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Abstract—Extreme classification task where the number of
classes is very large has received important focus over the last
decade. Usual efficient multi-class classification approaches have
not been designed to deal with such large number of classes. A
particular issue in the context of large scale problems concerns
the computational classification complexity : best multi-class
approaches have generally a linear complexity with respect to
the number of classes which does not allow these approaches to
scale up.

Recent works have put their focus on using hierarchical
classification process in order to speed-up the classification of new
instances. Using a priori information on labels such as a label
hierarchy allows to build an efficient hierarchical structure over
the labels in order to decrease logarithmically the classification
time. However such information on labels is not always available
nor useful. Finding a suitable hierarchical organization of the
labels is thus a crucial issue as the accuracy of the model depends
highly on the label assignment through the label tree.

We propose in this work a new algorithm to build iteratively a
hierarchical label structure by proposing a partitioning algorithm
which optimizes simultaneously the structure in terms of classifi-
cation complexity and the label partitioning problem in order to
achieve high classification performances. Beginning from a flat
tree structure, our algorithm selects iteratively a node to expand
by adding a new level of nodes between the considered node
and its children. This operation increases the speed-up of the
classification process. Once the node is selected, best partitioning
of the classes has to be computed. We propose to consider a
measure based on the maximization of the expected loss of the
sub-levels in order to minimize the global error of the structure.
This choice enforces hardly separable classes to be group together
in same partitions at the first levels of the tree structure and it
delays errors at a deep level of the structure where there is no
incidence on the accuracy of other classes. Experiments on real
big text data from recent challenge assess the performances of
our model.

I. INTRODUCTION

Classification with large number of classes has received
recently an increased interest. The democratization of devices
able to record information has led to datasets always bigger.
Bioinformatics, images annotation or text classification are
few examples of tasks where efficient extreme classification
could be used. These new datasets easily contain more than
thousands of classes and it can reach the million of classes in
some cases. Multi-class classification can concern either single
label classification (an example belongs to a single class) or
multi-label classification (multiple classes can be assigned for

each example). In the following we will focus on the single
label classification problem.

Methods that were specifically designed in the past decades
for the multi-class classification are not well adapted to deal
with a very large number of classes : these methods have a
classification complexity linear with the number of classes at
best. This complexity hinders the use of those methods in
many industrial contexts where classification time efficiency
is required (on-line services for instance). Moreover, with
the constant increased of the number of classes, developing
methods that have a classification complexity scaling better
than linearly with the number of classes is of great interest.

Among the usual methods, the most popular one is the
one-versus-all scheme, which consists in learning for each
class a classifier separating the class from the other ones.
The classification process for a given example consists in
predicting the class corresponding to the classifier with the
highest confidence score among all the classifiers. This method
remains one of the most accurate classification methods while
being excessively simple to implement. Even if it has been
shown that in some contexts, it is possible to improve the
performance of one versus all methods [1], [2], the simplicity
and robustness of this framework [3] remains a solid choice
when scalability is not an issue. It is also by nature easy to
parallelize, although it has a classification complexity time
linear with the number of classes which limits its usability
in the context of fast large classification tasks.

Various models have been proposed in order to speed-up
the classification time of the prediction of one example. Among
them, ensemble methods offer an easy and natural way to
control the computational complexity of a model by adapting
the number of classifiers that are aggregated to compose the
model. Such framework is provided by ECOC class encoding
[4], [5], [6]. Several works [7], [8], [9] proposed alternatives
by varying the coding and decoding processes. [10] showed an
alternative and efficient way to learn an appropriate encoding
in the context of large scale classification so as to improve
the efficiency of each code bit. This approach provides a link
between ECOCs and representation learning. Representation
learning methods have been proposed in [11] and [12] where
they try to embed the data using an existing taxonomy.

Another widely studied approach consists in organizing
classifiers in a hierarchical fashion in order to limit the number
of computations needed during classification process : to
classify a given example, only few classifiers are used from



the available set which are in charge to refine at each step the
set of label candidates. Precursor of these methods, [13], uses
classifiers organized in a Directed Acyclic Graphs (DAGs) in
order to improve accuracy and classification complexity, but
this approach have to learn a quadratic number of classifiers
with respect to the number of labels which is highly intractable
in our context. Using a label tree structure is the most common
hierarchical classification model. It consists in a tree where
each inner node is associated with a subset of classes and a
function (generally a classifier or a set of classifiers) which
takes as input an example and predicts the next node in the
hierarchy among the children of the considered node. Each
leaf of the tree has one class associated to it thus any example
reaching this leaf is then labeled with the class associated
to that leaf-node. Considering a complete binary tree with a
distinct label per leaf, the time complexity of the classification
process is thus logarithmic with respect to the number of
labels. However, embedding labels in such hierarchy is not an
easy task and the accuracy of the model dramatically depends
on the label partitioning and on the capacity to separate
effectively at each node the children subsets of labels [14].
When a label hierarchy is provided with the learning task,
the natural label tree deduced from the hierarchy can improve
performances [2]. Otherwise, the label tree has to be inferred
from the available data according to separability measures or
other heuristics [12], [15], [16]. We will review in details recent
research in hierarchical multi-class classification in section II.

In this work, we propose a new hierarchical classification
algorithm for large scale multi-class problems where no sup-
plementary information on labels is available (such as a class
taxonomy). It is composed by two components, the first one in
charge to optimize the hierarchical structure of the label tree
in order to improve classification complexity and the second
one in charge to optimize the label partitioning at a given
node in order to improve the accuracy of the model. Starting
from a flat tree structure with only one inner node (the root
node) and as many leaves than labels, our algorithm iteratively
selects a node to expand, i.e. to introduce intermediary nodes
between the considered node and its children in order to reduce
the classification complexity. The second component is a label
partitioner that will choose how to distribute the labels in the
new children in order to maintain a high classification accu-
racy. The partitioning process is based on a simple reasoning:
two classes that cannot be distinguished are doomed to make
errors in the hierarchy [25], [12]. Thus, the idea is to prevent
these classes to affect negatively the rest of the classification
process and the node responsible for the separation between
these two classes has to be as deep as possible in the label
tree. The contribution of our model regarding this aspect is
to provide a new iterative algorithm that computes a distance
measure between one class and a cluster in order to refine the
partitioning at each iteration. As a result, our approach is able
to iteratively drag deep down in the hierarchy these classifier
type specific errors which will result in two wanted outputs:
1/ the hard separation will be eased if there are few classes to
be taken into account by the classifier and 2/ the upper level
separation problems will be easier to deal with. The Figure 1
shows a basic example of the partitioning intuitive functioning.

The paper is organized as follow : notations and related
work are presented in the section II; Section III presents our
algorithm and its two components; Section IV presents exper-

imental results on real world dataset from recent large scale
multi-class challenges. Finally, section V presents conclusions
and perspectives of the proposed model.

II. HIERARCHICAL MULTI-CLASS CLASSIFICATION

In this section, we introduce the hierarchical multi-class
classification problem and the notations we will use in the
following; next, we review and discuss recent approaches.

A. Notations

Given a label set Y = {0, . . . ,K} with K very large (K >
10, 000) and a training dataset of examples {(xi, yi)} with
xi ∈ RD and yi ∈ Y the label corresponding to the example
xi, the considered classification task is to build a model f able
to output correctly the label corresponding to a new example.
We will consider in the following the usual zero-one loss :

minimize
L

∑
i

1(f(xi) 6= yi) (1)

A label tree is noted by the tuple T = (N,E, F, L), with N
the set of nodes indexed by {1, . . . , n}, E = {(i, j), . . . } the
set of edges (parent, child), L = {s1, . . . , sn} the set of labels
in each node. By definition, the node 1 is the root node. Thus
we have s1 = Y . For each leaf-node e, we have |se| = 1.
For each pair of nodes p, c with (p, c) ∈ E (c child of p),
we have sc ⊂ sp. Let us precise that we are manipulating a
tree structure here and not a DAG, thus there is only one path
between the root and each leaf.

The set F = {f2, . . . , fn} corresponds to the set of
decision functions associated to each node which will be used
to compute the path from the root to a leaf node for an
instance to classify. Each function fi is in fact associated to
the edge just above the node i and indicates how likely is
an instance to belong to one of the labels of the node si.
Thus, the root node has no such function. The classification
process for a new instance begins at the root node which
contains every possible labels. At each step, given the current
node, the next node is computed by selecting among the
children the one whose the associated decision function outputs
the maximal value on the given instance. The instance goes
through all levels of the tree until it reaches a leaf. The
reached leaf gives then the label predicted for the considered
instance. The Algorithm 1 details this classification process.
The computational complexity of the process is the sum of
the degrees of the nodes in the classification path. Thus the
complexity depends on the structure of the tree, from linear in
number of classes when the label tree is a flat structure with
a root node and K leaves, to logarithmic with respect to the
total number of classes by considering a full binary tree as
label tree.

B. Related Work

The task of learning the tuple T has been largely studied
[1]. When prior hierarchical information is provided with
the datasets, the task focuses mainly on the learning of the
classifiers of the set F . These classifiers can be local to the
nodes of the hierarchy [17], [18], [19] or one can train a global
classifier taking into account the underlying hierarchy [20],
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Fig. 1: Partitioning visual example. Let us consider two classes: {Cats} and {Dogs}. At the beginning, the classifying process at
the root is hard (dark node) because clusters are not really homogeneous. By computing separability with each cluster, it appears
that {Cats} confused more with the cluster with {Dogs} inside. Then, {Cats} class is relocated in the same cluster as {Dogs}.
This will improve the global {Cats} vs {Dogs} separability accuracy and it will also ease the top level separation as the clusters
are more homogeneous.

Algorithm 1 Tree Label Classification

Require: {example : x — rootNode of a trained tree T =
(N,E, F, L)}
a← rootNode
while a is not a leaf do

a← arg max{c : (a,c)∈E} fc(x)
end while
return sa

[21], [22]. These methods achieved generally high accuracy
performances as the hierarchical label information provided as
input is often correlated with the learning problem. Works on
refinement of an existing label tree has been proposed in [2],
[23], [24] where accurate modifications of the tree structure
allowed an improvement of the performances.

Howerver, sometimes the hierarchy provided is either non
existing or not useful for the given classification task. For
instances, a hierarchy of medicinal plants based on their
therapeutic property would be of no use if the task is to
differentiate them using only image input.

In this work, we consider the general case where no
hierarchical information on labels is provided with the learning
problem and a suitable hierarchy has to be discover ex-nihilo.
The proposed work focuses on building N , E and L. N
and E can be seen as the skeleton of the classifying tree
whereas L corresponds to the label assignment to each node
of the tree (which labels are associated to which nodes). The
classifiers F are learnt independantly once the structure and the
partitioning are established. Those three components (N ,E,L)
can be learnt altogether but it is often difficult to manage such
degree of freedom in the learning of the hierarchy. Usually, the
structure (N ,E) is locked by specifying a parameter controlling

the number of children per node. Then, using a top-down
approach, the label assignment is learnt at each non-leaf node
of the tree.

For instance, spectral clustering on interclass confusion
matrices [25], [12], [15] has been proposed for learning L on
a pre-built skeleton N -E in a top-down fashion. Specifically,
these approaches aim to compute homogeneous clusters of
classes using the confusion between classes. A parameter
controls the number of children per node globally for every
node and it has to be specified by the user. This is actually
the only parameter which control the trade-off accuracy ver-
sus classification computational complexity. The density class
balance is not controlled and this can lead to unbalanced tree.
Other work proposed to learn a linear discriminant projection
in order to automatically build the hierarchy [26]

In theory, the fastest tree is a binary label tree with perfect
balance of the classes among the nodes (weighted or not by
the size of each class). By decreasing the number of children
per node, the classification tasks are generally harder but the
computational complexity decreases if we consider that we are
using one-versus-all scheme multi-class classification inside
nodes. At the opposite, if the number of children per node
is equal to the number of classes, then the tree is almost flat
and equivalent to a standard one-versus-all scheme, with high
accuracy but poor classification time complexity.

With the addition of redundancy in the label assignment
[16], a more precise control of the trade-off accuracy versus
computational complexity is possible while learning L and F
simultaneously in a top down fashion. In this case, a same
label can be found at different nodes in the same level of the
hierarchy and in multiple leaves. Such a redundancy allows a
better error recovery as one single error of one node does not
anymore mean an error at the end of the classification process



but increases slightly the classification time complexity.

Other works proposes to learn F before the node labeling
L. In [27], a clustering of the example is learnt at the root node.
Then a label assignment L is learnt for each node using pre-
computed one-versus-all scorer models that will be used finally
as F component in each node to make the final prediction. The
tree obtained with this model is always of depth 3 with the
mid level being the result of the label assignment. Recursive
non-negative matrix factorization has been proposed [28] to
learn L by solving minimization of an information-theoretic
loss function at each step. [29] tried to globally learn L and F
by masking label in the nodes. At each step, confusing classes
are not taken into account in the training of the node classifier.
Another way around is to build in a bottom-up fashion the label
tree. [30] developed a metric between classes based on features
frequency for each class. [31] used a one-class SVM in order to
compute its proximity metric between classes. The problem of
reducing the training time complexity has been explored with
the conditional probability tree [32] model where the label tree
is built in an online fashion, and more recently in [33].

C. Discussion

The aforementioned approaches output generally a fixed
tree structure depending on control parameters (number of
children per node for instances) without exploiting actively
the different shapes that a real hierarchy may require. Most
of suitable approaches for large scale problem use a greedy
exploration algorithm in a top-down partitioning scheme or
bottom-up aggregative scheme which brings long term control
issues for the future steps.

We propose in this work a greedy algorithm which aims
to learn a suitable structure N and E, and the partitioning
of the label L simultaneously. Beginning from a flat tree
structure with a root node and only leaves, each step of the
proposed algorithm iteratively expands node in the label tree
by partitioning the labels present into that node in a number of
children. Two contributions are proposed in the following : 1) a
global iterative learning algorithm that will build successively
the tree structure N and E by selecting most favorable node to
expand; 2) a partitioning algorithm for the learning of L that
takes into account the family class of classifiers F that will
be used inside each node in the final tree of classifiers. The
global iterative learning algorithm is learning the middle stage
of the hierarchy each time in order to avoid the problem of
top-down and bottom-up greedy learning. The optimal number
of children is computed each time in order to equally allocate
computation charge above and under the building node level.

III. HIERARCHICAL LABEL PARTITIONING

This section presents the proposed algorithm. Firstly we
introduce the global scheme of our algorithm; next we present
the algorithm responsible for the optimization of the hierarchi-
cal structure; finally we present our partitioning algorithm.

A. Overview of the approach

The main step of the proposed algorithm is to select an
existing node in the tree in order to expand it into smaller
clusters. Choosing the node to expand allows to control the

structural evolution of the label tree and to control the speed-
up in terms of classification time complexity. Optimizing the
assignment of labels among the new created nodes is highly
correlated to the final accuracy of the inferred model. Unlike
tree partitioning label in recent state of the art methods that
try to build successively the tree by beginning at the top (top-
down approaches) or at the bottom (bottom-up approaches),
our model begins by inferring the label clusters that will be
located in the middle level of the final label tree. The Fig. 2
shows the functioning of the global algorithm.

Tree
Initialisation

Selection of
node to expand

Local
Partitioning

Return
Label Tree

loop

Fig. 2: Functional diagram of the overall algorithm. At the tree
initialization, the tree is flat: it has one root and K leaves with
the K different labels. At each step of the loop, one node is
selected and a partitioning of its children is computed. When
the aimed complexity is reached, the algorithm end. Classifiers
inside each node are then trained.

Once the node to expand has been selected, the label
partitioning at this node begin. To grasp the idea behind what
the algorithm does, let us discuss about the location of the
closest ancestor node for two classes. This closest ancestor
node is the lowest node in the hierarchy containing the two
classes. The ancestor node of two classes that make mistakes
is better situated deep-down in the hierarchy (at the lowest
level possible) because the difficult task of separating these
two classes won’t affect the classifiers accuracy of nodes
on top (i.e. higher) of their ancestor node. Furthermore, a
classifier trained to separate two classes is more likely to be
more accurate in his task compared to the classifier trained to
separate the same two classes augmented with other external
classes. Thus, the motivation of globally lowering the closest
ancestor node is beneficial to the final hierarchy by helping
difficult classes separation by making it happened at lower
levels and by preventing to impact negatively the accuracy of
top level classifiers with difficult class separation problems.

The proposed algorithm iteratively builds clusters in order
to ensure that the closest ancestor node for all the hardly
separable pairs of class subsets is the lowest possible.

The learning of the label tree partitioning can be divided
into two parts: 1/ the overall algorithm that select which
node to expand (Section III-B) and 2/ the aforementioned
partitioning algorithm that details how the partitioning is done



given a node and its set of labels to separate (Section III-C).

B. Iterative Expansion Algorithm

The iterative expansion algorithm aims at selecting the
nodes to expand in order to build successively the label tree.
Moreover, it dictates also the number of cluster that should be
aimed at during the partitioning process. There are then two
problems to solve. The first one is to select the node to expand
and the second one is to select the size of the intermediary level
that is beeing created. Fig. 3 shows the expansion of one node
of the hierarchy by creating an intermediary level.

Iteration T to T + 1

Fig. 3: Effect of one label partitioning iteration. The green
node is the one that will benefit the most from an additional
level of label partitioning.

For the first problematic which is the selection of the
node to expand, our goal is to reduce the classification time
computation. In order to measure the speed-up of our model,
we introduce the complexity ratio. The complexity ratio for a
model is the ratio between the equivalent number of classifier
evaluations used by the model and the number of evaluations
that would use a one-versus-all method. The number of clas-
sifier needed by a one-versus-all strategy is equal to the total
number of labels. The complexity ratio of a given model is
superior to one if it is slower than a one-versus-all strategy
and inferior to one if it is quicker to classify the class of a new
example. This complexity ratio take into account the example
density specific for each classes.

Given a complexity ratio to reach, the algorithm will iterate
successively the partitioning process of nodes until the aimed
complexity ratio is reached. To do so, we can define a local

complexity ratio regret for each node of the hierarchy. This
is simply the difference between the optimal local complexity
ratio possible and the current local complexity ratio (which is
always one):

Rcomp(n) =
1

|sn|
(|sn| − log2(|sn|))

The algorithm selects the node which has the highest
complexity regret in order to add a hierarchy level under
this node. Algorithm 2 describes the overall iterative learning
process to build the label tree. At the beginning, the tree is flat:
one root and K leaves directly under the root. At each iteration,
the node with the maximum cost is selected to be expanded
by using the partitioning algorithm that we will detail further.
When the overall tree is able to classify as fast as required,
the algorithm stops and the classifiers inside each node are
trained.

The complexity ratio that control when to stop the expan-
sion of the tree T is estimated by the function fcomp:

fcomp(T ) =
∑
n∈A

wn
|sn|
K
|Cn|

where A = {n| |Cn| > 0}

with Cn the set of children of the node n and wn the weighting
that consider the example density of the class n normalized
over the whole training set.

That function computes the expected sum over the compu-
tational cost of each node by example divided by the number
of class. The cost per node is proportional to the size of the
node and to the number of children of this node.

Algorithm 2 Learning the label tree

Require: Tree T = (N,E, F, L)
Require: m the aimed complexity ratio.

while fcomp(T ) > m do
n̂ = arg maxnRcomp(n)
Compute partitioning : Pn̂
Update Tree T

end while
return T

Once a node has been selected to be expanded, we need
to select the size of the intermediary level that is created. The
goal is the same as previously : minimizing the complexity
ratio. Let us define as d0 the out-degree of the top node and
d1 the out-degree of all the nodes of the intermediary level.
Then, the resolution of the following system : minimize d0 +
d1 s.t d0 d1 = K, d0 > 0, d1 > 0,K > 0 corresponds to
the optimal structure parameters to reach the lowest possible
complexity ratio. The system is solved when d0 = d1 which
means that d0 =

√
K.

This solution has an interesting property : the intermediary
level that is created at one node n will be, if the tree is fully
expanded, equally distant from the node n and from the leaves.
This means that the algorithm is building the hierarchy by



infering the middle level of it first. In fact, the usuals top-
down approaches suffer from the lack of visibility of several
steps ahead. That means that the partitioning at the root node
is not easy as the clusters found may not be suitable for the full
label tree organization. The bottom-up approaches have to deal
with the aggregating task where every pairs of classes behave
similarly as the space dimensionality is very large. With our
method which infer the mid level clusters between two existing
levels of the label tree, we do not have the same issues.

For instance, if our label tree has only two levels with the
root node at the first one and 10,000 leaves at the second one,
the size and number of middle clusters wanted is 100 as it will
evenly distribute the workload of the hierarchy: the root node
will spread into 100 nodes and each of these node will spread
into 100 leaves. By building this mid-level of the label tree,
each example will go through 200 classifiers (100 + 100) in
place of the 10000 before the addition of the new mid-level. By
taking the square root of the number of children, we provide
the greatest speed-up possible.

C. Label Partitioning Optimization

The goal of this algorithm is to partition the set of children
nodes of a particular node of the tree. Given a node n, its set
of children Cn and a number Q of clusters to build , the label
partitioning process aims at learning an optimal partitioning
Pn = {p1, . . . , pQ} with pi ⊂ Cn and

⋃
i pi = Cn and

∀(pi, pj), pi ∩ pj = ∅. To avoid to converge to unbalanced
clusters, a maximum pmax number of node per cluster can be
set. Experimentally, it can be automatically set to force perfect
balance of nodes in the clusters.

The principle goal of the partitioning process here is to
force nodes that are not easily separable to be in the same
cluster. Thus, for a given class, our main focus is to guide
it to the cluster that will hardly dissociate it from the other
cluster classes.

Let us define fy,s the classifier trained to separate class y
from a set of classes s that returns +1 if x is inferred as being
from class y, and −1 if the example is inferred as being from
the classes set s. We define e(y, s) the sum of the classification
errors of the examples of the label y when the label y belong
to the cluster s:

e(y, s) =
∑
i|yi=y

1(fyi,s(xi) 6= 1)

Then, we want to maximize this intra errors over all the
clusters:

maximize
P

∑
p∈P

∑
y∈s

e(y, sp) (2a)

subject to: ∀(pi, pj), pi ∩ pj = ∅ (2b)⋃
i

pi = Cn (2c)

∀p, ‖p‖ ≤ pmax (2d)

As usual with integer programming, the optimization prob-
lem is intractable as is. We propose the following relaxation

consisting in a two steps iterative algorithm : at first, a random
classes assignation is drawn for each cluster. At each iteration,
the algorithm computes classifiers for each class ŷ against
all the classes containing in each cluster. It updates next the
partitioning by assigning for each class ŷ the cluster with the
highest summed loss over the examples of the class ŷ. The
algorithm is given in Algorithm 3. The algorithm terminates
when the loss is stable, i.e. when the new loss is inside an
ε-ball distance from the last one. Practically, if the training of
classifiers is costly, it is possible to use one-class classifiers in
order to factorize the workload and greatly reduce the number
of classifiers to train.

Algorithm 3 Tree Label Classification

Require: { node n, nb of clusters Q }
Initialise randomly Q clusters : P
while Computed loss not stable do

for each class y do
for each cluster p do

Compute classifiers : fy,sp
end for

end for
Assign label y to cluster arg maxp e(y, sp)

end while
return P

IV. EXPERIMENTS

A. Datasets

Two public datasets were used to assess our model. The
first one Sector is a dataset of web page texts with 105 classes
[34]. The second one is the DMOZ dataset (or ODP for Open
Mozilla Directory) that was used during the recent challenge
LSHTC [35]. It is a large text documents classification task
with more than 12, 000 different classes. These classes are
organized in an pre-existing hierarchy. This hierarchical in-
formation were not used by the models tested here but it is
valuable to compare the hierarchy that our model is able to
build with the original one. However, a study of the hierarchy
produced by our method were performed in order to compare
it to the original hierarchy in Section IV-E. The test and
validation sets were the same as the ones of the challenge.
A word count and a TFIDF feature transformation have been
applied on the raw documents by the challenge organizers.
Statistics of these datasets are available in the Table I.

DMOZ Sector
# training instances 93805 6992
# validation instances 34905 1469
# test instances 34880 1158
# features 347255 55198
# classes 12294 105

TABLE I: Statistics of the datasets used.

B. Protocol

We first compared our methods with two state of the art
label tree building methods. The first one is using spectral
clustering as described in [12]. A confusion matrix is computed
based on the validation set. Then, spectral clustering is applied



recursively in a top down fashion in order to build the label
tree. The second one is building a single partition level label
tree [27] by using k-means on examples of interest, and then
performing a label assignment to these cluster based on the
examples inside each cluster. We also computed classic ECOC
methods as described in [4], [36] (with two different decoding
processes) in order to compare our method to flat methods.
Coding process has been done by randomizing 5000 thousands
coding matrices. The coding matrix maximizing hamming
distance between the code of each class is kept. Two different
decoding are used: a classic hamming distance decoding, and a
much more sophisticated loss based decoding using classifiers
margins[6]. We computed one-versus-all scheme to have an
idea of one of the best performers on these problems of large
scale classification. Finally, we computed a label tree based
only on the original hierarchy (when available).

For all these methods, the sub classifiers that were aggre-
gated are all SVM linear models which proved to be very
robust for these tasks. They have been regularized over the
same validation set for each model1.

As one of the main purpose of such hierarchy is to speed-
up the classification process, we defined a measure to compare
fairly the speed-up of each methods: the complexity ratio is
simply the ratio between the number of classifiers used by the
model and the number of classifiers that would have been used
by a one-versus-all standard flat scheme (which actually uses
a number of classifiers equal to the total number of classes).
Thus, a complexity ratio of 1 means no speed-up compared
to one-versus-all scheme. And a complexity ratio inferior to
1 means that the model use less classifiers than the reference
flat model.

We did not add speed-up techniques using feature di-
mensionality reduction as we only aimed here at a structural
reduction of the classification time by limiting the number of
classifiers used for the classification of a new document.

We recorded the standard multi-class classification accu-
racy on test set for each models for different computational
complexity ratio. For each model, we used parameters like the
number of children per node, or the length of the code for
the ECOC models, in order to achieve comparable complexity
ratio.

C. Results

Tables II and III show accuracy results for different
complexity ratio (speed) on the DMOZ dataset and on the
sector dataset. Our model is able to produce slightly better
results than standard one-versus-all scheme while performing
the classification task significantly faster (×55). The other
methods able to produce comparable speed-up are not able to
achieve similar performances. With the increase of the speed-
up, the performances of all the methods decrease rapidly. Still,
our approach outperforms others with a significant margin.
The results from the single partition level model were not
satisfying as the k-means lead to highly non balance clusters
on these datasets, and thus this model results are not reported

1The implementation comes from scikit learn library (LinearSVC). Sim-
ilar parameters were used for all the compared methods : (l2 loss, automatic
class weighting and l2 penalty).

in the tables. We put for reference only the performance
of the label tree using the original hierarchy information
(Hierarch-Ontology). As this information was not used by
all the compared methods, the performance obtained by this
model should not be compared directly. Each column indicates
performances of the models for one specific speed-up. When
the model is not able to produce a model adapted for a given
speed-up, a dash (−) is inserted in the corresponding cell. For
instance, one-versus-all scheme results appear only in the first
column with no speed-up as it is impossible for it to reduce the
number of classifiers to use to get a faster prediction. The graph
in Fig. 4 shows the accuracy evolutions of the different models
with the variation of the complexity ratio. For our approach,
the worst complexity ratio is obtained after one iteration of
the algorithm. However, we designed the process to optimally
reduce de classification complexity. Thus, our slowest point is
not that slow compared to other methods which explains why
we do not have slower points.

D. Discussion

It is interesting to note that ECOC type model suffers
more of extreme speed-up compared to hierarchical model:
at the first complexity ratio, the Ecoc-LossBased shows better
performance than the hierarchical clustering, while at the most
extreme complexity ratio, the hierarchical clustering model
performs better. This is explained by the inherent property of
hierarchical model. It is very easy to achieve strong computa-
tional classification time reduction with a hierarchical model.
With such model, the different classifiers are optimally chosen
: there is one at the root which deal with all the classes.
Then, for each lower levels, classifiers become more specific
as the number of labels is strongly reduced. With ECOC
models, classifiers are much similar with one another. Thus, by
reducing drastically the number of classifiers, it appears rapidly
a decrease of the performance as it lacks specific information
to separate every class to every other classes. Our model is
able to produce better results than slower flat model with the
same type of classifiers. Even a label tree built directly from
the classes hierarchy given with the DMOZ dataset produce
slightly less accurate predictions. It has to be noted that the task
asked during the challenge allowed the use of the hierarchical
information which explains the better results obtained by the
top participants.

The sector dataset is quite different from the DMOZ one
as it comes without any prior hierarchical organization of its
classes. This does not mean that there are no hierarchical
organization possible for this dataset. However, it appears that
finding a hierarchy for the classes of this dataset were not as
successful as finding one on the DMOZ dataset. Our approach
still performs better than state of the art methods for similar
speed-up but it is slightly less accurate than the one-versus-
all model (which use far more computational power to do the
classification of documents).

A study more in depth of the level specific errors during
the iterations of the algorithm is helping to get the intuition of
the heuristic used in our approach. Fig. 5 shows an example
of the evolution of the accuracy of different level of the
hierarchy during the partitioning of the 12294 classes of the
DMOZ dataset. It can be noted that the algorithm successfully
degraded the error of the second level by putting class into the



Models Type Acc C@1 C@0.018 (×55) C@0.0012 (×83) C@0.0081 (×125)

One against all - OAA Flat 38.28% - - -
Hierarch-Ontology Tree - - - 38 .05%

Our Tree - 38.58% 36.45% 33.71%
Hierarch-Clustering Tree - 32.83% 32.78% 31.37%

Ecoc-Hamming Flat - 29.61% 25.06% 21.19%
Ecoc-LossBased Flat - 34.17% 32.08% 30.55%

TABLE II: Accuracy results for 13K classes on DMOZ dataset. We reported in bold font the best significant results for each
speed-up. We put in italic the results using additional information. Each column is associated with a specific speed-up. The dash
(−) character is used when the model can not be computed for the specified speed-up.

Models Type Acc C@1 C@0.2 (×5) C@0.14 (×7)

One against all - OAA Flat 94.1% - -

Our Tree - 93.7% 90.4%
Hierarch-Clustering Tree - 88.5% 88.2%

Ecoc-Hamming Flat - 27.7% 18.3%
Ecoc-LossBased Flat - 89.6% 73.5%

TABLE III: Accuracy results on sector dataset with 105 classes. We reported in bold font the best significant results for each
speed-up.
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Fig. 4: Accuracy results on DMOZ dataset function of the complexity ratio. The black line is actually just the extension of the
point corresponding to the one-versus-all which would be situated at 1 on the x axis if the full x axis was displayed here.

cluster which had the most issue with the classification of this
class examples. By doing so, the algorithm refined the partition
by computing homogeneous classes together. This leads to an
improvement of the classification quality at the top level as the
separability at the top is eased by the homogeneous partition.

E. Hierarchy Study

Although the aim of this work was not to produce an
pertinent hierarchy, we compared the obtained hierarchies (our
model and the spectral clustering) with the original one. One
way to evaluate the pertinence of the hierarchy extracted is
to simply compared it to a gold standard one as described
in [37]. Thus, we compared the hierarchy obtained with the
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Fig. 5: Example of the behavior of the errors during partition-
ing algorithm. These two accuracy curves are the accuracies
of the classification process at specific level of the hierarchy
during the partitioning of the 12,294 classes into ~100 nodes.
The top level is the one between the root and the ~100 nodes.
The second level is the one between the ~100 nodes and all
the leaves.

hierarchical clustering baseline model and our partitioning
model with the original class hierarchy given with the DMOZ
dataset.

To do so, we define a neighborhood function N that take
a class ` and a label tree T . Given a tree distance metric ∆,
we can compute for that class the set of classes that are closer
to a given radius θ in the label tree:

Nθ(`∗, T ) =
⋃

{`|∆T (`∗,`)≤θ}

`

.

Then, we compare the neighborhood obtained in the com-
puted label tree with the neighborhood observed in the original
hierarchy. Let us define To the label tree built using the original
hierarchy. We can compute a precision of a computed label tree
T :

Pθ′(T ) =
1

K

∑
`

Nθ′(`, T ) ∩Nθ(`, To)
Nθ′(`, T )

and a recall:

Rθ′(T ) =
1

K

∑
`

Nθ′(`, T ) ∩Nθ(`, To)
Nθ(`, To)

By varying the threshold θ′, we obtain the curve Fig. 6. By
doing similarly with the specificity, we can compute ROC
curve seen Fig. 7. These were plot with an original threshold θ
of 3 and by randomizing 1000 sub sampled classes to reduce
the quadratic number of comparisons needed to compute the
neighborhood.

Those graphics show the ability of our model to partially
recover the original hierarchical information that has never
been used by the model. The standard hierarchical clustering is
able to recover some of that information compared to a random
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Fig. 6: Comparison of classes hierarchies computed with the
different compared models versus the original hierarchy for the
DMOZ dataset. The higher the precision and the recall are, the
closer the model is from the original hierarchy.
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Fig. 7: Comparison of classes hierarchies computed with the
different compared models versus the original hierarchy for
the DMOZ dataset.

label tree. Our model is nonetheless far better at recovering this
information.

V. CONCLUSION

We proposed in this paper a new algorithm for the hier-
archical large scale multi-class classification problem. Starting
from a flat tree with a large number of leaves - the entire set of
classes - our algorithm selects iteratively a node and expands
it in order to optimize the classification time complexity by
creating a new level of nodes in the tree between the selected
node and its children. We propose a partitioning algorithm
based on the maximization of the error in each new node in
order to ensure that difficult classes separation problems are
rejected at the low levels of the tree and thus reduces globally



the error of the model. The proposed approach is generic and
does not depend on a particular family of classifiers as the
partitioning phase uses for the error estimation any classifiers
family that will be used at the end by the model. This fact
can explain the excellent experimental results obtained on
real datasets compared to other hierarchical approaches which
treat the partitioning problem and the problem of learning
the decision function predicting the next node as two distinct
learning problems. The other benefit of the proposed algorithm
is that it explores a more diversified structure space as the tree
structure is not fixed from the beginning of the process but
rather optimized at each step.

Future work will focus mainly on two aspects. The first one
is to extend the algorithm to redundant label trees, where a la-
bel can correspond to multiple leaves, which allows to achieve
better classification performances. How to select which label
to duplicate, at which level without hindering the classification
complexity are questions of interest. The second one is to study
the adaptation of this algorithm to the multi-label classification
task where an instance can belong to multiple classes.
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