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Abstract. Extreme class classi�cation concerns classi�cation problems
with very large number of classes, up to several millions. Such problems
have now become quite frequent in many practical applications. Until
recently, most classi�cation methods had inference complexity at least
linear in the number of classes. Several directions have been recently
explored for limiting this complexity, but the challenge of learning an
optimal compromise between inference complexity and classi�cation ac-
curacy is still largely open. We propose here a novel sequential ensemble
learning approach, where classi�ers are dynamically chosen among a pre-
trained set of classi�ers and are iteratively combined in order to control
e�ciently the trade-o� between inference complexity and classi�cation
accuracy. This model allows us to control this trade-o� during the infer-
ence process which is a unique characteristic in the extreme classi�cation
literature. Experiments on a large public dataset are provided to assess
the performance of the model w.r.t. a series of baselines and to analyze
its behavior.

1 Introduction

Classi�cation problems involving very large number of classes have progressively
emerged over the last years and are attracting an increased attention in the ma-
chine learning community and in �elds like vision, Natural Language Processing
or bioinformatics. Extreme classi�cation competitions have been recently orga-
nized, like for example the Large Scale Hierarchical Text Classi�cation Challenge
[23] with up to 320 k classes or the Imagenet Large Scale Visual Recognition chal-
lenge [4] with up to 21 k classes. Extreme classi�cation poses several challenging
issues, the �rst one being the control of the computational complexity, but also
data scarcity and class imbalance since many classes will have only a few sam-
ples, label correlation and dependency. Also the situations and problems might
be very di�erent according to the very nature of the data itself.

Classical multi-class classi�cation methods like one versus all have a com-
plexity at best linear in the number of classes. Surprisingly, one versus all tech-
niques are, up to now, among the strongest contender in term of classi�cation
performance for large class number classi�cation problems [25, 26]. Hierarchical



methods [13, 3, 5, 18, 19, 30], relying either on existing hierarchies or on learned
ones allow us to limit this complexity up to a theoretical factor (logarithmic
with respect to the number of classes) which in practice is never met. Moreover,
this complexity reduction most often comes with a reduction in the classi�cation
performance. These two families are prone to class imbalance and data scarcity
problems. Other methods like compact class encodings may alleviate this last
problem but only allow for a limited complexity reduction.

We are interested here in the development of �exible methods, with a complexity
that can be adapted online to the nature and the constraints of the problem.
We propose a model which, starting from a large pool of pre-trained binary
classi�ers, adaptively and sequentially chooses for each example during inference,
an optimal ensemble of classi�ers to be combined for dealing with this speci�c
example. The sequential choice of classi�ers is based on probability bounds, so
that at each step the algorithm will maximize the number of potential classes that
can be discarded for this example and at the same time recording informations
for the relevant class. Said otherwise, the goal of the algorithm is to focus as fast
as possible on a set of potential candidate classes for the example. Contrarily
to hierarchical classi�ers, this algorithm is able to recover from the errors of
preceding classi�ers during the sequential process. It also has an interesting
anytime property: it can be stopped anytime and provides a guess for the class
of the example.

Overall, this contribution introduces a novel way to consider large scale classi�-
cation problems. By optimally choosing a sequence of classi�ers among an initial
pool the proposed method - named SaDyC for Sequential Dynamic Classi�ca-
tion - lies between hierarchical and ensemble learning methods : the selection
on the �y of the most informative classi�er can be viewed as the discovery of
the best hierarchy to follow for a given example; when most of classes have been
discarded and a few are remaining, the behavior of our algorithm is similar to a
majority vote algorithm.

Section 2 presents the related work. Our sequential decision formalism is de-
tailed in Section 3. Experimentations on large scale datasets from LSHTC chal-
lenge and comparison with a series of state of the art baselines are presented in
Section 4.

2 Related Works

One-versus-rest. As already mentioned, the basic one versus all technique re-
mains one of the most e�cient classi�cation methods regarding classi�cation
accuracy, in the case of large class numbers. Even if it has been shown that in
some contexts, it is possible to improve the performance of one versus all meth-
ods [20, 2], the simplicity and robustness of this framework [25] remains a solid
choice when scalability is not an issue. It is also by nature easy to parallelize.



Hierarchical methods. Hierarchical models naturally reduce the inference time
complexity. When a class taxonomy is available, one possibility is to train a
classi�er for each node. [20] describes a wide scope of such methods. A problem
faced by hierarchical classi�cation is that errors made on one node cannot be
recovered and thus rapidly accumulate. Usually, instead of using potentially large
available hierarchies, authors make use of reduced ones with only a few layers.
When no class hierarchy is provided, it is still possible to learn one. Supervised
clustering has recently been used in order to build such label hierarchies. Spectral
clustering on interclass confusion matrices [3] for example has been proposed for
learning a class hierarchy. This work has been extended to overlapping label tree
[13] where the same label can be found at di�erent nodes in the hierarchy. Such
a redundancy allows a better error recovery. Other works have tried to learn a
label tree by using a score function in the partitioning optimization problem [30],
while some have proposed to learn a probabilistic label tree [22]. The problem
of reducing the training time complexity has been explored with the conditional
probability tree [5] model where the label tree is built in an online fashion, and
more recently in [8].

Representation learning. Another perspective has been developed by learning
compact class codes that allow a reduction in the number of classi�ers. [29] and
[3] proposed a way to embed the data using an existing taxonomy. The idea is to
learn a class embedding that keeps similar classes close one to the other in the
new space. Inference is done by computing the centroids of each class into the
embedded space and by assigning the closest class for each projected example.

Ensemble methods. Ensemble methods o�er an easy and natural way to control
the complexity of a model by adapting the number of classi�ers. Such a frame-
work is provided by ECOC class encoding [14, 27]. [24] has proposed to improve
the decoding process for ECOCs by using the loss value of each classi�er during
the inference process in place of the most common decoding processes (hamming,
euclidean, probabilistic, laplacian). The encoding of ECOCs is usually done by
randomizing the coding matrix. [9] showed an alternative and e�cient way to
learn an appropriate encoding in the context of large scale classi�cation so as
to improve the e�ciency of each code bit. This approach provides a link be-
tween ECOCs and representation learning. Recent work on sparse coding [31]
has shown how to combine e�cient coding with probabilistic decoding in a large
scale context.

Sequential approaches. Few works try to solve large scale multiclass classi�ca-
tion with an anytime performance characteristic. The principle of the sequential
model has been discussed in [17] which proved intuitive expected behaviors of
this type of model. Sequential approaches have been used recently for dynamic
feature selections like in [16] but this kind of budgeted classi�cation is di�erent
than our budgeted context. Bandits algorithms [28, 12] have been applied in the
context of on-line learning of multi-class classi�cation problem for a small num-
ber of classes and not to optimize the inference complexity. The most related



framework of multi-armed bandit to our is recent works of [6, 7] looking at identi-
fying the best arm rather than optimizing the trade-o� exploration-exploitation
but the framework is hardly transferable to our context and still main di�er-
ences exist (as for instances the rewards which can not directly observed in our
context, the arms can not be played twice).

3 Proposed Model

The proposed model is an iterative algorithm which accumulates sequentially
positive and negative votes for subsets of classes. Given the initial set of classes
L = {`0, `1, . . . , `L} and an example x to classify, the algorithm will output at
the end of the process the class with the highest mean of positive votes as in
ensemble learning methods. The algorithm 1 presents the general scheme. At
each round a binary classi�er is considered � named dichotomizer � which will
compare two subsets of classes, C+ and C− (C+∩C− = ∅) and will predict if the
example x belongs most likely to a class of C+ or to a class of C−. Positive and
negative votes are recorded accordingly for the classes of C+ and C−. We will
note in the following fC+,C− the classi�er trained to separate the set of classes
C+ from the set of classes C− : fC+,C− is trained such that fC+,C−(x) = 1 for x
from a class in C+ and fC+,C−(x) = −1 for x from a class in C−. At each time
step t, µti will denote the mean of positive votes collected for the i-th class and
µt ∈ [0, 1]L the vector (µt1, . . . , µ

t
L). As the whole set of classes is not necessary

considered at each time step, we need to record the number of times that a class
has been considered : the vector T t = (T t1 , . . . , T

t
L) will denote the number of

times that each class has received a vote (and T ti the number of times that the
class `i has received a vote).

Algorithm 1 General scheme

1: x ← example to classify
2: for t = 1 . . . tmax do

3: Select C+ and C− two subsets of classes of L
4: Compute fC+,C−(x)
5: if fC+,C−(x) = +1 then

6: add a positive vote to classes of C+ and a negative vote to classes of C−

7: else

8: add a positive vote to all classes of C− and a negative vote to classes of C+

9: end if

10: end for

11: return the class with highest mean of positive votes

The accuracy of classi�ers � and thus the accuracy of the votes � is highly
correlated to the number of classes in C+ and C− : separating two small subsets
of classes is more accurate than separating two large subsets [17]. Therefore
asking votes for a small subset of classes is more accurate than asking votes for



all classes. Moreover, the round is informative only if the right class belongs
to one of the two subsets C+ and C−; otherwise the classi�er will output a
random vote without correlation with the class of the example to classify. The
main idea of our approach is to reject at each step the most classes in order to
use sparsest and thus more accurate classi�ers in the next rounds to achieve a
quicker identi�cation of the right class.

This framework is close to the multi-armed bandits framework and more pre-
cisely to the best armed identi�cation of a combinatorial multi-armed bandits
problem [7]. However, instead of taking into account the upper bound con�dence
as in the multi-armed bandits framework, we propose to consider the con�dence
level that the votes of a class deviate too largely from the expected vote distri-
bution under the hypothesis that it is the right class � which is correlated to
the expected accuracy of considered classi�ers. In the case that this hypothesis
is wrong, the con�dence will decrease throughout the iterations and eventually
the class will be rejected. At the opposite, for the true class the con�dence will
never drop too low and the algorithm will keep collecting votes for this class.
Minimizing these con�dences thus answers two objectives : discarding the classes
with lowest con�dence while keeping at aggregating votes for classes with highest
scores. The main di�culty is to select wisely at each round the subsets C+ and
C− in order to optimize the number of discarded classes and the number of votes
of the right class : this task is delegated to an oracle which will be presented in
the following.

3.1 Formalization

Let L = {`0, `1, . . . , `L} be the set of classes de�ning the multi-class problem
considered, with L the number of classes. For the sake of simpli�cation, we
will identify the class `i to the integer i as long as no confusion arises and
x ∈ `i to denote that x is from class `i. We will use a vector v = (v1, . . . , vL) ∈
{−1, 0,+1}L to encode the information of which subsets of classes C+ and C−

are considered at each iteration : for each `i ∈ C+, vi the i-th component of v
will be set to 1; for each `i ∈ C−, the i-th component of v will be set to −1;
for the other classes, the corresponding components will be set to 0. According
to these notations, we will note fv the classi�er corresponding to fC+,C− : fv is
trained such that the examples from the classes {`i|vi = +1} are considered as
positive examples and the examples from the classes {`i|vi = −1} as negative
examples; the examples of the other classes are ignored in the training phase of
this classi�er1.

The norm ‖v‖ indicates the number of classes taken into account by the

classi�er fv. The term sparsity will denote the ratio ‖v‖L for the classi�er fv.
Φ = {fv|v ∈ {−1, 0,+1}L} will denote the entire set of dichotomizers for a given
problem. We will suppose that a binary classi�er outputs a binary decision in

1 In the ECOC framework, such classi�ers are named dichotomizers, as they separate
two sets of classes.



{−1, 1}, and we will note the expected accuracy of a classi�er fv for the class `i
by qv,i = Ex∈`i [vifv(x) = 1].

3.2 Algorithm

Our algorithm aims at 1/ discarding sequentially classes over iterations and
2/ maximizing the number of votes for the right class. Our approach is based
on an upper bound of the deviation of the mean µi of positive votes from
the expectation if `i is the right label. More precisely, given an example x
and its true class `∗, let us notes Hi the hypothesis `∗ = `i and Xi the ran-
dom variable of the mean of positive votes for this label. After t steps where
the classi�ers fv1 , . . . , fvt were considered, the expected mean of accuracy of
the classi�ers is : Qti = E[Xi|Hi] = 1

T t
i
(
∑t
j=1 qvj ,i) and the observed mean is

µti =
1
T t
i
(
∑t
j=0 v

j
i

(fvj (x)+1)

2 ).

By using the Hoe�ding inequality and noting bti = e(−2T
t
i max(0,(Q

t
i−µ

t
i))

2):

P [E[Xi|Hi]−Xi ≥ δ] ≤ e(−2T
t
i δ

2),

P
[
Xi ≤ µti

]
≤ e(−2T

t
i max(0,(Q

t
i−µ

t
i))

2) ≤ bti.

These quantities will allow to discard at each round a certain number of
classes by taking into account a constant bmin which will denote the con�dence
threshold. We use only one side of the Hoe�ding bound, taking into account
max(0, (Qti − µti)), as our goal is to identify when the mean of the votes is too
low compared to the expectation.

The algorithm 2 resumes the principle of our approach : at each step t, a
classi�er fvt is considered and the quantities T ti , µ

t
i, Q

t
i and b

t
i are updated ac-

cording to the evaluation of fvt(x). The selection of the classi�er is delegated to
an oracle which is in charge to �nd the best classi�er in order to minimize the
con�dences bti, i.e. minimize ‖bt‖1. The Algorithm 3 explains the mechanism of
the oracle. It considers the set of dichotomizers which encode only the remain-
ing classes {`i|bti > bmin}. For each of these dichotomizers fv, it simulates the
expected outcome if its use in the next step w.r.t. the vector bt. The function
b+(v) simulates the next state if fv(x) = +1 and the function b−(v) the next
state if fv(x) = −1. The function p(v) is used to weight the possible outcomes
between fv(x) = +1 and fv(x) = −1 according to the current estimation.

3.3 Practical implementation and complexity

The whole set of dichotomizers Φ is generally too large to be pre-computed as
it is growing exponentially with the number of classes. For the practical im-
plementation of our model, a small sample Φs of classi�ers is randomly chosen
and pre-computed. The only control parameter taken into consideration is the
number of classes encoded by the dichotomizers in order to guarantee a wide
range of sparsity. In practice, for each dichotomizer to generate, a sparsity is



Algorithm 2 Inference process

1: x ← example to classify
2: Choose v0 randomly s.t. ‖v0‖ = L
3: T 0

i = abs(v0i ) = (1, . . . , 1)
4: µ0

i = (fv0(x)v
0
i + 1)/2

5: b0i = exp
(
−2t(µ0

i − qv0i )
2
)

6: for t = 1 . . . Tmax do

7: vti = Oracle(bt−1, µt−1, T t−1)
8: T ti = T t−1

i + |vti |
9: µti = (µt−1

i ∗ T t−1
i + fvt(x)v

t
i)/T

t
i

10: Qti = (
∑t
j=1 qvji

)/T ti

11: bti = exp
(
−2t

(
max

(
0, Qti − µti

))2)
12: end for

13: return argmaxi µ
Tmax
i

Algorithm 3 Oracle

1: Given bt, µt, T t, bmin
2: C =

{
i | bti > bmin

}
3: de�ne b+i (v) = exp

(
−2(t+ 1)(max(0, [T ti (Q

t
i − µt) + qv,i − vi)/(T ti + |vi|)])2

)
4: de�ne b−i (v) = exp

(
−2(t+ 1)(max(0, [T ti (Q

t
i − µt) + qv,i + vi)/(T

t
i + |vi|)])2

)
5: de�ne p(v) = v·bt+‖v‖

2
∑L

i=1 |vi|b
t
i

6: return v̂ = argminv∈Φ|vi=0∀i6∈C
∑
i∈C
(
p(v) b+i (v) + (1− p(v)) b−i (v)

)

uniformly drawn between 0.1 to 1, a balance ratio is drawn from a Gaussian
distribution centered at 0.5 to decide how many positive classes and negative
classes will be considered and �nally the classes are uniformly drawn among L.
The dichotomizer is learned on the training set and the expected accuracy qv,i
of each dichotomizer is computed thanks to a validation set.

The complexity of our inference process is highly dependent on the number
of dichotomizers considered and the number of steps Tmax : the complexity τ
of our model is bounded by O((|Φs| + τf ) × Tmax) where τf is the inference
complexity of a dichotomizer. In practice, the complexity is lower : the number
of available dichotomizers is decreasing during the iterations as the number of
discarded classes goes up. Moreover, in the context of large scale classi�cation,
τf is very large compared to |Φs| as it depends on the dimension of the input
space � the number of features � generally more than 105. In comparison, one-
versus-rest schema has a complexity of O(τf ×L), ECOC approaches O(K × τ)
with K the number of codes, and hierarchical methods O(QlogQ(L) × τ) with
Q the number of children per node.

We can notice that an hierarchical classi�cation is a speci�c case of our
approach : given a hierarchy, it is straightforward to compute a set of dichotom-
mizers where each of them corresponds to a node of the hierarchy. Moreover, the
one-versus-rest approach corresponds to the set of dichotomizers where only one



component of v is positive and all the other ones negative. Thus our approach
can be viewed as a bridge between these two approaches and this fact will be
analyzed in depth in the section 4.4.

4 Experiments

4.1 Datasets

The experiments were done using real world data publicly available. The �rst
dataset comes from the recent series of challenges named LSHTC [21]. The
dataset used (called DMOZ, or also know as ODP � Open Mozilla Directory)
represents text documents that can be classi�ed over 12,294 di�erent classes or-
ganized in a class hierarchy. The dataset is already preprocessed with a TFIDF
transformation directly applied to the word count. The test and validation sets
used are the same as the ones from the challenge.

In order to evaluate the scalability of our method, we compared the di�erent
models on the whole DMOZ dataset and on smaller datasets with 1000 classes.
The 1000 classes datasets have been extracted from the DMOZ datasets by sub
sampling classes from the 12,294 original classes. More speci�cally, we randomly
sampled one class and we computed the 999 nearest classes (with cosine norm
based distance between classes censtroïds). Five such datasets were generated.
Sector [?] is another text classi�cation dataset with 105 classes. These di�erent
datasets with several orders of magnitude in the number of classes are used to
show the scaling capacity of our approach. Statistics of the di�erent datasets are
summed up in table 1.

Table 1: Statistics of the datasets used.

DMOZ (full) DMOZ (sub sampled) Sector

# training instances 93805 ∼9400 6992
# validation instances 34905 ∼3500 1469
# test instances 34880 ∼3500 1158
# features 347255 347255 55198
# classes 12294 1000 105

4.2 Protocol

We compared our sequential model with state of the art hierarchical and �at
methods allowing a speed-up of the inference process. We assessed the perfor-
mances of our method by comparing it with label tree partitioning using spectral
clustering as described in [3] and with ECOC methods [15, 1].

We also compare the results obtained by the one-versus-rest method and
by learning a label tree over the original hierarchy for DMOZ dataset - as this
information is available only for this dataset.



In order to compare at di�erent speed-up the performance of the models,
we recorded the accuracy of each model w.r.t the complexity ratio gain : it
represents the number of classi�ers used by each model normalized by the number
of classes. Thus, the complexity ratio will always be 1 for one-versus-rest method
by de�nition. For methods which achieved a speed-up, it will be inferior to one.
The lower the complexity ratio, the better the speed-up is.

For the ECOC implementation, we randomized �ve thousands ternary coding
matrices as proposed in [1] and we kept the one that maximizes the hamming
distance between each code of each class. Then, we decoded the input following
two decoding schemes: the classic hamming distance [15] and the more elaborated
loss-based decoding also showed in [1]. The di�erent speed-up were obtained by
modifying the length of the ECOC codes.

We controlled the speed-up of the spectral clustering method by performing
experiments with di�erent numbers of children per node in the inferred hierarchy
and we reported the best results obtained.

For our model, we used a pool of approximately ten thousands randomly
generated classi�ers for the DMOZ dataset and 300 for the Sector dataset. The
complexity ratio gain is controlled by varying the maximal number of iterations
allowed. We �xed the minimum con�dence constant bmin to 0.01.

In all the methods, the classi�ers used (in the node, or for the ECOC bit
scorer) were SVM [10] regularized over a validation set2.

4.3 Results

Fig. 1 shows the results of the compared methods on the whole DMOZ dataset.
The one-versus-rest approach (label OAA) has the best accuracy but for the
worst complexity ratio, equal to 1. The hierarchical label tree learned from the
original hierarchy (label H-Ontology) has an accuracy close to the one-versus-rest
for low complexity ratio, but this approach is the only one among the studied
methods who uses a priori information on classes to build its model.

The hierarchy learned from spectral clustering (label H-SC) shows impres-
sive performance for very low complexity ratio (under 1%) but its accuracy
is rapidly bounded and does not bene�t from more allowed resources. At the
opposite, ECOC models (label E-Dense for hamming distance decoding and
E-LossBased for loss-based decoding) show medium performances for very low
complexity ratio but the accuracy is growing fast when more classi�ers are used.
Our proposed model (label SaDyC) has an accuracy smaller but close to the
hierarchical clustering for very low complexity ratio (< 1%) and has the overall
best performances when the complexity ratio goes up among methods that do
not use a priori information.

Fig. 3 reports the results for the sampled datasets with 1000 classes from
DMOZ. Similar conclusions as previously can be drawn for the compared ap-
proaches. Moreover, when enough resources are allowed (ratio bigger than 10%),

2 We used the implementation from scikit learn library (LinearSVC) on big datasets
(only for linear SVM). The same meta parameters were used in all the compared
methods (l2 loss, automatic class weighting and l2 penalty).



our model is able to challenge and in some cases to outperform the H-Ontology
model that uses a priori information. Interestingly when complexity ratio is
bigger than 15% our approach has a better accuracy than the one-versus-rest
algorithm.
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Fig. 1: Accuracy of compared methods on full DMOZ dataset for di�erent complexity
ratio values.

Tables 2 and 3 report the accuracy results of the compared methods for a
given complexity ratio of 4% on the DMOZ dataset and subsample datasets of
1000 classes. It con�rms the observations that we reported previously.

Table 4 shows the results for Sector dataset with only 100 classes for a com-
plexity ratio of 20% : similar results are observed than with the large DMOZ
dataset, our algorithm SaDyC outperforming the other approaches3.

4.4 Discussion

One interesting point to discuss is the ability of the hierarchical methods to
perform well for very extreme speed-up. This can be explained by the fact that

3 We did not report directly in the table the result of [8] on this dataset as they did
not used the same dichotomizer type but it can be nonetheless noted that our model
performed better with a large margin.
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Fig. 2: Density (1 - Sparsity) of selected classi�ers during inference process on the full
DMOZ dataset.

hierarchical structure allows easily large speed-up. The fast hierarchy is able
to classify well the most easily classi�ed examples with less errors than other
methods. As more computation resources are allowed, the hierarchical spectral
clustering based model lost its advantage due to the fact that it is not purposely
designed to o�er anytime performances.

What is also interesting with these results is the comparison of our model
with the ECOC Loss-based model. At the greater speed-up, both perform sim-
ilarly. As the inference computation time constraint is relaxed, our sequential
approach shows the best performances as it is designed to use e�ciently the
pool of classi�ers that was given to it. This comes from the ability of our ap-
proach to discard bad classes in order to focus on more valuable information by
choosing accordingly the next classi�er to use. We de�ne classi�er density the
density of the code corresponding to a given classi�er. A density of 1 means that
every classes are taken into account in the classi�er. Fig. 2 shows the decrease of
the density of the classi�ers used through the iterations of our algorithm. ECOC
models did not propose such ability. They are bound to use the same classi�ers
for each new example. To understand this ability of our model, another point
of view is to see our approach as a hierarchical one : for a given example, the
trajectory of the selected classi�ers is similar to a path along a hierarchy. But
rather than considering always the same hierarchy as the usual hierarchical ap-
proach, our model is able to discover the most promising one in the �rst steps of
the algorithm. The Fig. 2 shows that SaDyC spends many iterations considering
not sparse classi�ers, where the hierarchical approach can consider only for a
small number of iterations large number of classes, even if redundancy is allowed
in the label tree (i.e. same labels can be in more than one child). Once the right
hierarchy is identi�ed, the sparsity fall quickly until there is few classes to sep-
arate. At this stage, our approach is able to use at best the bene�t of ensemble
learning methods in order to improve its accuracy.



It can be observed that one-versus-rest model performs better relatively to all
the other methods on the big DMOZ dataset than on the sub sampled datasets.
This is explained by the kind of sampling that has been done to produce the sub
sampled datasets. With less classes to separate, the dichotomizers of the other
methods were more accurate than for the big DMOZ dataset.

Table 2: Accuracy results for 13K classes on full DMOZ dataset. We reported in bold
font the best signi�cant results. We put in italic the results of models that can not be
compared directly with the other methods as they use more information (H-Ontology)
or more inference time (OAA). Same fonts were used in the next tables.

Ensemble Complexity DMOZ (full)
Models Type Ratio Acc%

One-vs-Rest (OAA) Flat 1 (×1) 38 .28%
Hierarchical Ontology (H-Ontology) Tree 0.008 (×125) 38 .05%

SaDyC Flat 0.04 (×25) 36.49%
Hierarchical Spectral Clustering (H-SC) Tree 0.04 (×25) 32.09%

ECOC Hamming (E-Hamming) Flat 0.04 (×25) 33.68%
ECOC Loss Based (E-LossBased) Flat 0.04 (×25) 35.08%

Ensemble Complexity DMOZ (sub-sampled): Acc%
Models Type Ratio Set1 Set2 Set3 Set4 Set5

OAA Flat 1 (×1) 45 .50% 55 .36% 60 .83% 54 .86% 52 .16%
H-Ontology Tree 0.06 (×16) 46 .73% 57 .15% 63 .16% 57 .08% 54 .84%

SaDyC Flat 0.2 (×5) 49.78% 57.43% 62.36% 57.05% 55.29%
H-SC Tree 0.2 (×5) 44.77% 53.72% 58.29% 52.63% 51.97%

E-Hamming Flat 0.2 (×5) 45.03% 51.99% 56.98% 52.38% 50.89%
E-LossBased Flat 0.2 (×5) 46.72% 54.42% 59.15% 54.20% 52.19%

Table 3: Accuracy results for 1K classes sub-sampled DMOZ datasets.

Besides the overall good performances of the proposed method, a key feature
is that our model is the only one able to stop the inference process on the �y
while ensuring top performances. This anytime characteristic has, up to our
knowledge, not been studied in the literature for the large scale classi�cation
problems.

5 Conclusion

We presented in this paper a novel approach to deal with large scale multi-
class classi�cation tasks. Our sequential model can produce an accurate answer



Ensemble Complexity Sector
Models Type Ratio

OAA Flat 1 (×1) 94 .12%

SaDyC Flat 0.2 (×5) 92.67%
H-SC Tree 0.2 (×5) 88.52%

E-Hamming Flat 0.2 (×5) 27.73%
E-LossBased Flat 0.2 (×5) 89.55%

Table 4: Accuracy results for the Sector dataset.

with an anytime performance characteristic that has many possible applications
nowadays. From a pool of classi�ers, the proposed model uses an oracle to select
at each time step the most accurate classi�er in order to optimally discards
classes to keep only the ones of interest and at the same time recording more
informations on classes with high probabilities to be the targeted ones. Thus,
the algorithm can use more speci�c classi�ers throughout the iterations. The
proposed approach can be viewed as a hierarchical one where there is no speci�c
hierarchy at the beginning of the process and �rst steps are used to discover the
most promising one. Our experiments show how our model performs better than
state of the art methods for similar speed-up factors.

The focus of this paper was on how to use a large pool of classi�ers the most
e�ectively. The actual tuning of the pool of classi�ers is a whole di�erent prob-
lematic. As shown in [11], the accuracy of the classi�ers used in the inference
process impacts the theoretical maximum accuracy bound of the overall classi�-
cation process. Thus, the learning of an adequate pool of classi�ers has a lot of
potential to greatly improve the performances of the actual presented model.

Another perspective is to control �nely in an online fashion the compromise
between classi�cation accuracy and execution time. It will allow the model to
adapt to application constraints. For instance in the case of an online classi�-
cation task on a data stream, the latter can �uctuate so that when the stream
speeds up, the allowed computation time may be reduced and when the stream
slows down, computation time may be increased.
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Fig. 3: Accuracy results on 5 sub sampled datasets of DMOZ for compared methods.
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