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Introduction

Classication problems involving very large number of classes have progressively emerged over the last years and are attracting an increased attention in the machine learning community and in elds like vision, Natural Language Processing or bioinformatics. Extreme classication competitions have been recently organized, like for example the Large Scale Hierarchical Text Classication Challenge [START_REF] Partalas | LSHTC: A Benchmark for Large-Scale Text Classication[END_REF] with up to 320 k classes or the Imagenet Large Scale Visual Recognition challenge [START_REF] Berg | Imagenet large scale visual recognition challenge[END_REF] with up to 21 k classes. Extreme classication poses several challenging issues, the rst one being the control of the computational complexity, but also data scarcity and class imbalance since many classes will have only a few samples, label correlation and dependency. Also the situations and problems might be very dierent according to the very nature of the data itself.

Classical multi-class classication methods like one versus all have a complexity at best linear in the number of classes. Surprisingly, one versus all techniques are, up to now, among the strongest contender in term of classication performance for large class number classication problems [START_REF] Perronnin | Towards good practice in large-scale learning for image classication[END_REF][START_REF] Rifkin | In defense of one-vs-all classication[END_REF]. Hierarchical methods [START_REF] Deng | Fast and Balanced: Ecient Label Tree Learning for Large Scale Object Recognition[END_REF][START_REF] Bengio | Label embedding trees for large multi-class tasks[END_REF][START_REF] Beygelzimer | Conditional Probability Tree Estimation Analysis and Algorithms[END_REF][START_REF] Gao | Discriminative learning of relaxed hierarchy for large-scale visual recognition[END_REF][START_REF] Grin | Learning and using taxonomies for fast visual categorization[END_REF][START_REF] Weston | Label partitioning for sublinear ranking[END_REF], relying either on existing hierarchies or on learned ones allow us to limit this complexity up to a theoretical factor (logarithmic with respect to the number of classes) which in practice is never met. Moreover, this complexity reduction most often comes with a reduction in the classication performance. These two families are prone to class imbalance and data scarcity problems. Other methods like compact class encodings may alleviate this last problem but only allow for a limited complexity reduction.

We are interested here in the development of exible methods, with a complexity that can be adapted online to the nature and the constraints of the problem. We propose a model which, starting from a large pool of pre-trained binary classiers, adaptively and sequentially chooses for each example during inference, an optimal ensemble of classiers to be combined for dealing with this specic example. The sequential choice of classiers is based on probability bounds, so that at each step the algorithm will maximize the number of potential classes that can be discarded for this example and at the same time recording informations for the relevant class. Said otherwise, the goal of the algorithm is to focus as fast as possible on a set of potential candidate classes for the example. Contrarily to hierarchical classiers, this algorithm is able to recover from the errors of preceding classiers during the sequential process. It also has an interesting anytime property: it can be stopped anytime and provides a guess for the class of the example.

Overall, this contribution introduces a novel way to consider large scale classication problems. By optimally choosing a sequence of classiers among an initial pool the proposed method -named SaDyC for Sequential Dynamic Classication -lies between hierarchical and ensemble learning methods : the selection on the y of the most informative classier can be viewed as the discovery of the best hierarchy to follow for a given example; when most of classes have been discarded and a few are remaining, the behavior of our algorithm is similar to a majority vote algorithm. Section 2 presents the related work. Our sequential decision formalism is detailed in Section 3. Experimentations on large scale datasets from LSHTC challenge and comparison with a series of state of the art baselines are presented in Section 4.

Related Works

One-versus-rest. As already mentioned, the basic one versus all technique remains one of the most ecient classication methods regarding classication accuracy, in the case of large class numbers. Even if it has been shown that in some contexts, it is possible to improve the performance of one versus all methods [START_REF] Jr | A survey of hierarchical classication across different application domains[END_REF][START_REF] Babbar | On Flat versus Hierarchical Classication in Large-Scale Taxonomies[END_REF], the simplicity and robustness of this framework [START_REF] Perronnin | Towards good practice in large-scale learning for image classication[END_REF] remains a solid choice when scalability is not an issue. It is also by nature easy to parallelize. Hierarchical methods. Hierarchical models naturally reduce the inference time complexity. When a class taxonomy is available, one possibility is to train a classier for each node. [START_REF] Jr | A survey of hierarchical classication across different application domains[END_REF] describes a wide scope of such methods. A problem faced by hierarchical classication is that errors made on one node cannot be recovered and thus rapidly accumulate. Usually, instead of using potentially large available hierarchies, authors make use of reduced ones with only a few layers. When no class hierarchy is provided, it is still possible to learn one. Supervised clustering has recently been used in order to build such label hierarchies. Spectral clustering on interclass confusion matrices [START_REF] Bengio | Label embedding trees for large multi-class tasks[END_REF] for example has been proposed for learning a class hierarchy. This work has been extended to overlapping label tree [START_REF] Deng | Fast and Balanced: Ecient Label Tree Learning for Large Scale Object Recognition[END_REF] where the same label can be found at dierent nodes in the hierarchy. Such a redundancy allows a better error recovery. Other works have tried to learn a label tree by using a score function in the partitioning optimization problem [START_REF] Weston | Label partitioning for sublinear ranking[END_REF], while some have proposed to learn a probabilistic label tree [START_REF] Liu | Probabilistic label trees for ecient large scale image classication[END_REF]. The problem of reducing the training time complexity has been explored with the conditional probability tree [START_REF] Beygelzimer | Conditional Probability Tree Estimation Analysis and Algorithms[END_REF] model where the label tree is built in an online fashion, and more recently in [START_REF] Choromanska | Logarithmic Time Online Multiclass prediction[END_REF].

Representation learning. Another perspective has been developed by learning compact class codes that allow a reduction in the number of classiers. [START_REF] Weinberger | Large margin taxonomy embedding with an application to document categorization[END_REF] and [START_REF] Bengio | Label embedding trees for large multi-class tasks[END_REF] proposed a way to embed the data using an existing taxonomy. The idea is to learn a class embedding that keeps similar classes close one to the other in the new space. Inference is done by computing the centroids of each class into the embedded space and by assigning the closest class for each projected example.

Ensemble methods. Ensemble methods oer an easy and natural way to control the complexity of a model by adapting the number of classiers. Such a framework is provided by ECOC class encoding [START_REF] Dietterich | Solving multiclass learning problems via error-correcting output codes[END_REF][START_REF] Schapire | Using output codes to boost multiclass learning problems[END_REF]. [START_REF] Passerini | New results on error correcting output codes of kernel machines[END_REF] has proposed to improve the decoding process for ECOCs by using the loss value of each classier during the inference process in place of the most common decoding processes (hamming, euclidean, probabilistic, laplacian). The encoding of ECOCs is usually done by randomizing the coding matrix. [START_REF] Cissé | Learning compact class codes for fast inference in large multi class classication[END_REF] showed an alternative and ecient way to learn an appropriate encoding in the context of large scale classication so as to improve the eciency of each code bit. This approach provides a link between ECOCs and representation learning. Recent work on sparse coding [START_REF] Zhao | Sparse output coding for large-scale visual recognition[END_REF] has shown how to combine ecient coding with probabilistic decoding in a large scale context. Sequential approaches. Few works try to solve large scale multiclass classication with an anytime performance characteristic. The principle of the sequential model has been discussed in [START_REF] Even-Zohar | A sequential model for multi-class classication[END_REF] which proved intuitive expected behaviors of this type of model. Sequential approaches have been used recently for dynamic feature selections like in [START_REF] Dulac-Arnold | Datum-wise classication. A sequential Approach to sparsity[END_REF] but this kind of budgeted classication is dierent than our budgeted context. Bandits algorithms [START_REF] Wang | A potential-based framework for online multi-class learning with partial feedback[END_REF][START_REF] Crammer | Multiclass classication with bandit feedback using adaptive regularization[END_REF] have been applied in the context of on-line learning of multi-class classication problem for a small number of classes and not to optimize the inference complexity. The most related framework of multi-armed bandit to our is recent works of [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF][START_REF] Chen | Combinatorial Pure Exploration of Multi-Armed Bandits[END_REF] looking at identifying the best arm rather than optimizing the trade-o exploration-exploitation but the framework is hardly transferable to our context and still main dierences exist (as for instances the rewards which can not directly observed in our context, the arms can not be played twice).

Proposed Model

The proposed model is an iterative algorithm which accumulates sequentially positive and negative votes for subsets of classes. Given the initial set of classes L = { 0 , 1 , . . . , L } and an example x to classify, the algorithm will output at the end of the process the class with the highest mean of positive votes as in ensemble learning methods. The algorithm 1 presents the general scheme. At each round a binary classier is considered named dichotomizer which will compare two subsets of classes, C + and C -(C + ∩C -= ∅) and will predict if the example x belongs most likely to a class of C + or to a class of C -. Positive and negative votes are recorded accordingly for the classes of C + and C -. We will note in the following f C + ,C -the classier trained to separate the set of classes

C + from the set of classes C -: f C + ,C -is trained such that f C + ,C -(x) = 1 for x from a class in C + and f C + ,C -(x) = -1 for x from a class in C -.
At each time step t, µ t i will denote the mean of positive votes collected for the i-th class and

µ t ∈ [0, 1] L the vector (µ t 1 , . . . , µ t L ).
As the whole set of classes is not necessary considered at each time step, we need to record the number of times that a class has been considered : the vector T t = (T t 1 , . . . , T t L ) will denote the number of times that each class has received a vote (and T t i the number of times that the class i has received a vote).

Algorithm 1 General scheme 1: x ← example to classify 2: for t = 1 . . . tmax do 3:

Select C+ and C-two subsets of classes of L 4:

Compute

f C + ,C -(x) 5: if f C + ,C -(x) = +1 then 6:
add a positive vote to classes of C + and a negative vote to classes of C - 7: The accuracy of classiers and thus the accuracy of the votes is highly correlated to the number of classes in C + and C -: separating two small subsets of classes is more accurate than separating two large subsets [START_REF] Even-Zohar | A sequential model for multi-class classication[END_REF]. Therefore asking votes for a small subset of classes is more accurate than asking votes for all classes. Moreover, the round is informative only if the right class belongs to one of the two subsets C + and C -; otherwise the classier will output a random vote without correlation with the class of the example to classify. The main idea of our approach is to reject at each step the most classes in order to use sparsest and thus more accurate classiers in the next rounds to achieve a quicker identication of the right class.

This framework is close to the multi-armed bandits framework and more precisely to the best armed identication of a combinatorial multi-armed bandits problem [START_REF] Chen | Combinatorial Pure Exploration of Multi-Armed Bandits[END_REF]. However, instead of taking into account the upper bound condence as in the multi-armed bandits framework, we propose to consider the condence level that the votes of a class deviate too largely from the expected vote distribution under the hypothesis that it is the right class which is correlated to the expected accuracy of considered classiers. In the case that this hypothesis is wrong, the condence will decrease throughout the iterations and eventually the class will be rejected. At the opposite, for the true class the condence will never drop too low and the algorithm will keep collecting votes for this class. Minimizing these condences thus answers two objectives : discarding the classes with lowest condence while keeping at aggregating votes for classes with highest scores. The main diculty is to select wisely at each round the subsets C + and C -in order to optimize the number of discarded classes and the number of votes of the right class : this task is delegated to an oracle which will be presented in the following.

Formalization

Let L = { 0 , 1 , . . . , L } be the set of classes dening the multi-class problem considered, with L the number of classes. For the sake of simplication, we will identify the class i to the integer i as long as no confusion arises and x ∈ i to denote that x is from class i . We will use a vector v = (v 1 , . . . , v L ) ∈ {-1, 0, +1} L to encode the information of which subsets of classes C + and C - are considered at each iteration : for each i ∈ C + , v i the i-th component of v will be set to 1; for each i ∈ C -, the i-th component of v will be set to -1; for the other classes, the corresponding components will be set to 0. According to these notations, we will note f v the classier corresponding to The norm v indicates the number of classes taken into account by the classier f v . The term sparsity will denote the ratio v L for the classier f v . Φ = {f v |v ∈ {-1, 0, +1} L } will denote the entire set of dichotomizers for a given problem. We will suppose that a binary classier outputs a binary decision in {-1, 1}, and we will note the expected accuracy of a classier f v for the class i by q

f C + ,C -: f v is trained such
v,i = E x∈ i [v i f v (x) = 1].

Algorithm

Our algorithm aims at 1/ discarding sequentially classes over iterations and 2/ maximizing the number of votes for the right class. Our approach is based on an upper bound of the deviation of the mean µ i of positive votes from the expectation if i is the right label. More precisely, given an example x and its true class * , let us notes H i the hypothesis * = i and X i the random variable of the mean of positive votes for this label. After t steps where the classiers f v1 , . . . , f vt were considered, the expected mean of accuracy of the classiers is :

Q t i = E[X i |H i ] = 1 T t i ( t j=1 q v j ,i )
and the observed mean is

µ t i = 1 T t i ( t j=0 v j i (fv j (x)+1) 2
).

By using the Hoeding inequality and noting b t i = e (-2

T t i max(0,(Q t i -µ t i )) 2 ) : P [E[X i |H i ] -X i ≥ δ] ≤ e (-2 T t i δ 2 ) , P X i ≤ µ t i ≤ e (-2 T t i max(0,(Q t i -µ t i )) 2 ) ≤ b t i
. These quantities will allow to discard at each round a certain number of classes by taking into account a constant b min which will denote the condence threshold. We use only one side of the Hoeding bound, taking into account max(0, (Q t i -µ t i )), as our goal is to identify when the mean of the votes is too low compared to the expectation.

The algorithm 2 resumes the principle of our approach : at each step t, a classier f v t is considered and the quantities T t i , µ t i , Q t i and b t i are updated according to the evaluation of f v t (x). The selection of the classier is delegated to an oracle which is in charge to nd the best classier in order to minimize the condences b t i , i.e. minimize b t 1 . The Algorithm 3 explains the mechanism of the oracle. It considers the set of dichotomizers which encode only the remaining classes { i |b t i > b min }. For each of these dichotomizers f v , it simulates the expected outcome if its use in the next step w.r.t. the vector b t . The function b + (v) simulates the next state if f v (x) = +1 and the function b -(v) the next state if f v (x) = -1. The function p(v) is used to weight the possible outcomes between f v (x) = +1 and f v (x) = -1 according to the current estimation.

Practical implementation and complexity

The whole set of dichotomizers Φ is generally too large to be pre-computed as it is growing exponentially with the number of classes. For the practical implementation of our model, a small sample Φ s of classiers is randomly chosen and pre-computed. The only control parameter taken into consideration is the number of classes encoded by the dichotomizers in order to guarantee a wide range of sparsity. In practice, for each dichotomizer to generate, a sparsity is Algorithm 2 Inference process 1: x ← example to classify 2: Choose v0 randomly s.t. v 0 = L 3:

T 0 i = abs(v 0 i ) = (1, . . . , 1) 4: µ 0 i = (f v 0 (x)v 0 i + 1)/2 5: b 0 i = exp -2t(µ 0 i -q v 0 i
) 2 6: for t = 1 . . . Tmax do 7:

v t i = Oracle(b t-1 , µ t-1 , T t-1 ) 8: T t i = T t-1 i + |v t i | 9: µ t i = (µ t-1 i * T t-1 i + f v t (x)v t i )/T t i 10: Q t i = ( t j=1 q v j i )/T t i 11: b t i = exp -2t max 0, Q t i -µ t i 2 
12: end for 13: return arg max i µ Tmax i Algorithm 3 Oracle

1: Given b t , µ t , T t , bmin 2: C = i | b t i > bmin 3: dene b + i (v) = exp -2(t + 1)(max(0, [T t i (Q t i -µ t ) + qv,i -vi)/(T t i + |vi|)]) 2 4: dene b - i (v) = exp -2(t + 1)(max(0, [T t i (Q t i -µ t ) + qv,i + vi)/(T t i + |vi|)]) 2 5: dene p(v) = v•b t + v 2 L i=1 |v i |b t i 6: return v = arg min v∈Φ|v i =0∀i ∈C i∈C p(v) b + i (v) + (1 -p(v)) b - i (v)
uniformly drawn between 0.1 to 1, a balance ratio is drawn from a Gaussian distribution centered at 0.5 to decide how many positive classes and negative classes will be considered and nally the classes are uniformly drawn among L.

The dichotomizer is learned on the training set and the expected accuracy q v,i of each dichotomizer is computed thanks to a validation set. The complexity of our inference process is highly dependent on the number of dichotomizers considered and the number of steps T max : the complexity τ of our model is bounded by O((|Φ s | + τ f ) × T max ) where τ f is the inference complexity of a dichotomizer. In practice, the complexity is lower : the number of available dichotomizers is decreasing during the iterations as the number of discarded classes goes up. Moreover, in the context of large scale classication, τ f is very large compared to |Φ s | as it depends on the dimension of the input space the number of features generally more than 10 5 . In comparison, oneversus-rest schema has a complexity of O(τ f × L), ECOC approaches O(K × τ ) with K the number of codes, and hierarchical methods O(Qlog Q (L) × τ ) with Q the number of children per node.

We can notice that an hierarchical classication is a specic case of our approach : given a hierarchy, it is straightforward to compute a set of dichotommizers where each of them corresponds to a node of the hierarchy. Moreover, the one-versus-rest approach corresponds to the set of dichotomizers where only one component of v is positive and all the other ones negative. Thus our approach can be viewed as a bridge between these two approaches and this fact will be analyzed in depth in the section 4.4.

Experiments

Datasets

The experiments were done using real world data publicly available. The rst dataset comes from the recent series of challenges named LSHTC [START_REF] Kosmopoulos | The ECIR 2010 large scale hierarchical classication workshop[END_REF]. The dataset used (called DMOZ, or also know as ODP Open Mozilla Directory) represents text documents that can be classied over 12,294 dierent classes organized in a class hierarchy. The dataset is already preprocessed with a TFIDF transformation directly applied to the word count. The test and validation sets used are the same as the ones from the challenge. In order to evaluate the scalability of our method, we compared the dierent models on the whole DMOZ dataset and on smaller datasets with 1000 classes. The 1000 classes datasets have been extracted from the DMOZ datasets by sub sampling classes from the 12,294 original classes. More specically, we randomly sampled one class and we computed the 999 nearest classes (with cosine norm based distance between classes censtroïds). Five such datasets were generated. Sector [?] is another text classication dataset with 105 classes. These dierent datasets with several orders of magnitude in the number of classes are used to show the scaling capacity of our approach. Statistics of the dierent datasets are summed up in table 1. We compared our sequential model with state of the art hierarchical and at methods allowing a speed-up of the inference process. We assessed the performances of our method by comparing it with label tree partitioning using spectral clustering as described in [START_REF] Bengio | Label embedding trees for large multi-class tasks[END_REF] and with ECOC methods [START_REF] Dietterich | Solving multiclass learning problems via error-correcting output codes[END_REF][START_REF] Allwein | Reducing multiclass to binary: A unifying approach for margin classiers[END_REF]. We also compare the results obtained by the one-versus-rest method and by learning a label tree over the original hierarchy for DMOZ dataset -as this information is available only for this dataset.

In order to compare at dierent speed-up the performance of the models, we recorded the accuracy of each model w.r.t the complexity ratio gain : it represents the number of classiers used by each model normalized by the number of classes. Thus, the complexity ratio will always be 1 for one-versus-rest method by denition. For methods which achieved a speed-up, it will be inferior to one. The lower the complexity ratio, the better the speed-up is.

For the ECOC implementation, we randomized ve thousands ternary coding matrices as proposed in [START_REF] Allwein | Reducing multiclass to binary: A unifying approach for margin classiers[END_REF] and we kept the one that maximizes the hamming distance between each code of each class. Then, we decoded the input following two decoding schemes: the classic hamming distance [START_REF] Dietterich | Solving multiclass learning problems via error-correcting output codes[END_REF] and the more elaborated loss-based decoding also showed in [START_REF] Allwein | Reducing multiclass to binary: A unifying approach for margin classiers[END_REF]. The dierent speed-up were obtained by modifying the length of the ECOC codes.

We controlled the speed-up of the spectral clustering method by performing experiments with dierent numbers of children per node in the inferred hierarchy and we reported the best results obtained.

For our model, we used a pool of approximately ten thousands randomly generated classiers for the DMOZ dataset and 300 for the Sector dataset. The complexity ratio gain is controlled by varying the maximal number of iterations allowed. We xed the minimum condence constant b min to 0.01.

In all the methods, the classiers used (in the node, or for the ECOC bit scorer) were SVM [START_REF] Cortes | Support-vector networks[END_REF] regularized over a validation set2 .

Results

Fig. 1 shows the results of the compared methods on the whole DMOZ dataset. The one-versus-rest approach (label OAA) has the best accuracy but for the worst complexity ratio, equal to 1. The hierarchical label tree learned from the original hierarchy (label H-Ontology) has an accuracy close to the one-versus-rest for low complexity ratio, but this approach is the only one among the studied methods who uses a priori information on classes to build its model. The hierarchy learned from spectral clustering (label H-SC) shows impressive performance for very low complexity ratio (under 1%) but its accuracy is rapidly bounded and does not benet from more allowed resources. At the opposite, ECOC models (label E-Dense for hamming distance decoding and E-LossBased for loss-based decoding) show medium performances for very low complexity ratio but the accuracy is growing fast when more classiers are used. Our proposed model (label SaDyC) has an accuracy smaller but close to the hierarchical clustering for very low complexity ratio (< 1%) and has the overall best performances when the complexity ratio goes up among methods that do not use a priori information.

Fig. 3 reports the results for the sampled datasets with 1000 classes from DMOZ. Similar conclusions as previously can be drawn for the compared approaches. Moreover, when enough resources are allowed (ratio bigger than 10%), our model is able to challenge and in some cases to outperform the H-Ontology model that uses a priori information. Interestingly when complexity ratio is bigger than 15% our approach has a better accuracy than the one-versus-rest algorithm. Tables 2 and3 report the accuracy results of the compared methods for a given complexity ratio of 4% on the DMOZ dataset and subsample datasets of 1000 classes. It conrms the observations that we reported previously.

Table 4 shows the results for Sector dataset with only 100 classes for a complexity ratio of 20% : similar results are observed than with the large DMOZ dataset, our algorithm SaDyC outperforming the other approaches 3 .

Discussion

One interesting point to discuss is the ability of the hierarchical methods to perform well for very extreme speed-up. This can be explained by the fact that 3 We did not report directly in the table the result of [START_REF] Choromanska | Logarithmic Time Online Multiclass prediction[END_REF] on this dataset as they did not used the same dichotomizer type but it can be nonetheless noted that our model performed better with a large margin. What is also interesting with these results is the comparison of our model with the ECOC Loss-based model. At the greater speed-up, both perform similarly. As the inference computation time constraint is relaxed, our sequential approach shows the best performances as it is designed to use eciently the pool of classiers that was given to it. This comes from the ability of our approach to discard bad classes in order to focus on more valuable information by choosing accordingly the next classier to use. We dene classier density the density of the code corresponding to a given classier. A density of 1 means that every classes are taken into account in the classier. Fig. 2 shows the decrease of the density of the classiers used through the iterations of our algorithm. ECOC models did not propose such ability. They are bound to use the same classiers for each new example. To understand this ability of our model, another point of view is to see our approach as a hierarchical one : for a given example, the trajectory of the selected classiers is similar to a path along a hierarchy. But rather than considering always the same hierarchy as the usual hierarchical approach, our model is able to discover the most promising one in the rst steps of the algorithm. The Fig. 2 shows that SaDyC spends many iterations considering not sparse classiers, where the hierarchical approach can consider only for a small number of iterations large number of classes, even if redundancy is allowed in the label tree (i.e. same labels can be in more than one child). Once the right hierarchy is identied, the sparsity fall quickly until there is few classes to separate. At this stage, our approach is able to use at best the benet of ensemble learning methods in order to improve its accuracy.

It can be observed that one-versus-rest model performs better relatively to all the other methods on the big DMOZ dataset than on the sub sampled datasets. This is explained by the kind of sampling that has been done to produce the sub sampled datasets. With less classes to separate, the dichotomizers of the other methods were more accurate than for the big DMOZ dataset. Besides the overall good performances of the proposed method, a key feature is that our model is the only one able to stop the inference process on the y while ensuring top performances. This anytime characteristic has, up to our knowledge, not been studied in the literature for the large scale classication problems.

Conclusion

We presented in this paper a novel approach to deal with large scale multiclass classication tasks. with an anytime performance characteristic that has many possible applications nowadays. From a pool of classiers, the proposed model uses an oracle to select at each time step the most accurate classier in order to optimally discards classes to keep only the ones of interest and at the same time recording more informations classes with high probabilities to be the targeted ones. Thus, the algorithm can use more specic classiers throughout the iterations. The proposed approach can be viewed as a hierarchical one where there is no specic hierarchy at the beginning of the process and rst steps are used to discover the most promising one. Our experiments show how our model performs better than state of the art methods for similar speed-up factors.

The focus of this paper was on how to use a large pool of classiers the most eectively. The actual tuning of the pool of classiers is a whole dierent problematic. As shown in [START_REF] Crammer | On the learnability and design of output codes for multiclass problems[END_REF], the accuracy of the classiers used in the inference process impacts the theoretical maximum accuracy bound of the overall classication process. Thus, the learning of an adequate pool of classiers has a lot of potential to greatly improve the performances of the actual presented model.

Another perspective is to control nely in an online fashion the compromise between classication accuracy and execution time. It will allow the model to adapt to application constraints. For instance in the case of an online classication task on a data stream, the latter can uctuate so that when the stream speeds up, the allowed computation time may be reduced and when the stream slows down, computation time may be increased. 

  vote to all classes of C -and a negative vote to classes of C + 9: end if 10: end for 11: return the class with highest mean of positive votes

  that the examples from the classes { i |v i = +1} are considered as positive examples and the examples from the classes { i |v i = -1} as negative examples; the examples of the other classes are ignored in the training phase of this classier 1 .

Fig. 1 :

 1 Fig. 1: Accuracy of compared methods on full DMOZ dataset for dierent complexity ratio values.

Fig. 2 :

 2 Fig. 2: Density (1 -Sparsity) of selected classiers during inference process on the full DMOZ dataset.

Fig. 3 :

 3 Fig. 3: Accuracy results on 5 sub sampled datasets of DMOZ for compared methods.

Table 1 :

 1 Statistics of the datasets used.

			DMOZ (full) DMOZ (sub sampled) Sector
		# training instances	93805	∼9400	6992
		# validation instances	34905	∼3500	1469
		# test instances	34880	∼3500	1158
		# features	347255	347255	55198
		# classes	12294	1000	105
	4.2	Protocol		

Table 2 :

 2 Accuracy results for 13K classes on full DMOZ dataset. We reported in bold font the best signicant results. We put in italic the results of models that can not be compared directly with the other methods as they use more information (H-Ontology) or more inference time (OAA). Same fonts were used in the next tables.

				Ensemble Complexity DMOZ (full)
		Models		Type	Ratio	Acc%
	One-vs-Rest (OAA)		Flat	1 (×1)	38 .28 %
	Hierarchical Ontology (H-Ontology)	Tree 0.008 (×125) 38 .05 %
		SaDyC		Flat	0.04 (×25)	36.49%
	Hierarchical Spectral Clustering (H-SC) Tree	0.04 (×25)	32.09%
	ECOC Hamming (E-Hamming)		Flat	0.04 (×25)	33.68%
	ECOC Loss Based (E-LossBased)	Flat	0.04 (×25)	35.08%
		Ensemble Complexity		DMOZ (sub-sampled): Acc%	
	Models	Type	Ratio	Set1	Set2	Set3	Set4	Set5
	OAA	Flat	1 (×1) 45 .50 % 55 .36 % 60 .83 % 54 .86 % 52 .16 %
	H-Ontology	Tree	0.06 (×16) 46 .73 % 57 .15 % 63 .16 % 57 .08 % 54 .84 %
	SaDyC	Flat	0.2 (×5) 49.78% 57.43% 62.36% 57.05% 55.29%
	H-SC	Tree	0.2 (×5) 44.77% 53.72% 58.29% 52.63% 51.97%
	E-Hamming	Flat	0.2 (×5) 45.03% 51.99% 56.98% 52.38% 50.89%
	E-LossBased	Flat	0.2 (×5) 46.72% 54.42% 59.15% 54.20% 52.19%

Table 3 :

 3 Accuracy results for 1K classes sub-sampled DMOZ datasets.

Table 4 :

 4 Our sequential model can produce an accurate answer Accuracy results for the Sector dataset.

		Ensemble Complexity Sector
	Models	Type	Ratio
	OAA	Flat	1 (×1) 94 .12 %
	SaDyC	Flat	0.2 (×5) 92.67%
	H-SC	Tree	0.2 (×5) 88.52%
	E-Hamming	Flat	0.2 (×5) 27.73%
	E-LossBased	Flat	0.2 (×5) 89.55%

In the ECOC framework, such classiers are named dichotomizers, as they separate two sets of classes.

We used the implementation from scikit learn library (LinearSVC) on big datasets (only for linear SVM). The same meta parameters were used in all the compared methods (l2 loss, automatic class weighting and l2 penalty).