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In this paper, we study the behaviour of the generalized power dominatimiber of a graph by small changes on the
graph, namely edge and vertex deletion and edge contraction. We ggbtweal bounds foryp 1 (G — €), yp,x(G/e)

and foryp,x (G — v) in terms ofvp 1 (G), and give examples for which these bounds are tight. We charactdlrize a
graphs for whichyp (G — e) = vp i, (G) + 1 for any edge=. We also consider the behaviour of the propagation radius
of graphs by similar modifications.
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1 Introduction

Domination is now a well studied graph parameter, and a iclstopic in graph theory. To address the
problem of monitoring electrical networks wifihasor measurement unitsee [3]), power domination was
introduced as a variation of the classical domination [Ilfe originality of power domination is the in-
troduction of an additional propagation possibility, tala to the possible use of Kirchhoff’s laws in an
electrical network. From this propagation, a vertex can@mdbo be monitored even though it is at a large
distance from any vertex in the graph. The original statubhisfnew parameter and its applied motivation
makes a subject of increasing interest from the community.

All graphsG = (V(G), E(G)) considered are finite and simple, that is, without multigges or loops.
The open neighbourhoodf a vertexv of GG, denoted byNg(v), is the set of vertices adjacentto The
closed neighbourhoodf v is Ng[v] = Ng(v) U {v}. For a subsef of vertices, theopen(resp. closed
neighbourhoodVN¢ (S) (resp. N¢[S]) of S is the union of the open (resp. closed) neighbourhoods of its
elements. A vertex in a graph is said to dominate its closed neighbourhdeduv]. A subsetS C V(G)
of vertices is a dominating set ¥ [S] = V(G), that is if every vertex in the graph is dominated by some
vertex of.S. The minimum size of a dominating set in a graghs called its domination number, denoted
by v(G).

For power domination, we need to define the set of verticesitoread by an initial setS (of PMU)
iteratively. The initial set of vertices monitored Iyis defined as the set of dominated verti@gs(S) =
N¢[S]. This step is sometimes called the domination step. Thars#hiis iteratively extended by including
all vertices that are the unique non-monitored neighboarrabnitored vertex. This second part is called the
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propagation rule More formally, we define directly the set of monitored vegs fork-power domination
following the notation of [4] :

Definition 1 (Monitored vertices) Let G be a graph,S C V(G) andk > 0. The sets(P§;7k(S)
vertices monitored by at stepi are defined as follows:

)iZO of

P& 1(S) = N¢[S] (domination step), and
PEa(S) = U{Nalv]: v € P§ . (S) such that Ne[v] \ P . (S)| < k} (propagation steps).

Let us make some observations about this definition. Fhistset of monitored vertices is monotone by
inclusion, i.e. P, ,(S) € P”l(S) This is easy to check by induction, using the fact that whiend’¢ [v]

has been included iR, . (S), itis included mP”l(S) This also implies thaPy;, . (S) is always a union of
neighbourhoods. Observe that whee- 1, the definition coincides with the intuition given above.s@hve
also that for some integep, P: or(S) = 7?’0“( ) thenPévk( ) = P& (S) forall j > ig. We thus

denote this SePg’vk(S) by P&’ (). When the grapld: is clear from the context, we simplify the notation
to P} (S) andPge(9).

Definition 2 (k-power dominating set) A setS is a k-power dominating seaf G (abbreviatedk-PDS) if
P&r(S) = V(G). The least cardinality of such a set is called thpower domination numberf &, denoted
byvp 1 (G). Ayp 1 (G)-setis ak-PDS inG of cardinalityyp 1 (G).

Observe that-power domination is also a generalization of dominatidrat twe obtain when we set
k = 0. In [4], the authors showed along with some early resultsubepower domination that some
bounds, extremal graphs and properties can be expressaayfbyincluding the case of domination. In [8],
some bound from [17] on regular graphs is also generalizedrpk.

The computational complexity of the power domination pesblwas considered in [1, 2, 10, 11], in
which it was proved to be NP-complete on bipartite and chaydphs as well as for bounded propagation
variants. Linear-time algorithms are known for computinigimum k-power dominating sets in trees [4]
and in block graphs [16]. The problem of characterizing tbe/gr domination number of a graph is non
trivial for simple families of graphs. Early studies try tharacterize it for products of paths/grids [7, 6]
though do not reach complete characterization in a few c&ber studies propose closed formulas for the
power domination number in hexagonal grids [9] or in Siesgi graphs [5].

In general, it remains difficult to prove lower bounds on tlegvpr domination number of a graph. One
reason why it is so is that power domination do not behave wie#in taking subgraph. In this paper, we
explore in detail the behaviour of the power domination nandf a graph when small changes are applied
to the graph, e.g. removing a vertex or an edge, or cont@etinedge. (Recall that the graph obtained by
contractionof an edgee = zy, denoted byG/e, is obtained fromG — e by replacingz andy by a new
vertexv,, (contracted vertexwhich is adjacent to all vertices iNg_.(z) U Ng—_.(y).) In particular, we
prove in Section 2 that though the behaviour of the power dation is similar to the domination in the
case of the removal of a vertex, the removal of an edge caredeerthe power domination number and
the contraction of an edge can increase the power dominatiotber, both phenomena that are impossible
in usual domination. We characterize the graphs for whiehrétmoval of any edge increases thpower
domination number.

Another recent but natural question about power domingsarlated to the propagation radius. In a
graph, a vertex that is arbitrarily far apart from any veritexhe setS may eventually get monitored by
as in the case of paths. However, in the applied circumssaoicthe monitoring of an electrical network,
applying too many times Kirchhoff’'s laws successively wbiriduce an unreasonable cumulated margin
of error. With this consideration in mind, it is natural tonséder power domination with bounded time
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constraints, as was first studied in [1], and then in [15]pires] by this study, thé-propagation radiusf

a graphG was introduced in [5] as a way to measure the efficiency of ammim k-power dominating set
(k-PDS). It gives the minimum number of propagation stepsireduo monitor the entire graph over all
v, (G)-sets.

Definition 3 The radius of &-PDS is defined by
radp (G, S) = 1+ min{i : Pg,(S) =V(G)}.
Thek—propagation radiuef the graph as defined in [5] can be expressed as
radp 1 (G) = min{radp 1 (G, S), Sis ak-PDS ofG, |S| = v x(G)}.

We finally recall a few graph notations that we use in the follg. We denote by, the complete
graph onn vertices, bykK,, ,, the bipartite complete graph with partite sets of ordeandn. The path and
cycle onn vertices are denoted by, andC,,, respectively. For two graphG and H, G O H denotes the
Cartesian product af andH, that is the graph with vertex se{(G) x V (H) and where two verticegy, h)
and(g’, h') are adjacent if and only if either= ¢’ andhh’ € E(H), orh = h’ andgg’ € E(G).

2 Variations on the power domination number

Before considering the different cases of vertex remowddeeremoval and edge contraction, we propose
the following technical lemma which should prove usefulsthtes that if two graphs differ only on parts
that are already monitored, then propagation in the not yaiitored parts behave the same. For a graph
G = (V, E) and two subsetX andY of V, we denote by (X, Y') the set of edges joining any vertex &f

to any vertex oft”. Note that ifX C Y, F(X,Y’) contains in particular all edges of the induced subgraph
G[X] of Gon X. All along the rest of the papek,denotes a positive integer.

Lemma4 LetG = (Vg,Eg) and H = (Vy, Ex) be two graphs,S a subset of vertices @ andi a
non-negative integer. Defin€ = Ve \ Pf, . (S) and the subgrapld” with vertex sefV[X] and edge set
Ec(X, Ng[X]). Suppose there exists a subge€ Vj; suchthatthe subgrapi’ = (Ng[Y], E(Y, Ng[Y]))
is isomorphic toG” with a mappingy : Ng[X] — Ng[Y] that mapsX to Y. Then, if for somek-
power dominating seI’ C Vy and some integej, Y C Vy \ Py, ,.(T), thenS is a k-PDS of G and
radp (G, S) < i — j +radp ,(H,T). ’

Proof: For/ > 0, denote byX* andY* respectively the set¥ N ng,f(S) andY N P};f,f(T). We prove by
induction that for all, Y C p(X*).

By hypothesis XY = 0 and sop(X°) = () = Y, so it holds for/ = 0. Now assume that the property is
true for some > 0. Suppose that some vertex= ¢(u) € Ny[Y] satisfies the conditions for propagation
in H atstepj+¢, i.e.v € P (T) and| Ny [v]\ PL7(T)| < k. We show that: also satisfies the conditions
for propagation irGG. First, remark that is monitoréd at stept-¢: indeed, ifu ¢ X, then by definition ofX,

u € P4L, otherwise ifu € X, thenv € Y N PL1{(T) = Y, and thus by induction; € X* C P/ Now
consider any neighbour of u not yet dominated. The € X \ X* andp(u’) € Y\ Y*. Moreover, by the
isomorphism betwee@’ and H', p(u') is also adjacent to, and was among the at mdsnhon monitored
neighbours oty in H. Thereforeu has at most non monitored neighbours i, and also propagates .
Applying this statement to all vertices @&, we infer thaty “+! C (X **1). By induction, this is also true
for ¢ = radp 1 (H,T) — j — 1, and we deduce that

_ _ radp r (H,T)—1 radp (H,T)—j+i—1
X = 1(Y) C o 1(YZ _ (,PH,I@PJV( ) (T) ﬂY)) c (XE _ (,PGatkr’,k( )—J (S) ﬂX)) ,
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D 5

Fig. 1: The graphsDs,,, andW;, ,, obtained by the addition of vertex

and thus thas' is ak-power dominating set af andradp (G, S) < i — j +radp x(H,T). O

We now use this lemma to state how #hpower domination number of a graph may change with atomic
variations of the graph.

2.1 Vertex removal

We denote by — v the graph obtained fro® by removing a vertex and all its incident edges. Similar to
what happens for domination (see [12]), we have the follgwin

Theorem 5 LetG be a graph and be a vertex inG. There is no upper bound fo (G — v) in terms of
~p.x(G). On the other hand, we have (G — v) > vp ,(G) — 1 and this bound is tight. Moreover, when
vp.5(G — v) = vp 1 (G) — 1, thenradp (G) < radp (G — v).

Proof:

We first prove the lower bound, using Lemma 4. We defihe- G — v with the obvious mapping from
V(G)\vtoV(H). LetT be a power dominating set & = G — v, that induces the minimum propagation
radius. Then for the sef = T'U {v}, the conditions of Lemma 4 hold already frarm= 0 and;j = 0 and
the bound follows. Moreover, we also get thadlp (G, S) < j —i +radp x(H,T) = radp (G — v) .

A first example for which the tightness of this lower bound ta&nobserved is thé x 4 grid P, O Py,
for which we getyp 1 (P, 0O Py) = 2 andvyp 1 (P40 Py) — v) = 1 for anywv. Simple examples for larger
k are the grapti; 2,42, for which the removal of any vertex drops thgower domination number from
two to one, as well as the complete bipartite grdph, s -3 minus a perfect matching. We now describe
two infinite families of graphs to illustrate these boundse Tamily of graphsD,, ,, was defined in [4]. Itis
made ofn copies ofk + 3-cliques minus an edge, organized into a cycle, and wherextiemities of the
missing edges are linked to the corresponding verticesimtiiacent cliques in the cycle (see Fig. 1).

Note thatyp ,(Dy ) = n, as each copy of; 3 — e must contain a vertex of A-power dominating
set. Its propagation radius is one sin@g ,, has a dominating set of size The removal of a vertex on the
cycle does not change itspower domination number, but the removal of any other xedecreases it by
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one (and increases the radius from one to two). So this fomisfimite family tightening the lower bound
for any value ofk andvp 1 (G).

For proving there is no upper bound fas (G — v) in terms ofyp ;(G), we can consider the star with
leavesK( ,, for which the removal of the central vertex increasest#pewer domination number from 1 to
n. A more interesting example is a generalization of the wkig], (depicted in Fig. 1). It is made dby, ,,
together with a vertex adjacent to three vertices of degree- 2 in one particular clique and to one vertex
of degreek + 2 in all the other cliques. Observe that for> k£ + 2, {c} is the only power dominating set of
Wy, of order one, and thus we getdp (W ) = radp (Wi, {c}) = 2+3L”T*1J +2((n—1) mod 2).
The removal ofc induces the graptDy, ,,, increasing the:-power domination number from 1 to, and
dropping the propagation radius from rougfigyto 1. o

More constructions could be proposed to show that the padagradius of the graph can evolve quite
freely when a vertex is removed, and there is little hope thepbounds on this parameter when a vertex is
removed. The most unlikely example is that the removal ofréeexeéncrease both the-power domination
number and the propagation radius by unbounded value. $hisdsible with the following variation on
Wi pn. Considerpn subgraphg H;)o<i<pn, all isomorphic to a clique minus an edge, bA- 3 vertices
wheni = 0 mod p and onk + 1 vertices otherwise. We again connect the extremities ofrtissing edges
in the clique into a cycle joiningl; to H; 1 (mod pn),» @and add a vertexadjacent to three vertices of degree
k + 2 in all copiesH; wheni = 0 mod p, and to one vertex of degréein all the other copies. Thefr} is
ak-power dominating set af inducing a propagation radius of two. On the other hapd, (G —¢) = n
(one vertex is needed in eaéh, : = 0 mod p) and has propagation radilis- BL%J +2((p—1) mod 2).

2.2 Edge removal

In a graphGG, removing an edge can never decrease the domination number. More genera&liiawe that
v(G) < v(G —e) < v(G) + 1. However, the removal of an edge can decreasé:thewer domination
number as stated in the following result. Indeed, it may leapihat the removal of one edge allows the
propagation through another edge incident to a commoneatel thus decreases the power domination
number.

Theorem 6 LetG be a graph and be an edge irz. Then
1Px(G) =1 <P i(G —e) <ypi(G) +1.

Moreover,
if vp.1(G) — 1 = 7p (G — €), thenradp 1 (G) < radp (G — e)
if vp x(G — €) = vp (@) + 1, thenradp (G — e) < radp & (G).

Proof: We first prove thatp (G —e) < vp 1 (G)+1. LetT be ayp . (G)-set. IfT is_also ak—PDS ofG —e,
then we are done, so assuffigs not. Letjo be the smallest integgrsuch thatPl , (T') 2 PZ_, . (T),
and letv be a vertex inP%, (T) \ PX_, ,(T). Sincev € P (T), there exists some neighbourof v
in P2 H(T) such that Ng[u] \ PEH(T)| < k. SinceNg_.[u] € Nglul, Na—[u] is also included in
Pg’feyk(T), andv cannot be a neighbour efany more, s@ = uv. Thus we choos§ = T'U{v} and using
Lemma 4 (with the obvious mapping froé — e to G, andi = j = j,), we get thatS is ak-PDS ofG — ¢
of orderyp 1 (G) + 1. We also get that ifip 1 (G — e) = yp 1 (G) + 1, thenradp 1 (G — e) < radp »(G).
We now prove thatp 1 (G) — 1 < vp (G — e). LetT be a minimumk-PDS of H = G — e andu be an
extremity ofe. We apply Lemma 4, fof = T'U {u} andi = j = 0. We get thatS is ak-PDS ofG and
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radp (G, S) = radp 1 (G — ¢, T). We infer that ifS is minimal (that isyp 1 (G) = vp (G — €) + 1), then
radp 1 (G) < radp (G — e). O

As anillustration of these possibilities, in the gra@lidrawn in Fig. 2, the removal of the edgedecreases
thek-power domination number, the removal of the edg@ncreases it, and the removal of the edgeloes
not have any consequence.

Vk+2

w
k+1

Fig. 2: A graphG whereyp 1 (G) = 2 = vp (G — €2),vp,k(G —e1) = 1,7p k(G —e3) = 3.

We now propose a graph family where the removal of an edgeedses thé&-power domination number
but increases its propagation radius arbitrarily. The gi@p,, ., represented in Fig. 3 satisfigs ,(G) = 2
andradp 1 (G) = a + 2 (which is reached with the initial séti, v}). If the edgee is removed, we get a
new graph whosé-power domination number isand which has propagation radigs+ 3)(a + 1) + 2.
So no upper bound can be found fexlp 1, (G — e) (in terms ofradp ;(G)) when the removal of an edge
decreases the power domination number.

Similar graphs where the edge removal increases the poweindtdon number can also be found. For
example, in the graplvy, , ., if we remove the topmost path of lengi4- 2 from w to v, except for the
vertex adjacent te, we get another grapi’ such that{u} is the onlyyp 1 (G’)-set of order one, and with
radp (G') = (r + 2)(a + 1) + 3. Removing the same edgenow {u, v} is a minimumyp (G’ — e)-set
andradp , (G’ — e) = a + 2. This illustrates the fact that no lower bound can be foumd-ddp (G — ¢)
(in terms ofradp ,(G)) when the removal of an edge increases the power dominatiober.

We now characterize the graphs for which the removal of agge étcreases the power domination num-
ber. Define a@eneralized spideas a tree with at most one vertex of degkee 2 or more. See Fig. 4 for an
example.

Theorem 7 LetG be a graph. For each edgein G, vp (G — e) > vp x(G) if and only ifG is a disjoint
union of generalized spiders.

Proof:
First observe that i€7 is a disjoint union of generalized spiders, thenkitpower domination number is
exactly its number of components, and clealy, (G — e) > ~p 1 (G) for any edge: in G.
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r+1

-OAMAAMAAMNAAMAND

A O
1

Fig. 3: The graphGy, ., for k = 3 andr = 4 (zigzag edges represent paths of length

Let G be a graph and lef be avp 1 (G)-set. We label the vertices @ with integers froml to n and
consider the subsequent natural ordering on the vertiaes. ¥ 0, we defineE, C F(G) as follows:

El,; ={uv € BE(G) |veP(S)\ Pi(S),u =min{z € Pi(S) N N(v),|N[z]\ Pi(S)| < k}}

(3

{Eg = {uwv € B(G) | v e N(S)\ S,u=min{z € N(v) N S}}

where the minima are taken according to the ordering of thiéces. LetE’ be the union of alE, for ¢ > 0.
If we consider the edges @’ as defined above oriented framto v, then the in-degree of each vertex not
in S'is 1, of vertices inS is 0. Also the graph is acyclic, and each vertex naf'ihas out-degree at mokt
Thus the graph induced by’ is a forest of generalized spiders. Note also & ak-PDS of this graph.
We now assume that for any edge E(G), vp.x(G — e) > vp 1 (G), and we then prove thé’ = E(G).

By way of contradiction, suppose there exists an edge E£(G) and not inE’. We prove thatS is a
k-PDS of G — e. For that, we prove by induction that for allPf, ;. (S) € Pg,_, ,.(S). First observe that
Pe_e 1 (S) = P& (S). Indeed, suppose there exists a vetter Pg ,(S) but not inPg_, . (S), thene
has to be of the formev with v € S. But sincee ¢ Ej, there exists another vertex< v in S such that
uz € Ej, andz € PL_, . (9).

Assume NowP;, ,.(S) C Pg_, ,(S) for somei > 0, and let us prove tha®/"! (S) € P&, (S). Let
x be avertex iP5 (S). If z € P ,.(S), then by induction hypothesis, € P5™, (9). If z ¢ P (),
then there exists a vertexe Pg, ,.(S),z € Ng[v] such thaiNg[v] \ Pg ;. (S)| < k. Suppose: # zv.
Then, sinceNg_.[v] € Ng[v] and by induction hypothesis,c Pf, ., ,.(S), 2 € Ng—[v] and|Ng_.[v] \
Pi_ex(S)] < k, which impliesz € PE, | (S). If e = zv then by the choice of;  ,, there exists a vertex
w € P& (S),w < v,wr € Ej, such thaiNglw] \ P (S)| < kandz € Nglw] \ P ,(S). Then
by induction hypothesisy € P¢,_, ,.(S),z € Ng_.[w] and|Ng_[w] \ P§_, ,(S)| < k, which implies
z € PE, 1(9). ThereforeE(G) = E’ andG is indeed a union of generalized spiders. O
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Fig. 4: A generalized spidefl’

Observe that there also exist graphs for which the removahgfedge decreases the power domination

number, though we did not manage to characterize them. Tiglest example is the complete bipartite
graphKj2 142, in which the removal of any edge decreasesktipwwer domination number from two to
one. This graph already played a noticeable role among-#h&regular graphs, as observed in [8]. Another
example is the grapK;, 3 x+3 — M, wherel is a perfect matching, in which we haye i (Kj13 k+3 —
M) = 2 andyp ,((Kkysx+3 — M) — e) = 1 for any edges. More complex examples are the Cartesian
product of K, and W5, where thek-power domination number decreases from three to two. Argéne
family of graphs having this property is the Cartesian pmdi two complete graphs of the same order
K, O K,, which shall be described in Section 2.4.

2.3 Edge contraction

Contracting an edge in a graph may decrease its dominatimb&uby one, but cannot increase it [14]. As
we prove in the following, increasing of the power dominatrmimber may occur.

Theorem 8 LetG be a graph and be an edge iz. Then
1e(G) =1 <y i(G/e) < wpr(G)+1.

Moreover,
if ’}/p7]§(G) —1= ’)/ch(G/e), thenradpyk(G) < radpJg(G/e)
if vp (G/e) = vp 1 (G) + 1, thenradp (G/e) < radp x(G).

Proof: Lete = xy be an arbitrary edge i, we denote by,, the vertex obtained by contraction ein
G/e. We first prove thatyp 1 (G/e) > vp 1 (G) — 1. LetT be a minimumk-PDS of H = G/e. Suppose
first that the vertex,, € T, then takingS = T\ {v.,} U {,y}, the conditions of Lemma 4 hold from
i = j = 0 with the natural mapping fron& \ {z,y} to H \ v,,. We infer thatS is ak-PDS of G and
radp (G, S) = radp x(G/e,T). We now consider the case whep, ¢ T. Let j, be the smallesj
such that,, € Pé/e,k(T). Let w be a neighbour of.,, that brought,,, in Pé/@k(T), ie. ifjo =0,
w is a neighbour of,, in T', otherwise wherj, > 0, w is a neighbour o, in Pg/_e}k(T) such that

[Nayelw] \ P/ (T)| < k. By definition of edge contraction, the edge.., corresponds to an edger

orwy in E(G). If wx € E(G), then takeS = T U {y}, otherwise take5 = T'U {z}. Then, applying
Lemma 4 (with the natural mapping fro® \ {z,y} to H \ v, andi = j = jp), we get thatS is a
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k-PDS of G andradp (G, S) = radp x(G/e,T). This implies that ifyp (G) = vp x(G/e) + 1, then
radp 1 (G) < radp (G/e).

We now prove thaip 1, (G/e) < vp x(G) + 1. LetT be a minimumk-PDS ofG and letS = T'\ {z, y} U
{vzy }. Letjo be the smallest such thatVe[z] U N¢[y] C Pé_k(T). Here also, we can use Lemma 4 (with
the natural mapping frortG/e) \ v,y to G\ {z,y} andi = j = jo), and get thaS is k-PDS ofG/e. We
also get that ifyp (G /e) = vp 1 (G) + 1, thenradp 1 (G/e) < radp 1 (G). a

The bounds in Theorem 8 are tight. For example, the lower thdnotds for the graph®(y 2 42 and
Kjy3.6+3 — M, whereM is a perfect matching, but also for the Cartesian produatvofdomplete graphs
of same ordek, O K, as is described in the next section. The upper bound ismattdor example for the
generalized spider in Fig. 4, which satisfyyp (7)) = 1 and~yp ;,(T/a1b1) = 2 for k > 2.

2.4 On the Cartesian product of twin complete graphs

The Cartesian product of two complete graphs of same (largegh) order is such that removing a vertex,
removing an edge or contracting an edge decrease its powainaition number. We here prove these
properties.

Observation 9 Leta > 1 andG = K, O K,,. Thenyp 1 (G) = {a —k ifaz k,+ 2

' 1 otherwise.
Proof: Denote by{vi,...,v,} the vertices ofK,. If « < k + 2, then any vertex il = K, 0K, is a
minimumk-PDS. Now, assume > k + 2. LetS = {(v;,v;) | 1 <i < a—k}. ThenPL(S) = {(v;,v;) |
i <a—korj<a-—k}andthe setof verticed = {(v;,v;) | a—k+1 <14,j < a}is yetto be monitored.
Since any vertex irP?(S) \ A has either 0 ok neighbours in4 and each vertex inl is adjacent to some
vertex inPy(S), P} (S) covers the whole graph. Thusis ak-PDS ofG. Thereforepyp ,(G) < a — k.

We now prove thatyp (G) > a — k. By way of contradiction, supposg is a k-PDS of G such that
|S| < a —k — 1. Without loss of generality, assume that the elementS bélong to the first — k — 1
columns and rows off. Then the vertices in the s& = {(v;,v;) | a — k < i,j < a} are not adjacent to
any vertex inS, andPp(S) N B = . Since any vertex iz \ B has either 0 ok + 1 neighbours inB, no
vertices from this set may get monitored later on, a conttaati. m]

Observation 10 Leta > k+ 2 andG = K, O K,. Thenyp (G — v) = a — k — 1 for any vertexv in
V(G).

Proof: Denote by{v,...,v,} the vertices of{,. We prove the result for = (v, v;) which induce the
result for anyv by vertex transitivity. First observe that= {(v;,v;) | 2 <i < a — k} is ak-PDSofG — v.
IndeedP?(S) = {(vi,v;) | 2 <i<a—kor2 < j < a-— k}then verticedv;,v) (resp. (v1, v;)) with

2 <4 < a—k have only vertice$v;, v1) (resp.(v1,v;)) witha—k+1 < j < a as unmonitored neighbours,
which are thus all inP} (S). The next propagation step covers the graph. Thisak-PDS of G — v and
vp,5(G —v) < a—k — 1. Now by Theorem 5 and Observation®, (G —v) > a — k — 1. O

Observation 11 Leta > k+ 2 andG = K, O K,. Themyp (G —e) = a — k — 1 for any edge: in E(G).

Proof: Denote by{v,...,v,} the vertices ofK,. By edge transitivity ofG, we can assume that =
(v1,v1)(v2,v1). LetS = {(v;,v;) | 2 < i < a—k}. ThenP2(S) = {(v;,v;) |2 <i<a—kor2 <
J < a — k}. Now the vertexv,, v1) has onlyk unmonitored neighbours, namely the verti¢es v, ) for
a—k < j < a, and they all are iP}(S). Then all verticev;,ve)for a — k < j < a have onlyk
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unmonitored neighbours and thi§ (S) contains all verticegv;, v;) for i > 2. ThenP?(S) contains the
whole graph andp (G —e¢) < a — k — 1. The lower bound follows from Theorem 6 and Observatiom9.

Observation 12 Leta > k + 2 andG = K, O K,,. Thenyp 1 (G/e) = a — k — 1 for any edges in E(G).

Proof: Denote by{v,...,v,} the vertices ofK,. By edge transitivity ofG, we can assume that =
(v1,v1)(v2,v1) and we denote by, the vertex inG/e obtained by contractingu,, v1) and (ve,v1). Let
S = {ve} U{(vi,vs) | 3 <i <a—k}. ThenPp(S) contains all verticegv;, v;) with 1 < i < a — k and
1 < j < a. After one propagation step, the whole graph is monitoregesg(G/e) < a — k — 1. The lower
bound follows from Theorem 8 and Observation 9. O
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