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In this paper, we study the behaviour of the generalized power dominationnumber of a graph by small changes on the
graph, namely edge and vertex deletion and edge contraction. We proveoptimal bounds forγP,k(G − e), γP,k(G/e)

and forγP,k(G − v) in terms ofγP,k(G), and give examples for which these bounds are tight. We characterize all
graphs for whichγP,k(G− e) = γP,k(G) + 1 for any edgee. We also consider the behaviour of the propagation radius
of graphs by similar modifications.
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1 Introduction
Domination is now a well studied graph parameter, and a classical topic in graph theory. To address the
problem of monitoring electrical networks withphasor measurement units(see [3]), power domination was
introduced as a variation of the classical domination [11].The originality of power domination is the in-
troduction of an additional propagation possibility, relative to the possible use of Kirchhoff’s laws in an
electrical network. From this propagation, a vertex can endup to be monitored even though it is at a large
distance from any vertex in the graph. The original status ofthis new parameter and its applied motivation
makes a subject of increasing interest from the community.

All graphsG = (V (G), E(G)) considered are finite and simple, that is, without multiple edges or loops.
The open neighbourhoodof a vertexv of G, denoted byNG(v), is the set of vertices adjacent tov. The
closed neighbourhoodof v is NG[v] = NG(v) ∪ {v}. For a subsetS of vertices, theopen(resp. closed)
neighbourhoodNG(S) (resp. NG[S]) of S is the union of the open (resp. closed) neighbourhoods of its
elements. A vertexv in a graph is said to dominate its closed neighbourhoodNG[v]. A subsetS ⊆ V (G)
of vertices is a dominating set ifNG[S] = V (G), that is if every vertex in the graph is dominated by some
vertex ofS. The minimum size of a dominating set in a graphG is called its domination number, denoted
by γ(G).

For power domination, we need to define the set of vertices monitored by an initial setS (of PMU)
iteratively. The initial set of vertices monitored byS is defined as the set of dominated verticesP0

G(S) =
NG[S]. This step is sometimes called the domination step. Then this set is iteratively extended by including
all vertices that are the unique non-monitored neighbour ofa monitored vertex. This second part is called the
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propagation rule. More formally, we define directly the set of monitored vertices fork-power domination
following the notation of [4] :

Definition 1 (Monitored vertices) Let G be a graph,S ⊆ V (G) and k ≥ 0. The sets
(

Pi
G,k(S)

)

i≥0
of

vertices monitored byS at stepi are defined as follows:

P0
G,k(S) = NG[S] (domination step), and

Pi+1
G,k (S) =

⋃

{NG[v] : v ∈ Pi
G,k(S) such that

∣

∣NG[v] \ P
i
G,k(S)

∣

∣ ≤ k} (propagation steps).

Let us make some observations about this definition. First, the set of monitored vertices is monotone by
inclusion, i.e.Pi

G,k(S) ⊆ Pi+1
G,k (S). This is easy to check by induction, using the fact that wheneverNG[v]

has been included inPi
G,k(S), it is included inPi+1

G,k (S). This also implies thatPi
G,k(S) is always a union of

neighbourhoods. Observe that whenk = 1, the definition coincides with the intuition given above. Observe
also that for some integeri0, Pi0

G,k(S) = Pi0+1
G,k (S), thenPj

G,k(S) = Pi0
G,k(S) for all j ≥ i0. We thus

denote this setPi0
G,k(S) by P∞

G,k(S). When the graphG is clear from the context, we simplify the notation
toPi

k(S) andP∞
k (S).

Definition 2 (k-power dominating set) A setS is a k-power dominating setof G (abbreviatedk-PDS) if
P∞
G,k(S) = V (G). The least cardinality of such a set is called thek-power domination numberofG, denoted

byγP,k(G). A γP,k(G)-setis ak-PDS inG of cardinalityγP,k(G).

Observe thatk-power domination is also a generalization of domination, that we obtain when we set
k = 0. In [4], the authors showed along with some early results about k-power domination that some
bounds, extremal graphs and properties can be expressed foranyk, including the case of domination. In [8],
some bound from [17] on regular graphs is also generalized for anyk.

The computational complexity of the power domination problem was considered in [1, 2, 10, 11], in
which it was proved to be NP-complete on bipartite and chordal graphs as well as for bounded propagation
variants. Linear-time algorithms are known for computing minimum k-power dominating sets in trees [4]
and in block graphs [16]. The problem of characterizing the power domination number of a graph is non
trivial for simple families of graphs. Early studies try to characterize it for products of paths/grids [7, 6]
though do not reach complete characterization in a few cases. Other studies propose closed formulas for the
power domination number in hexagonal grids [9] or in Sierpiński graphs [5].

In general, it remains difficult to prove lower bounds on the power domination number of a graph. One
reason why it is so is that power domination do not behave wellwhen taking subgraph. In this paper, we
explore in detail the behaviour of the power domination number of a graph when small changes are applied
to the graph, e.g. removing a vertex or an edge, or contracting an edge. (Recall that the graph obtained by
contractionof an edgee = xy, denoted byG/e, is obtained fromG − e by replacingx andy by a new
vertexvxy (contracted vertex) which is adjacent to all vertices inNG−e(x) ∪ NG−e(y).) In particular, we
prove in Section 2 that though the behaviour of the power domination is similar to the domination in the
case of the removal of a vertex, the removal of an edge can decrease the power domination number and
the contraction of an edge can increase the power dominationnumber, both phenomena that are impossible
in usual domination. We characterize the graphs for which the removal of any edge increases thek-power
domination number.

Another recent but natural question about power dominationis related to the propagation radius. In a
graph, a vertex that is arbitrarily far apart from any vertexin the setS may eventually get monitored byS
as in the case of paths. However, in the applied circumstances of the monitoring of an electrical network,
applying too many times Kirchhoff’s laws successively would induce an unreasonable cumulated margin
of error. With this consideration in mind, it is natural to consider power domination with bounded time
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constraints, as was first studied in [1], and then in [15]. Inspired by this study, thek-propagation radiusof
a graphG was introduced in [5] as a way to measure the efficiency of a minimum k-power dominating set
(k-PDS). It gives the minimum number of propagation steps required to monitor the entire graph over all
γP,k(G)-sets.

Definition 3 The radius of ak-PDS is defined by

radP,k(G,S) = 1 +min{i : Pi
G,k(S) = V (G)} .

Thek−propagation radiusof the graph as defined in [5] can be expressed as

radP,k(G) = min{radP,k(G,S), S is ak-PDS ofG, |S| = γP,k(G)} .

We finally recall a few graph notations that we use in the following. We denote byKn the complete
graph onn vertices, byKm,n the bipartite complete graph with partite sets of orderm andn. The path and
cycle onn vertices are denoted byPn andCn, respectively. For two graphsG andH, G2H denotes the
Cartesian product ofG andH, that is the graph with vertex setV (G)×V (H) and where two vertices(g, h)
and(g′, h′) are adjacent if and only if eitherg = g′ andhh′ ∈ E(H), orh = h′ andgg′ ∈ E(G).

2 Variations on the power domination number
Before considering the different cases of vertex removal, edge removal and edge contraction, we propose
the following technical lemma which should prove useful. Itstates that if two graphs differ only on parts
that are already monitored, then propagation in the not yet monitored parts behave the same. For a graph
G = (V,E) and two subsetsX andY of V , we denote byE(X,Y ) the set of edges joining any vertex ofX
to any vertex ofY . Note that ifX ⊆ Y , E(X,Y ) contains in particular all edges of the induced subgraph
G[X] of G onX. All along the rest of the paper,k denotes a positive integer.

Lemma 4 Let G = (VG, EG) andH = (VH , EH) be two graphs,S a subset of vertices ofG and i a
non-negative integer. DefineX = VG \ Pi

G,k(S) and the subgraphG′ with vertex setNG[X] and edge set
EG(X,NG[X]). Suppose there exists a subsetY ⊆ VH such that the subgraphH ′ = (NH [Y ], E(Y,NH [Y ]))
is isomorphic toG′ with a mappingϕ : NG[X] → NH [Y ] that mapsX to Y . Then, if for somek-
power dominating setT ⊆ VH and some integerj, Y ⊆ VH \ Pj

H,k(T ), thenS is a k-PDS ofG and
radP,k(G,S) ≤ i− j + radP,k(H,T ).

Proof: For ℓ ≥ 0, denote byXℓ andY ℓ respectively the setsX ∩ Pi+ℓ
G,k(S) andY ∩ Pj+ℓ

H,k (T ). We prove by
induction that for allℓ, Y ℓ ⊆ ϕ(Xℓ).

By hypothesis,X0 = ∅ and soϕ(X0) = ∅ = Y 0, so it holds forℓ = 0. Now assume that the property is
true for someℓ ≥ 0. Suppose that some vertexv = ϕ(u) ∈ NH [Y ] satisfies the conditions for propagation
in H at stepj+ℓ, i.e. v ∈ Pj+ℓ

H,k (T ) and|NH [v]\Pj+ℓ
H,k (T )| ≤ k. We show thatu also satisfies the conditions

for propagation inG. First, remark thatu is monitored at stepi+ℓ: indeed, ifu /∈ X, then by definition ofX,
u ∈ Pi+ℓ

G,k, otherwise ifu ∈ X, thenv ∈ Y ∩ Pj+ℓ
H,k (T ) = Y ℓ, and thus by induction,u ∈ Xℓ ⊆ Pi+ℓ

G,k. Now
consider any neighbouru′ of u not yet dominated. Thenu′ ∈ X \Xℓ andϕ(u′) ∈ Y \Y ℓ. Moreover, by the
isomorphism betweenG′ andH ′, ϕ(u′) is also adjacent tov, and was among the at mostk non monitored
neighbours ofv in H. Therefore,u has at mostk non monitored neighbours inG, and also propagates inG.
Applying this statement to all vertices inG′, we infer thatY ℓ+1 ⊆ ϕ(Xℓ+1). By induction, this is also true
for ℓ = radP,k(H,T )− j − 1, and we deduce that

X = ϕ−1(Y ) ⊆ ϕ−1
(

Y ℓ =
(

P
radP,k(H,T )−1
H,k (T ) ∩ Y

)

)

⊆
(

Xℓ =
(

P
radP,k(H,T )−j+i−1
G,k (S) ∩X

)

)

,



4 Paul Dorbec, Seethu Varghese, A. Vijayakumar

Kk+3 − e
c

Kk+3 − e

W2,6D1,5

Fig. 1: The graphsDk,n andWk,n obtained by the addition of vertexc.

and thus thatS is ak-power dominating set ofG andradP,k(G,S) ≤ i− j + radP,k(H,T ). 2

We now use this lemma to state how thek-power domination number of a graph may change with atomic
variations of the graph.

2.1 Vertex removal

We denote byG− v the graph obtained fromG by removing a vertexv and all its incident edges. Similar to
what happens for domination (see [12]), we have the following:

Theorem 5 LetG be a graph andv be a vertex inG. There is no upper bound forγP,k(G− v) in terms of
γP,k(G). On the other hand, we haveγP,k(G− v) ≥ γP,k(G)− 1 and this bound is tight. Moreover, when
γP,k(G− v) = γP,k(G)− 1, thenradP,k(G) ≤ radP,k(G− v).

Proof:
We first prove the lower bound, using Lemma 4. We defineH = G− v with the obvious mappingϕ from

V (G) \ v to V (H). LetT be a power dominating set ofH = G− v, that induces the minimum propagation
radius. Then for the setS = T ∪ {v}, the conditions of Lemma 4 hold already fromi = 0 andj = 0 and
the bound follows. Moreover, we also get thatradP,k(G,S) ≤ j − i+ radP,k(H,T ) = radP,k(G− v) .

A first example for which the tightness of this lower bound canbe observed is the4 × 4 grid P4 2P4,
for which we getγP,1(P4 2P4) = 2 andγP,1((P4 2P4) − v) = 1 for anyv. Simple examples for larger
k are the graphKk+2,k+2, for which the removal of any vertex drops thek-power domination number from
two to one, as well as the complete bipartite graphKk+3,k+3 minus a perfect matching. We now describe
two infinite families of graphs to illustrate these bounds. The family of graphsDk,n was defined in [4]. It is
made ofn copies ofk + 3-cliques minus an edge, organized into a cycle, and where theextremities of the
missing edges are linked to the corresponding vertices in the adjacent cliques in the cycle (see Fig. 1).

Note thatγP,k(Dk,n) = n, as each copy ofKk+3 − e must contain a vertex of ak-power dominating
set. Its propagation radius is one sinceDk,n has a dominating set of sizen. The removal of a vertex on the
cycle does not change itsk-power domination number, but the removal of any other vertex decreases it by
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one (and increases the radius from one to two). So this forms an infinite family tightening the lower bound
for any value ofk andγP,k(G).

For proving there is no upper bound forγP,k(G− v) in terms ofγP,k(G), we can consider the star withn
leavesK1,n, for which the removal of the central vertex increases thek-power domination number from 1 to
n. A more interesting example is a generalization of the wheelWk,n (depicted in Fig. 1). It is made ofDk,n

together with a vertexc adjacent to three vertices of degreek + 2 in one particular clique and to one vertex
of degreek+ 2 in all the other cliques. Observe that forn ≥ k+ 2, {c} is the only power dominating set of
Wk,n of order one, and thus we getradP,k(Wk,n) = radP,k(Wk,n, {c}) = 2+3⌊n−1

2 ⌋+2((n−1) mod 2).
The removal ofc induces the graphDk,n, increasing thek-power domination number from 1 ton, and
dropping the propagation radius from roughly3n

2 to 1. 2

More constructions could be proposed to show that the propagation radius of the graph can evolve quite
freely when a vertex is removed, and there is little hope for other bounds on this parameter when a vertex is
removed. The most unlikely example is that the removal of a vertex increase both thek-power domination
number and the propagation radius by unbounded value. This is possible with the following variation on
Wk,pn. Considerpn subgraphs(Hi)0≤i<pn, all isomorphic to a clique minus an edge, onk + 3 vertices
wheni ≡ 0 mod p and onk + 1 vertices otherwise. We again connect the extremities of themissing edges
in the clique into a cycle joiningHi toHi+1 (mod pn), and add a vertexc adjacent to three vertices of degree
k + 2 in all copiesHi wheni ≡ 0 mod p, and to one vertex of degreek in all the other copies. Then{c} is
a k-power dominating set ofG inducing a propagation radius of two. On the other hand,γP,k(G − c) = n
(one vertex is needed in eachHi, i ≡ 0 mod p) and has propagation radius1+3⌊p−1

2 ⌋+2((p−1) mod 2).

2.2 Edge removal

In a graphG, removing an edgee can never decrease the domination number. More generally, we have that
γ(G) ≤ γ(G − e) ≤ γ(G) + 1. However, the removal of an edge can decrease thek-power domination
number as stated in the following result. Indeed, it may happen that the removal of one edge allows the
propagation through another edge incident to a common vertex, and thus decreases the power domination
number.

Theorem 6 LetG be a graph ande be an edge inG. Then

γP,k(G)− 1 ≤ γP,k(G− e) ≤ γP,k(G) + 1 .

Moreover,
{

if γP,k(G)− 1 = γP,k(G− e), thenradP,k(G) ≤ radP,k(G− e)

if γP,k(G− e) = γP,k(G) + 1, thenradP,k(G− e) ≤ radP,k(G).

Proof: We first prove thatγP,k(G−e) ≤ γP,k(G)+1. LetT be aγP,k(G)-set. IfT is also ak-PDS ofG−e,
then we are done, so assumeT is not. Letj0 be the smallest integerj such thatPj

G,k(T ) ) Pj
G−e,k(T ),

and letv be a vertex inPj0
G,k(T ) \ Pj0

G−e,k(T ). Sincev ∈ Pj0
G,k(T ), there exists some neighbouru of v

in Pj0−1
G,k (T ) such that|NG[u] \ Pj0−1

G,k (T )| ≤ k. SinceNG−e[u] ⊆ NG[u], NG−e[u] is also included in

Pj0
G−e,k(T ), andv cannot be a neighbour ofu any more, soe = uv. Thus we chooseS = T ∪{v} and using

Lemma 4 (with the obvious mapping fromG− e to G, andi = j = j0), we get thatS is ak-PDS ofG− e
of orderγP,k(G) + 1. We also get that ifγP,k(G− e) = γP,k(G) + 1, thenradP,k(G− e) ≤ radP,k(G).

We now prove thatγP,k(G)− 1 ≤ γP,k(G− e). LetT be a minimumk-PDS ofH = G− e andu be an
extremity ofe. We apply Lemma 4, forS = T ∪ {u} andi = j = 0. We get thatS is ak-PDS ofG and
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radP,k(G,S) = radP,k(G− e, T ). We infer that ifS is minimal (that isγP,k(G) = γP,k(G− e) + 1), then
radP,k(G) ≤ radP,k(G− e). 2

As an illustration of these possibilities, in the graphG drawn in Fig. 2, the removal of the edgee1 decreases
thek-power domination number, the removal of the edgee3 increases it, and the removal of the edgee2 does
not have any consequence.

Fig. 2: A graphG whereγP,k(G) = 2 = γP,k(G− e2), γP,k(G− e1) = 1, γP,k(G− e3) = 3.

We now propose a graph family where the removal of an edge decreases thek-power domination number
but increases its propagation radius arbitrarily. The graphGk,r,a represented in Fig. 3 satisfiesγP,k(G) = 2
andradP,k(G) = a + 2 (which is reached with the initial set{u, v}). If the edgee is removed, we get a
new graph whosek-power domination number is1 and which has propagation radius(r + 3)(a + 1) + 2.
So no upper bound can be found forradP,k(G − e) (in terms ofradP,k(G)) when the removal of an edge
decreases the power domination number.

Similar graphs where the edge removal increases the power domination number can also be found. For
example, in the graphGk,r,a, if we remove the topmost path of lengtha + 2 from w to v, except for the
vertex adjacent tov, we get another graphG′ such that{u} is the onlyγP,k(G

′)-set of order one, and with
radP,k(G

′) = (r + 2)(a + 1) + 3. Removing the same edgee, now{u, v} is a minimumγP,k(G
′ − e)-set

andradP,k(G
′ − e) = a + 2. This illustrates the fact that no lower bound can be found for radP,k(G − e)

(in terms ofradP,k(G)) when the removal of an edge increases the power domination number.

We now characterize the graphs for which the removal of any edge increases the power domination num-
ber. Define ageneralized spideras a tree with at most one vertex of degreek + 2 or more. See Fig. 4 for an
example.

Theorem 7 LetG be a graph. For each edgee in G, γP,k(G − e) > γP,k(G) if and only ifG is a disjoint
union of generalized spiders.

Proof:
First observe that ifG is a disjoint union of generalized spiders, then itsk-power domination number is

exactly its number of components, and clearlyγP,k(G− e) > γP,k(G) for any edgee in G.
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a w

e

a

k − 1

a

u v

x1

x2

xr

k + 1

k + 1

r + 1

k

Fig. 3: The graphGk,r,a for k = 3 andr = 4 (zigzag edges represent paths of lengtha).

Let G be a graph and letS be aγP,k(G)-set. We label the vertices ofG with integers from1 to n and
consider the subsequent natural ordering on the vertices. For i ≥ 0, we defineE′

i ⊆ E(G) as follows:
{

E′
0 = {uv ∈ E(G) | v ∈ N(S) \ S, u = min{x ∈ N(v) ∩ S}}

E′
i+1 =

{

uv ∈ E(G) | v ∈ Pi+1
k (S) \ Pi

k(S), u = min{x ∈ Pi
k(S) ∩N(v), |N [x] \ Pi

k(S)| ≤ k}
}

where the minima are taken according to the ordering of the vertices. LetE′ be the union of allE′
i for i ≥ 0.

If we consider the edges ofE′ as defined above oriented fromu to v, then the in-degree of each vertex not
in S is 1, of vertices inS is 0. Also the graph is acyclic, and each vertex not inS has out-degree at mostk.
Thus the graph induced byE′ is a forest of generalized spiders. Note also thatS is ak-PDS of this graph.
We now assume that for any edgee ∈ E(G), γP,k(G− e) > γP,k(G), and we then prove thatE′ = E(G).

By way of contradiction, suppose there exists an edgee in E(G) and not inE′. We prove thatS is a
k-PDS ofG − e. For that, we prove by induction that for alli,Pi

G,k(S) ⊆ Pi
G−e,k(S). First observe that

P0
G−e,k(S) = P0

G,k(S). Indeed, suppose there exists a vertexx in P0
G,k(S) but not inP0

G−e,k(S), thene
has to be of the formxv with v ∈ S. But sincee /∈ E′

0, there exists another vertexu < v in S such that
ux ∈ E′

0, andx ∈ P0
G−e,k(S).

Assume nowPi
G,k(S) ⊆ Pi

G−e,k(S) for somei ≥ 0, and let us prove thatPi+1
G,k (S) ⊆ Pi+1

G−e,k(S). Let

x be a vertex inPi+1
G,k (S). If x ∈ Pi

G,k(S), then by induction hypothesis,x ∈ Pi+1
G−e,k(S). If x /∈ Pi

G,k(S),
then there exists a vertexv ∈ Pi

G,k(S), x ∈ NG[v] such that|NG[v] \ Pi
G,k(S)| ≤ k. Supposee 6= xv.

Then, sinceNG−e[v] ⊆ NG[v] and by induction hypothesis,v ∈ Pi
G−e,k(S), x ∈ NG−e[v] and|NG−e[v] \

Pi
G−e,k(S)| ≤ k, which impliesx ∈ Pi+1

G−e,k(S). If e = xv then by the choice ofE
′

i+1, there exists a vertex

w ∈ Pi
G,k(S), w < v,wx ∈ E

′

i+1 such that|NG[w] \ Pi
G,k(S)| ≤ k andx ∈ NG[w] \ Pi

G,k(S). Then
by induction hypothesis,w ∈ Pi

G−e,k(S), x ∈ NG−e[w] and|NG−e[w] \ P
i
G−e,k(S)| ≤ k, which implies

x ∈ Pi+1
G−e,k(S). ThereforeE(G) = E′ andG is indeed a union of generalized spiders. 2
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Fig. 4: A generalized spider,T

Observe that there also exist graphs for which the removal ofany edge decreases the power domination
number, though we did not manage to characterize them. The simplest example is the complete bipartite
graphKk+2,k+2, in which the removal of any edge decreases thek-power domination number from two to
one. This graph already played a noticeable role among thek+2-regular graphs, as observed in [8]. Another
example is the graphKk+3,k+3 −M , whereM is a perfect matching, in which we haveγP,k(Kk+3,k+3 −
M) = 2 andγP,k((Kk+3,k+3 − M) − e) = 1 for any edgee. More complex examples are the Cartesian
product ofK4 andW5, where thek-power domination number decreases from three to two. A general
family of graphs having this property is the Cartesian product of two complete graphs of the same order
Ka 2Ka, which shall be described in Section 2.4.

2.3 Edge contraction
Contracting an edge in a graph may decrease its domination number by one, but cannot increase it [14]. As
we prove in the following, increasing of the power domination number may occur.

Theorem 8 LetG be a graph ande be an edge inG. Then

γP,k(G)− 1 ≤ γP,k(G/e) ≤ γP,k(G) + 1 .

Moreover,
{

if γP,k(G)− 1 = γP,k(G/e), thenradP,k(G) ≤ radP,k(G/e)

if γP,k(G/e) = γP,k(G) + 1, thenradP,k(G/e) ≤ radP,k(G).

Proof: Let e = xy be an arbitrary edge inG, we denote byvxy the vertex obtained by contraction ofe in
G/e. We first prove thatγP,k(G/e) ≥ γP,k(G) − 1. Let T be a minimumk-PDS ofH = G/e. Suppose
first that the vertexvxy ∈ T , then takingS = T \ {vxy} ∪ {x, y}, the conditions of Lemma 4 hold from
i = j = 0 with the natural mapping fromG \ {x, y} to H \ vxy. We infer thatS is a k-PDS ofG and
radP,k(G,S) = radP,k(G/e, T ). We now consider the case whenvxy /∈ T . Let j0 be the smallestj
such thatvxy ∈ Pj

G/e,k(T ). Let w be a neighbour ofvxy that broughtvxy in Pj
G/e,k(T ), i.e. if j0 = 0,

w is a neighbour ofvxy in T , otherwise whenj0 > 0, w is a neighbour ofvxy in Pj0−1
G/e,k(T ) such that

|NG/e[w] \ P
j0−1
G/e,k(T )| ≤ k. By definition of edge contraction, the edgewvxy corresponds to an edgewx

or wy in E(G). If wx ∈ E(G), then takeS = T ∪ {y}, otherwise takeS = T ∪ {x}. Then, applying
Lemma 4 (with the natural mapping fromG \ {x, y} to H \ vxy and i = j = j0), we get thatS is a
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k-PDS ofG andradP,k(G,S) = radP,k(G/e, T ). This implies that ifγP,k(G) = γP,k(G/e) + 1, then
radP,k(G) ≤ radP,k(G/e).

We now prove thatγP,k(G/e) ≤ γP,k(G)+1. LetT be a minimumk-PDS ofG and letS = T \{x, y}∪

{vxy}. Let j0 be the smallestj such thatNG[x]∪NG[y] ⊆ Pj
G,k(T ). Here also, we can use Lemma 4 (with

the natural mapping from(G/e) \ vxy to G \ {x, y} andi = j = j0), and get thatS is k-PDS ofG/e. We
also get that ifγP,k(G/e) = γP,k(G) + 1, thenradP,k(G/e) ≤ radP,k(G). 2

The bounds in Theorem 8 are tight. For example, the lower bound holds for the graphsKk+2,k+2 and
Kk+3,k+3 −M , whereM is a perfect matching, but also for the Cartesian product of two complete graphs
of same orderKa 2Ka, as is described in the next section. The upper bound is attained for example for the
generalized spiderT in Fig. 4, which satisfyγP,k(T ) = 1 andγP,k(T/a1b1) = 2 for k ≥ 2.

2.4 On the Cartesian product of twin complete graphs
The Cartesian product of two complete graphs of same (large enough) order is such that removing a vertex,
removing an edge or contracting an edge decrease its power domination number. We here prove these
properties.

Observation 9 Leta ≥ 1 andG = Ka 2Ka. ThenγP,k(G) =

{

a− k if a ≥ k + 2 ,

1 otherwise.

Proof: Denote by{v1, . . . , va} the vertices ofKa. If a < k + 2, then any vertex inG = Ka 2Ka is a
minimumk-PDS. Now, assumea ≥ k + 2. LetS = {(vi, vi) | 1 ≤ i ≤ a− k}. ThenP0

k(S) = {(vi, vj) |
i ≤ a− k or j ≤ a− k} and the set of verticesA = {(vi, vj) | a− k+1 ≤ i, j ≤ a} is yet to be monitored.
Since any vertex inP0

k(S) \ A has either 0 ork neighbours inA and each vertex inA is adjacent to some
vertex inP0

k(S), P
1
k(S) covers the whole graph. ThusS is ak-PDS ofG. Therefore,γP,k(G) ≤ a− k.

We now prove thatγP,k(G) ≥ a − k. By way of contradiction, supposeS is a k-PDS ofG such that
|S| ≤ a − k − 1. Without loss of generality, assume that the elements ofS belong to the firsta − k − 1
columns and rows ofG. Then the vertices in the setB = {(vi, vj) | a − k ≤ i, j ≤ a} are not adjacent to
any vertex inS, andP0

k(S) ∩ B = ∅. Since any vertex inG \ B has either 0 ork + 1 neighbours inB, no
vertices from this set may get monitored later on, a contradiction. 2

Observation 10 Let a ≥ k + 2 andG = Ka 2Ka. ThenγP,k(G − v) = a − k − 1 for any vertexv in
V (G).

Proof: Denote by{v1, . . . , va} the vertices ofKa. We prove the result forv = (v1, v1) which induce the
result for anyv by vertex transitivity. First observe thatS = {(vi, vi) | 2 ≤ i ≤ a− k} is ak-PDSofG− v.
IndeedP0

k(S) = {(vi, vj) | 2 ≤ i ≤ a − k or 2 ≤ j ≤ a − k} then vertices(vi, v1) (resp. (v1, vi)) with
2 ≤ i ≤ a−k have only vertices(vj , v1) (resp.(v1, vj)) with a−k+1 ≤ j ≤ a as unmonitored neighbours,
which are thus all inP1

k(S). The next propagation step covers the graph. ThusS is ak-PDS ofG − v and
γP,k(G− v) ≤ a− k − 1. Now by Theorem 5 and Observation 9,γP,k(G− v) ≥ a− k − 1. 2

Observation 11 Leta ≥ k+2 andG = Ka 2Ka. ThenγP,k(G− e) = a− k− 1 for any edgee in E(G).

Proof: Denote by{v1, . . . , va} the vertices ofKa. By edge transitivity ofG, we can assume thate =
(v1, v1)(v2, v1). Let S = {(vi, vi) | 2 ≤ i ≤ a − k}. ThenP0

k(S) = {(vi, vj) | 2 ≤ i ≤ a − k or 2 ≤
j ≤ a − k}. Now the vertex(v2, v1) has onlyk unmonitored neighbours, namely the vertices(vj , v1) for
a − k < j ≤ a, and they all are inP1

k(S). Then all vertices(vj , v2)for a − k < j ≤ a have onlyk
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unmonitored neighbours and thusP2
k(S) contains all vertices(vi, vj) for i ≥ 2. ThenP3

k(S) contains the
whole graph andγP,k(G− e) ≤ a− k− 1. The lower bound follows from Theorem 6 and Observation 9.2

Observation 12 Leta ≥ k + 2 andG = Ka 2Ka. ThenγP,k(G/e) = a− k − 1 for any edgee in E(G).

Proof: Denote by{v1, . . . , va} the vertices ofKa. By edge transitivity ofG, we can assume thate =
(v1, v1)(v2, v1) and we denote byve the vertex inG/e obtained by contracting(v1, v1) and(v2, v1). Let
S = {ve} ∪ {(vi, vi) | 3 ≤ i ≤ a − k}. ThenP0

k(S) contains all vertices(vi, vj) with 1 ≤ i ≤ a − k and
1 ≤ j ≤ a. After one propagation step, the whole graph is monitored soγP,k(G/e) ≤ a− k− 1. The lower
bound follows from Theorem 8 and Observation 9. 2
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