertex is
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k+3 — €

D5

Fig. 1: The graphs Dy ,, and W}, ,, obtained by the addition of vertex c.

removed. The most unlikely example is that the removal of a vertex increase both the k-power domination
number and the propagation radius by unbounded value. This is possible with the following variation on
Wy pn. Consider pn subgraphs (Hi)ongn, all isomorphic to a clique minus an edge, on k + 3 vertices
when ¢ = 0 mod p and on k + 1 vertices otherwise. We again connect the end-vertices of the missing edges
in the clique into a cycle joining H; to H; 1 (mod pn)> and add a vertex c adjacent to three vertices of degree
k + 2 in all copies H; when ¢ = 0 mod p, and to one vertex of degree k in all the other copies. Then {c} is a
k-power dominating set of G inducing a propagation radius of 2. On the other hand, vp (G — ¢) = n (one
vertex is needed in each H;, 7 = 0 mod p) and has propagation radius 1 + 3[”—;” +2((p — 1) mod 2).

2.2 Edge removal

In a graph G, removing an edge e can never decrease the domination number. More generally, we have that
Y(G) < v(G —e) < v(G) + 1. However, the removal of an edge can decrease the k-power domination
number as stated in the following result. Indeed, it may happen that the removal of one edge allows the
propagation through another edge incident to a common vertex, and thus decreases the power domination
number.

Theorem 6 Let G be a graph and e be an edge in G. Then
1Pk(G) =1 <ypk(G —e) <rpi(G) +1.

Moreover,

lf"YPk(G) — 1 = VP,k(G — 6), then radp_’k(G) S I'adp_’k(G - 6)
lf’YPk(G — 6) = VP,k(G) —+ 1, then radp_’k(G - 6) S I'adp_’k(G)-

Proof: We first prove that vp 1 (G'—e€) < vp,k(G)+ 1. Let T'be ayp 1 (G)-set. If T'is also a k-PDS of G —e,
then we are done, so assume 7" is not. Let jy be the smallest integer j such that Péy (1) 2 Péfa w(T),

and let v be a vertex in P2, (T) \ PX__ ,(T). Since v € PL,(T), there exists some neighbour u of v
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in P 1 (T) such that |[Ng[u] \ PE . (T)| < k. Since Ng_c[u] € Nglul. Na—[u] is also included in
Pé?_&k(T), and v cannot be a neighbour of u any more, so e = uv. Thus we choose S = T'U{v} and using
Lemma 4 (with the obvious mapping from G — e to G, and i = j = jo), we get that S'is a k-PDS of G — e
of order vp 1 (G) + 1. We also get that if vp (G — e) = yp (G) + 1, thenradp (G — e) < radp x(G).
We now prove that yp 1 (G) — 1 < vp (G — €). Let T be a minimum k-PDS of H = G — e and u be an
end vertex of e. We apply Lemma 4, for S = T U {u} and ¢ = j = 0. We get that S is a k-PDS of G and
radp (G, S) = radp (G — e, T). We infer that if S is minimal (that is yp 1 (G) = vp k(G — €) + 1), then
I‘adpyk(G) < I‘adpyk(G — 8). O

As a first illustration of these possibilities, in the graph GG drawn in Fig. 2, the removal of the edge e;
decreases the k-power domination number, the removal of the edge e3 increases it, and the removal of the
edge e, does not have any consequence.

AU N
Wk+1 up U2 Uk+1

Fig. 2: A graph G where ’yp’k(G) =2 = ’yp’k(G — 62),’yp’k(G — 61) = 1,’yp,k(G — 63) = 3.

We now propose a graph family where the removal of an edge decreases the k-power domination number
but increases its propagation radius arbitrarily. The graph G .., represented in Fig. 3 satisfies yp 1 (G) = 2
and radp ;(G) = a + 2 (which is reached with the initial set {u,v}). If the edge e is removed, we get a
new graph whose k-power domination number is 1 and which has propagation radius (r + 3)(a + 1) + 2.
So no upper bound can be found for radp (G — e) (in terms of radp 1 (G)) when the removal of an edge
decreases the power domination number.

Similar graphs where the edge removal increases the power domination number can also be found. For
example, in the graph Gy, , o, if we remove the topmost path of length a + 2 from w to v, except for the
vertex adjacent to v, we get another graph G’ such that {u} is the only vp (G’)-set of order 1, and with
radp (G') = (r + 2)(a + 1) + 3. Removing the same edge e, now {u, v} is a minimum vp (G’ — e)-set
and radp , (G’ — ) = a + 2. This illustrates the fact that no lower bound can be found for radp 1 (G — e)
(in terms of radp ;(G)) when the removal of an edge increases the power domination number.

We now characterize the graphs for which the removal of any edge increases the power domination num-
ber. Define a k-generalized spider as a tree with at most one vertex of degree £ + 2 or more. See Fig. 4 for
an example.

Theorem 7 Let G be a graph. For each edge e in G, vp (G — e) > vp ., (G) if and only if G is a disjoint
union of k-generalized spiders.
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r+1

AN O
1

Fig. 3: The graph Gy, o for k = 3 and r = 4 (zigzag edges represent paths of length a).

Proof:

First observe that if G is a disjoint union of k-generalized spiders, then its k-power domination number is
exactly its number of components, and clearly vp (G — €) > 7p 1 (G) for any edge e in G.

Let G be a graph and let S be a yp ,(G)-set. We label the vertices of G with integers from 1 to n and
consider the subsequent natural ordering on the vertices. For ¢ > 0, we define E, C F(G) as follows:

{E(’):{uueE(G) | v € N(S)\ S,u=min{z € N(v) N S}} |
E = {uv eEG)|ve ’P,ZH(S) \ Pi(S),u = min{z € PL(S) N N(v),|N[z] \ PL(S)| < k}}

where the minima are taken according to the ordering of the vertices. Let E’ be the union of all E, for i > 0.
If we consider the edges of E’ as defined above oriented from u to v, then the in-degree of each vertex not
in S is 1, of vertices in S is 0. Also the graph is acyclic, and each vertex not in S has out-degree at most k.
Thus the graph induced by E’ is a forest of k-generalized spiders. Note also that S is a k-PDS of this graph.
We now assume that for any edge e € E(G), vp,x(G — €) > vp x(G), and we then prove that E' = E(G).

By way of contradiction, suppose there exists an edge e in F(G) and not in E’. We prove that S is a
k-PDS of G' — e. For that, we prove by induction that for all i, P, . (S) € P,_, ,.(S). First observe that
Pé_o1(S) = P& x(S). Indeed, suppose there exists a vertex x in Pg ;. (S) but not in P¢,_, ;. (S), then e
has to be of the form zv with v € S. But since e ¢ Ej, there exists another vertex v < v in S such that
uz € By, andz € Pg_, ,.(S).

Assume now P, . (S) € PE_, ,.(S) for some i > 0, and let us prove that P&l (S) € P, (). Let
x be a vertex in Pg,i (). If & € P ,(S), then by induction hypothesis, = € Pé;r_l&k(S). If z ¢ P 1.(9),
then there exists a vertex v € Pg . (S),z € Ng[v] such that [Ng[v] \ P§ (S)| < k. Suppose e # zv.
Then, since N¢—[v] € Ng[v] and by induction hypothesis, v € P§_, 1.(S), 2 € Ng—[v] and [Ng_c[v] \
P& o1 (S)] < k, which implies = € Péj_le,k(S). If e = xv then by the choice of E;H, there exists a vertex
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“a €2 di da N1 2 9 92

Fig. 4: A k-generalized spider, T’

w € P& 4(S),w < v,wz € E,, such that [Ng[w] \ P& (S)] < kand z € Ng[w] \ P ,(S). Then
by induction hypothesis, w € Pg_, . (S),x € Ng_c[w] and [Ng_c[w] \ Pg_, ,(S)| < k, which implies
x € Pétl& (). Therefore E(G) = E’ and G is indeed a union of k-generalized spiders. O

Observe that there also exist graphs for which the removal of any edge decreases the power domination
number, though we did not manage to characterize them. The simplest example is the complete bipartite
graph K} 5 j+2, in which the removal of any edge decreases the k-power domination number from 2 to 1.
This graph already played a noticeable role among the k£ + 2-regular graphs, as observed in [8]. Another
example is the graph K43 x+3 — M, where M is a perfect matching, in which we have vp i (K43 k43 —
M) = 2 and yp 1 ((Kk+t3,x+3 — M) — e) = 1 for any edge e. More complex examples are the Cartesian
product of K4 and W;, where the k-power domination number decreases from 3 to 2. A general family of
graphs having this property is the Cartesian product of two complete graphs of the same order K, O K,
which shall be described in Section 2.4.

2.3 Edge contraction

Contracting an edge in a graph may decrease its domination number by one, but cannot increase it [14]. As
we prove in the following, increasing of the power domination number may occur.

Theorem 8 Let G be a graph and e be an edge in G. Then

wr(G) =1 < wpr(G/e) <vwpi(G)+1.

Moreover,
if‘7p7k(G> —1= ”ypyk(G/e), then I‘adp_’k(G) < I‘adp_’k(G/e)
ifvp r(G/e) = vp k(G) + 1, then radp (G /e) < radp (G).

Proof: Let e = 2y be an arbitrary edge in GG, we denote by v, the vertex obtained by contraction of e in
G/e. We first prove that vp 1 (G/e) > vp 1(G) — 1. Let T be a minimum k-PDS of H = G/e. Suppose
first that the vertex vy, € T, then taking S = T\ {vgy} U {z, y}, the conditions of Lemma 4 hold from
i = j = 0 with the natural mapping from G \ {z,y} to H \ v,. We infer that S is a k-PDS of G and
radp (G, S) = radp x(G/e,T). We now consider the case when v,, ¢ T. Let jo be the smallest j
such that v, € Pé/e,k(T)‘ Let w be a neighbour of v, that brought v, into Pé/e,k(T)’ ie. if jo = 0,

w is a neighbour of v,, in T', otherwise when jo > 0, w is a neighbour of v, in Pg)/_elk(T) such that

ING/elw] \ Pg) /_elk (T)| < k. By definition of edge contraction, the edge wv,,, corresponds to an edge wz
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or wy in E(G). If wx € E(G), then take S = T' U {y}, otherwise take S = T'U {z}. Then, applying
Lemma 4 (with the natural mapping from G \ {z,y} to H \ vy, and i = j = jo), we get that S is a
E-PDS of G and radp (G, S) = radp (G/e,T). This implies that if yp (G) = vp x(G/e) + 1, then
I‘adpyk(G) S radpyk(G/e).

We now prove that vp (G /e) < vp (G) + 1. Let T be a minimum k-PDS of G and let S = T'\ {z, y} U
{vgy}. Let jo be the smallest j such that Ng[x] U Ng[y] C Pé «(T). Here also, we can use Lemma 4 (with
the natural mapping from (G/e) \ vgy to G\ {z,y} and ¢ = j = jo), and get that S is k-PDS of G/e. We
also get that if vp (G /e) = vp 1 (G) + 1, then radp 1 (G/e) < radp 1 (G). ad

The bounds in Theorem 8 are tight. For example, the lower bound holds for the graphs Ky ;42 and
K43 14+3 — M, where M is a perfect matching, but also for the Cartesian product of two complete graphs
of same order K, O K, as is described in the next section. The upper bound is attained for example for the
k-generalized spider T in Fig. 4, which satisfy vp x(T) = 1 and yp 1 (T/a1b1) = 2 for k > 2.

2.4 On the Cartesian product of twin complete graphs

The Cartesian product of two complete graphs of same (large enough) order is such that removing a vertex,
removing an edge or contracting an edge decrease its power domination number. We here prove these
properties.

a—k ifa>k+2,

Observation 9 Leta > 1and G = K, O K,. Then vp 1(G) = )
’ 1 otherwise.

Proof: Denote by {v1,...,v,} the vertices of K,. If a < k + 2, then any vertex in G = K, 0K, is a
minimum k-PDS. Now, assume a > k + 2. Let S = {(v;,v;) | 1 < i < a — k}. Then P2(S) = {(vs,v;) |
i <a—korj<a—k} and the set of vertices A = {(v;,v;) | a—k+1 < 4,5 < a} is yet to be monitored.
Since any vertex in PP (S) \ A has either 0 or k neighbours in A and each vertex in A is adjacent to some
vertex in PP (S), P} (S) covers the whole graph. Thus S is a k-PDS of G. Therefore, vp 1 (G) < a — k.
We now prove that vp ,(G) > a — k. By way of contradiction, suppose S is a k-PDS of G such that
|S| < a — k — 1. Without loss of generality, assume that the elements of .S belong to the first a — k — 1
columns and rows of G. Then the vertices in the set B = {(v;,v;) | a — k < 4,j < a} are not adjacent to
any vertex in S, and P (S) N B = (). Since any vertex in G \ B has either 0 or k + 1 neighbours in B, no
vertices from this set may get monitored later on, a contradiction. O

Observation 10 Ler a > k+ 2 and G = K, O K,. Then vp (G — v) = a — k — 1 for any vertex v in
V(G).

Proof: Denote by {v1,...,v,} the vertices of K,. We prove the result for v = (v1,v1) which implies the
result for any v by vertex transitivity. First observe that S = {(v;,v;) | 2 < i < a — k} is a k-PDS of
G —v. Indeed PP (S) = {(vi,vj) | 2 <i<a—kor2 < j<a-— k} then vertices (v;, vy) (resp. (vi,v;))
with 2 < ¢ < a — k have only vertices (v;,v1) (resp. (vi,v;)) witha — k 4+ 1 < j < a as unmonitored
neighbours, which are thus all in P} (). The next propagation step covers the graph. Thus S is a k-PDS of
G —vand vp (G — v) < a—k — 1. Now by Theorem 5 and Observation 9, 7p (G —v) > a—k—1. 0

Observation 11 Leta > k+2and G = K, O K,. Thenyp 1,(G —¢e) = a — k — 1 for any edge e in E(G).
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Proof: Denote by {v1,...,v,} the vertices of K,. By edge transitivity of G, we can assume that e =
(v1,v1)(v2,v1). Let S = {(vi,v;) | 2 <i < a—k}. Then P(S) = {(vi,vj) [2<i<a—kor2 <
j < a— k}. Now the vertex (v2,v1) has only k& unmonitored neighbours, namely the vertices (v;, v1) for
a—k < j < a, and they all are in P} (S). Then all vertices (v;,vs) fora — k < j < a have only k
unmonitored neighbours and thus P7(S) contains all vertices (v;,v;) for i > 2. Then Pg(S) contains the
whole graph and p (G — e) < a — k — 1. The lower bound follows from Theorem 6 and Observation 9. O

Observation 12 Leta > k + 2 and G = K, O K,,. Then vp 1,(G/e) = a — k — 1 for any edge e in E(G).

Proof: Denote by {v1,...,v,} the vertices of K,. By edge transitivity of GG, we can assume that e =
(v1,v1)(v2,v1) and we denote by v, the vertex in G/e obtained by contracting (v1,v1) and (ve,v1). Let
S = {ve} U{(vi,v;) | 3 <i < a—k}. Then PP(S) contains all vertices (v;,v;) with 1 <i < a — k and
1 < j < a. After one propagation step, the whole graph is monitored so yp (G /e) < a — k — 1. The lower
bound follows from Theorem 8 and Observation 9. a
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