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ABSTRACT. We present an asymptotic two-dimensional plate model for linear magneto-
electro-thermo-elastic sensors and actuators, under the hypotheses of anisotropy and ho-
mogeneity. Four different boundary conditions pertaining to electromagnetic quantities
are considered, leading to four different models: the sensor-actuator model, the actuator-
sensor model, the actuator model and the sensor model. We validate the obtained two-
dimensional models by proving weak convergence results. Each of the four plate problems
turns out to be decoupled into a flexural problem, involving the transversal displacement
of the plate, and a certain partially or totally coupled membrane problem.
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Introduction

In this paper, we consider a linear model of magneto-electro-thermo-elastic plates, behav-
ing either as piezoelectric sensors or piezomagnetic actuators, based on the quasi-static
assumption on the electric and magnetic fields, whereby both fields can be expressed as
gradients of the corresponding potentials. This assumption was justified by means of a
nondimensionalization of the equations governing the problem in its general setting in [2],
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wherein a proof of well-posedness for this problem, along with its quasi-static counterpart,
was also accomplished.

The behavior of the plate-like body under study, as to whether it represents a sensor or
an actuator, of piezoelectric or piezomagnetic nature, is determined by four different sets
of boundary conditions [16]. Based on the three-dimensional formulations of the four cor-
responding problems, we apply the asymptotic expansion method as the thickness of the
plate approaches zero, in the case of a homogeneous anisotropic material. Accordingly, we
obtain four different two-dimensional plate models: the sensor-actuator model (referring
to a plate behaving as a piezoelectric sensor and a piezomagnetic actuator), the actuator-
sensor model (referring to a plate behaving as a piezoelectric actuator and a piezomagnetic
sensor), the actuator model (according to which the plate behaves as a piezoelectric and
piezomagnetic actuator) and the sensor model (according to which the plate behaves as a
piezoelectric and piezomagnetic sensor). We validate the asymptotic procedure carried out
in each of the four cases by showing weak convergence results. The four two-dimensional
plate problems are obtained, as in [14], with different scaling assumptions on the electric
and magnetic potentials. On the other hand, they all present common features: for one,
the displacement field is always of Kirchhoff-Love type; for two, the temperature variation
field is always independent of the thickness coordinate; for three, each problem decouples
into a flexural problem — governing the evolution of the transversal displacement of the
plate and taking account of an inertia effect involving the mean curvature of the deformed
middle surface — and a certain partially or totally coupled membrane problem. In the
sensor-actuator model, the membrane problem involves in-plane displacement, tempera-
ture variation and electric potential: it is therefore a thermo-piezoelectric problem, the
applied magnetic potential playing the role of source term. Since in the actuator-sensor
case, the roles of the two potentials are exchanged with respect to the sensor-actuator
case, we find a thermo-piezomagnetic membrane problem, the applied electric potential
being part of source terms, and we shall not treat this case in detail. In the actuator
case, the membrane problem is thermo-elastic, as it just involves in-plane displacement
and temperature variation, both the applied electric and magnetic potentials playing the
role of source terms. Finally, in the sensor case, the membrane problem is completely
coupled, since it involves in-plane displacement, temperature variation, electric potential
and magnetic potential; it is then a magneto-electro-thermo-elastic problem. Numerical
values of the reduced coefficients can be explicitly computed in each of the four cases;
as an example, we report in Table 1 of Appendix 2 the values of such coefficients in the
actuator case for the usual (see [2]) BaTiO3-CoFeaO4 composite.

Notation

Scalars are denoted by light-face letters, vector and tensor fields of any order by bold-face
letters. We adopt Einstein’s usual summation convention; Greek indices take the values 1
and 2, Roman indices range from 1 to 3. Throughout the paper, w C R? denotes a smooth
domain in the plane spanned by vectors e; = (1,0) and es = (0, 1), with boundary ~;
0 C 7 is a measurable subset of v with strictly positive length measure; v; := v \ 7o is
the complement of vg with respect to ; finally, 0 < € < 1 is a dimensionless small real
parameter which shall tend to zero. For each €, we define

OF i= w x (=h%, k%), T€ =~ x (=h%, k)
g :=70 X (=h%,h%), T3 :=wx {+h%},

with h® > 0. Hence the boundary 9Q° of Q° is partitioned into the lateral face I'* and the
upper and lower faces I'S and I'? ; the lateral face is itself partitioned as I'® = I'§ UT'{,
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with I'§ := 41 x (—h®, h%). Moreover, we let I := 'y UT§ = 9Q° \ T§, the complement
of I'§ with respect to dQ°. We set H(QF) := [H1(Q°)]? and for 2° C 9QF, we define

HY(QF,=°) := {va e HY(9F); v*=0on Ea} ,

H!(Qf,=°) := {V‘E = (vf) e HY(Q); v =0o0n EE}.

For v a vector field, |v| denotes the euclidean norm of v; for ® a scalar or vector field,
|®|g,0- and ||®||; o denote, respectively, the L%(Q)-norm and the H'(QF)-norm of ®
(analogous notations are used for the L?(Z)-norm of ®). At times, for notational con-
venience, we left tacit the time-dependence of a field ®. For the sake of brevity, a one-
parameter family of fields {®(g)}.>0 is referred to as sequence.

1. Statement of the Problem
1.1. Constitutive Laws

In magneto-electro-thermo-elastic materials the mechanical, electric, magnetic and ther-
mal behaviors are coupled. In the case of the quasi-static approximation for Maxwell’s
equations, the electric field E° and the magnetic field H* can be expressed through two
potential functions, i.e., Ef := —8;¢° and H := —95¢°, where ¢° and ¢ denote, re-
spectively, the electric potential and the magnetic potential. Thus, the magneto-electro-
thermo-elastic state is defined by the quadruplet U® := (u®, ¢, (%, 6%) where u® = (u5)
and 6° represent, respectively, the displacement field and the variation of temperature.
The interaction between these four different behaviors is described by the following set of
constitutive laws:

05; (U°) = Cijrees(0®) + PrijOpe® + Ry j0pCE — Bis0°,
D?(ue) zkéekz(u ) X; 86 c — Q5 E<€+pi957
B (UP) = Ripperp(u®) — a”af MZ](‘)JEC + m;0°,
SE(U) = Bijei;(u®) — pid; = — m;0; CF + v,
q; (6°) = szajses
where o = (0f;) is the Cauchy stress tensor, e“(u) = (ej;(u)), with ef;(u®) :=

%(afuj + 05u;), is the linearized strain tensor, D® = (Dy) is the electric displacement
field, B* = (BY) is the magnetic induction field, S is the thermodynamic entropy and
q° = (¢§) is the heat flow vector. C = (Cjjie), P = (Piji), R = (Rijx), X = (Xy5),
M = (M;;), B = (Bij), o = (o), p = (pi), m = (m;), ¢y and K = (Kj;) represent,
respectively, the elasticity tensor, the piezoelectric tensor, the piezomagnetic tensor, the
dielectric permittivity tensor, the magnetic permeability tensor, the thermal stress tensor,
the magneto-electric tensor, the pyroelectric vector, the pyromagnetic vector, the calorific
capacity of the material and the thermal conductivity tensor. Moreover, we suppose the
material properties of the (generally anisotropic) magneto-electro-thermo-elastic plate-like
body under study to satisfy the usual symmetry, positivity and boundedness conditions,
for which we refer to [2]. We recall here the most important hypotheses:

(1) The following symmetric matrix (see [2], [7]) is positive definite

X a p
M=| a«a M m

pT m” Cy
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(2) Without loss of generality we assume that the mass density tensor (see [8], [9])

pi 0 0
p=10p50
0 0 p3
is diagonal and positive definite® Hence, p; > 0 and p§ € L™ (Q°).
The first hypothesis is verified when the components of the coupling constitutive parame-
ters a, p and m are small, which is the case, for instance, for the usual BaTiO3-CoFeaOy4
composite (see Table 1 in [2]).

1.2. Governing Equations

The magneto-electro-thermo-elastic plate is subjected to body forces £ = (f5): Q° x
(0,T) — R3, an electric charge density pS:Q° x (0,7) — R and heat source r°:Q° x
(0,T) — R. The state U® solves the following system of field equations:

peu —divieot (U°) =1° in Q° x (0,7),
dive D (U®) = pg in QF x (0,7), 19
diveB () = 0 in QF x (0,7), (1.2)
SEUT) + £-divig (6°) =r° in Q° x (0,7),

with Tp > 0 a constant reference temperature. The boundary conditions are posed on
90° x (0,T); we recall that 9Q° =TS UT'Z UT'{ UTg. For simplicity we consider homoge-
neous boundary conditions on I'gx (0, T'), concerning displacements and temperature, and
non-homogeneous boundary conditions on I'® x (0, T), concerning surface forces g° = (95)
and surface heat flow o°. Hence, one has

o (USN® =g° onI° x (0,T), u®=0onT}x(0,T), (1.3)
qQ°(0°) - n®*=p"onT*°x(0,T), 6°=0 onT{x(0,T). ’

As already shown in [14], we specify four possible sets of electromagnetic boundary con-
ditions, leading to four different magneto-electro-thermo-elastic plate models:

(BC), - DE(U)-n® =d° onT° x (0,T), ¢ =0 onT§x(0,7T),
DABTU) 0 =0 onT°x (0,T), ¢ =¢5onT% x(0,7),

(BC), - { DU 0" =0 onT*x(0,7), ¢ = ¢ on T x (0,7),
ZAUBTWUS) nf = onT° x (0,T), ¢¢=0 onT§x(0,7),

(BC)s - { DSU) -n" =00 L% (0,7), @™ on T x (0,7),
BUAIBSUS) -n® =00onT° x (0,7), (=¢5° onT x (0,7),

(BC)s : D*(U*®) - n® =d° on is x (0,T), ¢*=0o0nTlgx (0,7),
Bf(U®) -n®* =b° onI* x (0,T), (¢ =0onl§x(0,7T),

where n® = (nf) is the outer unit normal vector to 9Q°. Boundary conditions (BC);
lead to a plate behaving simultaneously as a piezoelectric sensor and a piezomagnetic

actuator, namely the sensor-actuator model. Boundary conditions (BC)2 lead to a plate

#Note that the mass density tensor depends on €.
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behaving simultaneously as a piezomagnetic sensor and a piezoelectric actuator, namely
the actuator-sensor model. Boundary conditions (BC)3 are associated with the actuator
model, according to which the plate behaves as a piezoeletric and piezomagnetic actuator.
Finally, boundary conditions (BC)4 are related to the sensor model, whereby the plate
behaves as a piezoelectric and piezomagnetic sensor.
The initial conditions are posed in °. Let ug, uf, 65 be, respectively, the displacement,
the velocity and the temperature at time ¢ = 0; we have
u®(2%,0) = u®(0) = uj in Q°,
u”(2%,0) = u°(0) = uj in O,
0° (x* ()) = 6’5(0) =05 in Q°.
As pointed out in [2], initial conditions g := ¢°(0) and ¢ := ¢°(0) are formally given
by the solution of the following system of equations:
{diVsDE(UE)( ) = 05 (Pireeqo(u) — Xij05 05 — ijd5¢5 + pifG) = pes

dive B (U)(0) = 05 (Ripeese (uh) — ijdipf — MyzdsG5 +mqby) = 0, (1.9)

equipped with suitable boundary conditions.

1.3. General Weak Formulation

In order to give a weak formulation of the problems introduced in the previous subsection,
we follow Lions [6]. Given a certain state U := (u®,¢°,(,0°%), for all test functions®
Ve = (v®,4°%,£%,n°%) and for any fixed ¢ € (0,T) we introduce the following bilinear form:

ATUE (), V) = (p75, V) + e, 0) + eo (6%, 0°) — d(n7, &%) — e(n”, )+
Fau(u®,ve) +b(p%, v7) = b(¥°,u®) + £(C5,v7) — f(&5,u)+
—c(67, V%) + ap(p”, ¥°) +ac(¢5,€7) +9(¢5,4%) + g(¢°, €5)+
—d(0°,9%) — e(6°,£°) + ag (6°,7°),

where (-, -) is the scalar product in L?(Q2F) and the bilinear forms ay(-, -), aep(-,-), ac(- ),
a&('? ')v b(7 ')a C('v ')7 d(7 ')a 6(', ')7 f(7 ')a g('v ) are defined as follows:

au(uF, vE) = /Q Ciireehe(UE)el; (V) da®,  ap(F, 4°) = /2 X0 05 YF dat,

ag(gs,fs) = /QE Mijajggafgsdxg, (0 ,77 T(]/ K”aeeeae “dx®
b(y°,u°) = /QE Prij0i®ef; (u)da®, e(n®,uf) = /QE n°Bijes; (u®)da’,
(", ¢%) = /Q 1" prOy”dz”, e(n”, (%) = /Q 1m0  da,
f(E5,u%) = /QE Ryij0R€ €5 (u®)da®, g(¢%,v%) = /QE ;05 CE 05 Y d”.

For a given state U® := (u®, ¢, (%, 0%), the energy functional of the system is:

= {pu %) 4 au(u®,u%) + ap(9®, %) +ac(C°,¢7) + (507, 6°)+
_Qd(967§0 )_26(987C6)+29(§87@8)}'

(1.10)

bThe space of test functions shall be precised case by case, according to the specific problem under
study.
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In the sequel we shall distinguish among the four variational evolution problems arising
from the different possible boundary conditions presented in the previous subsection.

1) The sensor-actuator model. We let (¢ := ¢® — (%, where (° is a trace lifting in H* (Q°) of
the magnetic boundary potentials ¢ acting on I'S.. The weak formulation of (1.2)-(1.3)
with electromagnetic boundary conditions (BC); takes the following form

Find U = (u,¢%,(%,0%) € H'(Q°,T5) x H'(Q°,T5) x H'(Q°,T'3) x H' (Q°,T§),
such that, for all V¥ € HY(QF,T§) x HY(QF,T5) x HY(Q°,1%) x HY(Q°,T§), (1.11)
ATUE(t),V7) = Li(V7), t€ (0,T)
with initial conditions (uf, ui, 65) and
LE(V9) = (6, 9%) + (8. V7)o ey + (150 7) — (€507 o e, + (05 0°)+
() ey — (€16 = FE V) + el &) — 9(C v,
For all weak solutions U = (u®, %, €%, 6°) of (1.11), the energy (1.10) satisfies (see [2]):
E°(1) + ap (0°(1), 0°(1)) = Le (1),
with LE(1) 1= (82,0 (8, 0°) ey (560 )— (0 ) iy #0560 (0%, 0) ey~
(IC(CE, EE) - f(CEa uE) + 6(067 Cs) - g(CE, SOE)

2) The actuator-sensor model. We let ¢° := ¢ — 3¢, where @° is a trace lifting in H'(QF)
of the electric boundary potentials ¢ acting on I'S.. The weak formulation of (1.2)-(1.3)
with electromagnetic boundary conditions (BC)2 takes the following form

Find U° = (u®, 3%, ¢5,0°) € HL(QF,T5) x HY(QF,T%) x HY(QF,T§) x HL(QF,T5),
such that, for all V¢ € HY(Q°,T§) x H(Q°,T%) x HY(Q°,T§) x HY(Q°,T§), (1.12)
AS(UE(1),VF) = L5(VF), t € (0,T)
with initial conditions (ug, uf, 6g) and
L5V i= (8,9 4 (&5, ) g ey + (1) = (050%) oy + (0505 +
_(b67£€)L2(f5) - atp((’;a’wa) - b((iev Va) + d(’rf: @6) - g(€E> @E)a
For all weak solutions U = (u®, ¢, (%, 6%) of (1.12), the energy (1.10) satisfies :
E°(t) + ag(0°(1),0°(1)) = LE(1),
With.L?:(t) = (fsvﬁE)Jr(gE:ﬁs);2(fe)+(pzj906)7(1.76:CE)L2(fs)+(7‘E70€)7(96706)]42(’1:5)7
ap(@°,¢°) — b(§7,u%) +d(6°, &%) — g(¢", 7).

3) The actuator model. The weak formulation of (1.2)-(1.3) with electromagnetic boundary
conditions (BC')3 takes the following form

Find U = (u®,¢%,(%,6°) € H'(Q°, 1) x H'(Q°,T%) x H'(Q°,T'%) x H(Q°,T§),
such that, for all V¥ € HY(Q°,T§) x H'(Q°,T%) x HY(Q°,T%) x H'(Q°,T§), (1.13)
A(UE(1), V7) = L3(V°), t € (0, T)
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with initial conditions (uf, uj, 65) and

L5(V°) = (£5,v9) + (8%, v ) papey + (r50%) = (&571°) (e + (0 9°)+
—ac(C5,9%) — f(C5,vF) + e(n®, C2) — g(C%, %)+
—ap(P°,9°) — b(3°,vE) +d(n°, 5°) — g(€%, %°).

For all weak solutions U = (u®, %, (%, 0°) of (1.13), the energy (1.10) satisfies :
E°(t) + ag(0°(1),0°(t)) = LE (1),

with LS( )= (fe .E) (g u )LZ(FE) + (pea )+ (Teaae) - (0, GE)Lz(fa) - aC(ZE»C_E) -

FE )+ e(0°,C2) — g5, 0°) — ap (3. 6°) — b(@" 1) + d(0°, 6°) — 9(*. ).

4) The sensor model. The weak formulation of (1.2)-(1.3) with electromagnetic boundary
conditions (BC)4 takes the following form

Find U = (u®, ¢, ¢%,0°) € HY(QF,T§) x HY(QF,T§) x HY(QF,T§) x H(QF,T5),
such that, for all V¢ € H'(Q°,T§) x HY(Q°,T§) x H*(Q°,T§) x H (Q°,T§), (1.14)
A (UE (L), VE) = Li(VF), t € (0,T)

with initial conditions (uf, uf, 65) and

L4(V€) = ( E,VE) + (g67v€)L2(fs) + (7’57775) - (QEﬂ?E)Lz(fa) + (Pgﬂ/)EH‘
_(ba,fe)LQ:(fs) - (dea'ws)Lz(fs)

For all weak solutions U = (u®, %, (%, 6%) of (1.14), the energy (1.10) satisfies :
E°(1) + ap(6°(1), 0° (1)) = Le (1),

. 4 R R . ;
with Lg(t) := (fsvus)+(g€7us)L2(fs)+(Pea Bk (b ¢t )L2(F5 (dsaﬂos)Lz(’fs)Jr(rsves)*
(96706)L2(fs)~ ~

Finally (see 1.9), initial conditions ¢f and (j are given by the solution of a suitable
variational problem, according to the case under study; for instance, in the sensor-actuator
case, we have

Find (¢§,(5) € H(QF,T5) x H(Q°,1'%) such that,

for all (v°,£%) € HY(QF,T§5) x H(Q°,T%),

ag (15, 9°) + a¢(G5, €) + 9(C5,v°) + 965, €) = (p2(0), 4°)+ (1.15)
_(da(o) )LQ(FE aC(COﬂJ’ )+f(£87u6) _6(08155) _g(Cqul)E)'i_d(ovaE);

1.4. Ezxistence, Uniqueness and Regularity

We state here a result of well-posedness for the problem in the sensor-actuator case, the
other cases being analogous. Let us explicitly remark that the assumptions on initial
conditions, source and boundary values are stronger than those used in [2].

Theorem 1.1. Suppose Q2° is a convex domain with Lipschitz-continuous boundary. Sup-
pose the initial data are such that:
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(i) uf € H2(Q%) N H'(Q°,T5),uf € H'(2,T5), 65 € H>(2°) N H' (2, 1),

(74) ug and 0 are such that problem (1.15) admits a solution

(5, 66) € H*(Q°) n HY(Q°,TF) x H*(Q°) N H' (Q°,T%).

Secondly, assume the following regularity properties on the source and boundary values:

€ e HY(0,T; L2(Q°)) n C([0, T); L2 (9F)
pe € H2(0 T; L2(9)) mcl([o T); L*(Q9)
re H'(0,T; LQ(QE))H °([o ] LZ( )
g° € H>(0,T;L2(T)) N C* ([0, T); L*(T°)
d° € H?(0,T; L*(T¥)) mcl([() T] 12 re)),
b € H2(0,T, L2(1%)) nct(jo, T); L*(1#)

o° € H'(0,T; L*(T%)) N C°([0, T); L*(T9)),

and on the constitutive parameters:

Cijkes Pijrs Rijk, Bij, Kij € W (QF)

Also, let the following compatibility conditions be satisfied:

Then, problem (1.11) admits a unique solution (u

Let us explicitly remark that the convexity hypothesis for the domain ensures condition

u® € CO([0, T|; H' (Q°,TF)) n ¢ ([0, T]; L*(97)),

oy 7@05(0700) on EE’
:De(u87§00,<0700) € on FE,
b°(0) = B (ug, 5, ¢5,05) - n°  on IS,
0°(0) = q°(65) - n® on I'°.

u® € L2(0, T HY(Q7, 1)),
i e L2(O T; L%(QF)),

©° € HY(0,T; HY(Q°,T§
& € H'Y(0,T; HY (9, 1%)) N C°

) NCO([o
0

,T); HY(QF°,T5))
,T); HY(QF,TS)

€ 0%, (5, 0% such that

)

6° € H'(0,T; H'(°,T5)) N C([0, T); H' (9°,T5))-

(#t) to be automatically satisfied (see, e.g., [4]).

2. Scaled Evolution Problems

In order to perform an asymptotic analysis, we need to transform problems (1.11), (1.12),
(1.13), (1.14), posed on a variable domain 2°, onto problems posed on a fixed domain Q
(independent of ). We suppose the thickness of the plate h® to depend linearly on ¢, so
that h® = eh. We apply the usual change of variables (see [3]) and drop the index ¢ from
all the subsets of the fixed domain and the fields therein defined. Let us suppose that the

data verify the following scaling assumptions:

fgc(xsat):fa(xat)v fB(m t)_€f3(xa ) erv

gg(x€>t):ga(m7t)7 gg(xaat)—593( Z, )7 CE'EFl,

gg(x67t) = Ega(ﬁ,t), gg(xgat) = 5293(33,t), T € F:l:v
o(x,t) = pe(z,t), 7°(2%,t) =r(z,t), z€N

& (a%,0) = d(a,t), b (a%,0) =bx,t), o (1) = ola

d(a°,0) = ed(z,t), b°(a%,0) = eblx, 1), o (a%,t) = e0

(=,

t)
t

)

el
rel4.
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We assume the following scalings for the mass densities p5, as in [7] (see also [1]):

Pala®) = plz), p5(a%) = p(a), =€

Remark 2.1. The in-plane and transversal components of the mass density tensor are
scaled differently. These assumptions aim at obtaining a scaled evolution problem that
couples the three components of the displacement field. In particular [1], the 2 dependence
of p5 allows, as an example, for an upward shift in the purely elastic transversal vibration
frequencies of the plate as the scaling parameter goes to zero. Thus, the limit model
is sensitive to inertia effects along the transversal direction, as it will be shown in the
presentation of the flexural problems.

We distinguish the four cases of study for what concerns the scalings of the unknowns
and test functions. In particular, since the mechanical and thermal loads and boundary
conditions remain unvaried in any case, the scalings of the unknown displacements u; and
temperature 6° and their associated test functions shall always be

ug(z°,t) = u (5)( t)  forall 2 =72 € Q°, t € (0,T),
u§(2°,t) = e Lug(e)(x, t) for all 2° = 7z € QE, te (0,7),
0% (z,t) = 0(e)(z, ) forallz° =71z €0, te 0,T),

hence the associated scaled strain tensor field k(e) = (k;;(g)), with ;;(e) € L?(Q) and
scaled temperature gradient () = (v;()), with ~;(e) € L?(Q2) are always given by

Kap(e) = eap(u(e)), Kas(e) := Leas(u(e)), was(e) = ess(ule)),
Ya(g) = 0ab(e), v3(e) == %339 £).

Due to the different electromagnetic source terms and boundary conditions (see, e.g.,
[14]), the scalings related to the electric and magnetic potentials ¢° and ¢® shall vary
throughout the asymptotic procedure; of course, the same holds for the scalings of the
corresponding test functions. The scaled gradients of the electric and magnetic potentials
will be denoted, respectively, by 7(¢) = (7;(¢)), with 7;(e) € L?(Q), and x(¢) = (xi(¢)),
with y;(e) € L%(9).

In general, with an arbitrary state ¥V = (v, 4, £, n), we associate, respectively, the ten-
sor field k(g; v) = (k;;(e; v)) and vector fields 7(e;v) = (73(;9)), x(€;€) = (xs(€;€)) and
(&sm) = (vilesm)-

) The sensor-actuator model. With the unknown state 4 € H*(Q°,T§) x H'(Q°,T§) x
HY(QF,T9) x HY(QF,T§), we associate the scaled state U(e) := (u(e), ¢(e), C(e), 0(e)) €
HY(Q,Tg) x HY(Q,T) x HY(Q,T1) x HY(Q,Ty), where

©° (2°,t) = o(e)(x,t) forall 2° = 7z € Q°, t € (0,T),

C8(af,t) = eC(e)(, t) for all 2° = 72 € Q°, t € (0,7). (2:4)

Moreover, with these scalings we associate, respectively,

Ta(e) = dap(e), T3(c) := 1030(e),
Xa(€) == €0a((€), x3(c) := 05((¢),

We let x(¢) := x(g;¢(g)) and X := \e
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We can now reformulate the problem on the fixed domain Q. For every € > 0 the
scaled state U(e) := (u(e), p(g),C(e),0(¢)) is the unique solution to the scaled problem:

Find U(e) € HY(Q,Tg) x HY(Q,T) x HY(Q,T+) x H(Q,Ty),
{such that, for all V e HY(Q,To) x HY(Q,Tg) x HY(Q,T'1+) x HY(Q,T), (2.5)
Ale)U(e)(®),V) = La(e)(V), t € (0,T),
with initial conditions (ug,ui,6p), where
Al)UE)(1), V) = (pia(e), v) + c(e)(n, a(e)) + cv(b(e), 1) — d(e) (n, p(e))+
—e()(1,()) + au(e) (u(e), v) +b(e) (p(e), v) = b(e) (¥, u(e))+
);v) = f(e)(&ule)) — c(€)(0(e), v) + ap(e) (w(e), ¥)+
)

e
+ac(€)(C(E),6) + 9(e)(C(e) %) + 9(e)((e),€) — () (0(e), )+
—e()(0(0), ) + ap(€)(0(e), ),
Li(E)(V) = (£,9) + (& V)gagey + () = (@1) o gy + (per ) = (4o ) oy +
~ac(©(G &) ~ FOCV) + &), Q) — 9(&) G, b).

The new bilinear forms are defined as follows:

@& v) 1= | Coemre(ems @ v)dn, ap(@)(@(e)v) = [ Xirye)mleivyde
o€ = [ M @uledn a@OE).m = 7= [ Ky
HAW ) = [ Py @dn, e@mu) = [ 1,

4. 0(6)) = [ aparn(e)da, . = [ (e
FEEuE) = [ R Ony@dn, a@E(E0) = [ aunEnlevide

The scaled energy £(¢)(¢) associated with a weak solution U(e) is:
E@)) =5 { pa(e), (e) + au(e)(u(e), ule)) +ap(e)((e), ¢(e)) +ac(e)(Ce), <)+ (9 4
+(Cv9(€) 0(e)) — 2d(2)(0(c), p(e)) — 2e(e)(0(e), C(e)) + 29()(C(e), p(€))} -
Following [2], the scaled energy associated with a weak solution U(e) of (2.5), satisfies:
E(e)(t) + ag(e)(0(e), 0(e)) = Le(e)(0), (2.7)
with
Lg(e)() = (£,a(e)) + (8, 0(e)) ) + (e, (e ) = (d: p(9) iy
+(r,0(e)) = (,00¢)) 2y — acle G4 ~ f(e)
+e() (0(), ) — 9(e)(C 9(2))-
2) The actuator-sensor model. We assume the following scalings for ¢° and (°:

— e _ = =€
o(e)(z,t) for all z° =7z € Q°, t € (0,T), (2.9)

¢ (z%,t) = ¢ 2
=((e)(x,t) foralla® =nz € Q°, te (0,7T).

¢ (z%,1)
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Moreover, the components of the scaled vector fields 7(¢) = (7;(¢)) and x(g) = (xi(¢))
are now defined by

Ta(E) = 580190(5)7 7-3(5) = 83@(5)7
Xa(e) :=0aC(€), x3(€) := 103((e).

We let 7(¢) := 7(g; ¢(¢)) and T := V&. The scaled state U(e) := (u(e), g(g),((e),0(¢)) is
the unique solution to the scaled problem:

for all V € HY(Q,Tg) x HY(Q,T'+) x HY(,To) x H(Q,Ty), (2.11)

{ Find U(e) € H'(Q,Tg) x HY(Q,T+) x HY(Q,To) x H'(Q,Ty), such that
A(e)U(e)(®), V) = La(e)(V), t € (0,T),

with initial conditions (ug,u1,fp), where
LQ(E)(V) = (f7 V) + (g7 V)L2(f) + (7’, 7]) - (Q, n)LQ(f‘\) + (p€7 1/1) - (ba €)L2(f)+
~ap(e)(B, %) = b(e)(@,V) + d(©) (1. §) — 9(e) (€, ?)-
3) The actuator model. We assume the following scalings for ¢ and (°:

&% (a°,t) = e@(e)(x,t) for all 2° = 72 € Q°, t € (0,T),

5
CE(25,t) = eC(e)(x,t) forall 2 =72 € Q°, t € (0,T). (2.12)

Moreover, the components of the scaled vector fields 7(g) = (7;(¢)) and x(¢) = (xi(¢))
are now defined by
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The scaled state U(e) := (u(e), ¢(e),
lem:

Find U(c) € HY(Q,Tg) x H'(Q,T'+) x HY(Q,T+) x H(Q,Ty), such that
{for all V e HY(Q, FO) x HY(Q,Tx) x HY(Q,Tx) x HY(Q,Ty), (2.14)
Ae)U(e)(t), V) = L3(e)(V), t € (0,T),

with initial conditions (ug, ui,fp), where
L3(e)(V) := (f,v) + (8, ) 2(T) + (r,n) — (o )LZ(f) + (pe, ¥)+
~ac()(C %) — SEEV) +e(@)(0.0) — 9()(E )+
—ap(e)(@,¥) — b(E)(@,v) + d(€) (0, ) — g(e)(&, P)-
4) The sensor model. We assume the following scalings for ¢° and (°:

O (25,t) = @(e)(x,t) for all 2° = 72 € Q°, t € (0,T),

CE(2°,t) = C(e)(w,t) forallz® =n°z€Q, te (0,T). (2.15)

Moreover, the components of the scaled vector fields 7(g) = (7;(¢)) and x(¢) = (xi(¢))
are now defined by

Ta(€) i= Batp(e), T3(¢) := 1d3¢0(e),
Xa(g) := 0a(e), x3(e) := %83(:(6).
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The scaled state U(e) := (u(e), ¢(e),¢(g),0(g)) is the unique solution to the scaled prob-
lem:

Find U(e) € HY(Q,Tg) x HY(Q,Tg) x HY(2,To) x H(Q,Ty), such that
for all V = (v,¢,€,n) € HY(Q,Tg) x HY(Q,To) x HY(Q,Tg) x H(Q,Ty), (2.17)
A(e)U(E)(t), V) = La(e)(V), t € (0,T),

with initial conditions (ug,ui, fp), where

La(e)(V) == (£,v) + (8. V)L’z(f) + (r,m) — (o U)Lz@) + (pe, ¥) — (b, é)Lz(f) - (d, w)Lz»(f)

3. Convergence Results
Preliminarily, we introduce the functional spaces
X(Q) = {¢ € L*(9), 856 € LA} = H' (~h, h; L2(w)),
Xo(Q) := {€ € L*(Q), 85¢ € L*(Q), €=0on 1},
usual in the asymptotic analysis of actuator piezoelectric plates (see, e.g., [11]). Also, let
V(€)= {v € H/(Q,Tp); eis(v) = 0}
denote the space of Kirchhoff-Love displacements, and
Vi (w,0) :={vhg = (va) € H'(w); v = 0 on v},
Va(w,v0) == {v3 € H*(w); v3 =0 and dyv3 = 0 on Yo},

where v = (vo) is the outer unit normal vector to . We recall that 7 = (—v2,v1)
represents the unit tangent vector to .

As we shall prove in the sequel, the limit displacement field is always a Kirchhoff-Love
field; thus, for consistency reasons, we consider initial conditions such that (see [7])

u(e)(0) = ug € H*(Q) N Vi1 (Q),
Oru(e)(0) = u; € Vi (Q), (3.2)
0()(0) = o € H2(Q) N HL(Q,Ty).

3.1. The Sensor-Actuator model

Theorem 3.1. Under assumption (3.2), the sequence {U(e)}, o weakly converges to the
limit U := (@, $,C,0) in the space L2(0,T; HY () x L0, T; H' () x L?(0,T; X(Q)) x
L2(0,T; HY(Q2)).

Proof. For the sake of clarity, the proof is divided into four parts. The first three parts
are devoted to showing that the sequence associated with the scaled energy {£€()(t)}e>0
is uniformly bounded; the proof of the weak convergence result is then accomplished in
the fourth part.

(i) Bounds on L} (¢). First we rewrite (g,l?(s))LQ(f) = 8t(g,u(5))L2(f) — (g,u(s))Lg(lq)

and £(2)(C, u(e)) = 9[£(2)(C, u(e))] — £()(C. u(e)). By using, in expression (2.8), Cauchy-
Schwarz, Poincaré’s, Korn’s and Young’s inequalities, along with the continuity of the trace
operator, we obtain the existence of positive constants C1 and dg such that

LEOWUE) < o) + D@ Ba + k@R a + @R + 106 R o +IxEBat

+00/7(2)1” } + Bu(, u(e)) o ) — L) (C )],
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where 2Cy(t) := |f\(2)79 + |g|§f + [pelg.q + ‘d%f + ‘T‘g,ﬂ + %\Q%f + |)A(\(2)7Q depends on
the domain and the data (not on €). Denoting by K > 0 the coercivity constant of ag(-, ),
with a view toward applying (2.7), we choose dg such that K:=K- % > 0. By the
definition of the scaled energy and the positive definiteness hypothesis of M (subsection
1.1), there exists a positive constant Co such that

la@)g.a + 1kE) .o+ TE)a+ 1065 a + 1xE)Ea < C2£(6),

hence there exists C3 > 0 such that
Lg(e) < Co(t) + C3E() + (g, u(e) ¢ — Qelf(£)(C, u(e))].

(ii) The sequence {E€()(0)}e>0 is uniformly bounded. We have:

2£(2)(0) = (pur, 1) + au(e) (1o, uo) + ay(e)(wo(e), wo(e)) + ac(e)(Co(e), ole))+
+(cvlo, 00) — 2d(2) (B0, po(e)) — 2e(e)(00, Co()) + 29() (Co(e), #o(e)),

where (po(€), o(€)) is the solution to the following variational problem

Find ((¢0(e), Co(€)) € H' (€, To) x HI(Q I't)
such that for all (¢,€) € H(Q,To) x H'(Q,T1),
ap()(po(e), ¥) + ac(e)(Co(e), €) + g(e)(Go(e), ¥) + g(e)(wo(e), €) = (3.3)
= (pe(0),9) = (d(0),¥) 25 — a¢(€)(Co, &) + f(€) (€, u0) — e(e) (B, )+
—g()(Co, ¥) + d(2) (60, ¥) + be) (1, uo).
By virtue of the definite positiveness hypothesis of M (with constant ¢;), Cauchy-

Schwarz, Poincaré’s and Korn’s inequalities (with constant c2) and Young’s inequality
(with constant d;), one has that

01{\7'0(8 3.0 + [Xo(e |OQ}
< ap(2)(20(e), 20(e)) + ac () (Co(e), Co(e)) +29(6) Go(e)s ¢0(e)) <
< ez {Ir0(e)lo.0(1pe(0) (0)lg. 7+ ¥uolo.0 + olo.0 + [Véolo.0)+

+ Ix0(€)lo,2([Vuolo,o + folo,0 + |VC0|0,Q)} <
S 6351

{Imo@l.0 + %R e} +

C ~
-‘rﬁ {‘PE(O)%@ + |d(0)|§7f~ + |Vu0|(2),g + ‘90|(2),Q + ‘VCO%,Q} .

Finally, on choosing §; such that ¢; — % > 0, we get the uniform boundedness of

[T0(e)]o, and |Xxg(€)|o,0- Now, we remark that e;3(up) = 0 by hypothesis (3.2), which
implies

0 (€) (1o, ug) = /Q Cijrermie(€)(uo)miy (€) (o) dz = /Q Coafis55 (&) (U0) i (€) (w0 )iz,
so that, by the properties of C, we have

au(e) (o, ug) < ¢|Vuglj o
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for some constant ¢ > 0. Consequently, by virtue of the above bounds, there exists a con-
stant cq4 > 0 such that £(£)(0) < c4, i.e., the sequence {E(g)(0) }e>0 is uniformly bounded.

(iii) The sequence {E(g)(t)}e>0 ts uniformly bounded. Upon integrating the energy evolu-
tion equation (2.7) in (0,t), using the results of steps (i) and (ii), the continuity of the
trace operator and Korn’s inequality, we infer that

t
+K/ (e) () B ds < £(2)(0) + /Lé@)(s)dss

0

<eit /O (Cols) + Cs(e)(s) + s (8(5), () (5)) gy — DoLF(E)(Els), u() (9))]) s <

1 /(c5 ~ c 1 t
<G+ 5 (FROB+ 5 180G ) + 5(cs02 + cods) ) (O + Cs / £(e)(s)ds
2 \ d9 03 ) 2 0
Since |k(g)(t) \3,9 is bounded (up to a constant) by £(g)(t), it is sufficient to select suitable

values of do and 3 to get the following estimate:

+K/ [v(e) |09d8<05 +C3/5 d8<06+03/8 s)ds,

with Cg := SUPye(0,T) Cs(t). Thanks to Gronwall’s inequality, there exist two positive
constants m and k such that

ot
E(e)(t) < me*® and K/ \’7(5)(5)\(2),9 ds < me* for all t € (0,7).
0

(iv) Weak convergences. We are now in a position to establish the weak convergence
result. From the bound on the energy we infer that the sequences {k(¢)}e>0, {X(€)}e>o0,
{7(¢)}es0 and {y(¢)}e>0 are uniformly bounded in L2(0,T;L?(f)), therefore we have
the following weak convergences (up to a subsequence):

Kij(e) = Ry in L*(0,T; L*()),
Xi(e) = X; in L2(0,T; L%(Q)),
Ti(e) =% in L*(0,T;L*(Q)),
vi(e) =4 in L%(0,T;L*(Q)).
Moreover, by means of Korn’s and Poincaré’s inequalities and from the definition of x;;(¢),
7;(€) and 7;(e), we infer that |[u(e)|/1,0, [[¢(€)|l1,o and ||§(c)||1,o are also bounded, so that

L*(0,T;HY(Q)),

u(e) = uin

u(e) = uin L%(0,T;L3(Q)),
@(e) = @ in L2(0,T; H (Q)),

0(s) = 6 in L%(0,T; H'(Q)).

Upon writing

da = [ h BsC(e) (F, ys)dys,

it follows that |{()[o,0 < 2h|05((e)[0,0 < ce™T'| by virtue of the boundedness of y; (e).
This implies that both () and ¢(e) are bounded in L?(€2) and thus,

{(e) = ¢ in L2(0,T;X0(R)), ¢(e) = ¢ in L2(0,T;X(Q)).

This completes the proof. O
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Theorem 3.2. The weak limit U(t) = (a(t), @(t),C(t),0(t)) is the solution to the limit
variational problem:

Find U(t) € Vi (Q) x HY(Q,Tg) x X(Q) x H (2, Tg), t € (0,T) such that
AU, V) = Li(V), for all V € Vi1 (Q) x HY(Q,To) x Xo(Q) x HY(Q,T), (3.4)
(=¢* onTy,

where

A / {(Chgorear (@) + Prapda@(t) + Riasdsl(t) - Bhsl(t)) eas(v)+

+ (—Paoreor(@(t) + Xap0pp(t) + @hadsC(t) — pa0()) datht
+ (= Fhapeas (@(t)) + Ghsdad(t) + Misdsl(t) - mééa)) D6+
+ (Baseap(@(t) — M0sC() — Padad(t) + E10(1)) 1+
+K 5950t dan + pii (t)vi} dz,

Li(V) i= (£,9) + (8 V)ga(ey + (1) = (0,1) oy + (9es ¥) = (4, 9) a7y

The reduced magneto electro-thermo-elastic coefficients cl

D fﬁ%, R3a6 and @ aa3 are listed in Appendiz 1.

vl pl 71
afoT? Xaﬁ’ Ka,B} Paaﬁ’ Baﬁ;

Proof. For the sake of clarity the proof is split into three parts.
(i) By the definition of x;;(e), xi(€), 7(¢) and v;(¢), and thanks to the results of Theorem
3.1, there exists two constants C'y; and Cg such that

leap(u(e)lo.0 < Crre® T, leas(u(e))lo,o < eCrre“ ™, less(u(e))lo,n < e*CrrexT,
10a¢(2)|0,0 < 2CneCcT, |05¢(e)]0,0 < Care© T,

0a(e)]0,0 < Care“ T, |03(e)]0,0 < eCrre“ T,

10a0(c)|0,0 < Crre“ T, |030(c)]o,0 < eCrre®T.

(3.5)

From the first set of inequalities (3.5)1, we get that e;z(u(e)(t)) — 0 in L*(2) for almost
every t € (0,T). Also, as u(e)(t) — a(t) in H*(2), we have that e;z(u(e)(t)) — e;3(1a(t))
and so e;3(0(t)) = 0 by uniqueness of the limit. This implies that 9343 = 0, i.e., a3(Z, z3) =
u3(Z) is independent of x3. We also have that 03tq = —0als, i.e., Ua(Z,x3) = Ua(Z) —
230a13(Z). Consequently, @1(t) € Vg1, (2). Moreover, we obtain that e,g(u(e)(t)) —
Kap(t) = eap(@(t)) in L2(Q), Leaz(u(e)(t)) = ras(t) in L2(Q), Lesz(u(e)(t)) — 0 in
L*(Q) and, also, E%egg(u(s)(t)) — k33(t) in L*().

From the second set of inequalities (3.5)2, we have that eda((¢)(t) — 0 in L*(Q) and
Ds¢(2)(t) = Bs((t) in L*(Q).

From the last sets of inequalities (3.5)3 4, since @(e)(t) — @(t) in H'(Q), we infer
that dap(e)(t) — 7a(t) = dap(t) in L?(Q) and, also, dzp(e)(t) — 0 in L3(Q), ie.,
o(t) = ¢(Z)(t) is independent of x3. Besides, 5339"( )( ) — 73(t) in L2( ). Similarly,
since 0(e)(t) — 6(t) in H(Q), we obtain that 9,0(c)(t) — Fa(t) = 8ab(t) in L3(),
d30(e)(t) — 0 in L*(Q), i.e., O(t) = 6(z)(t) and, finally, é@g,@( )(t) — 75( ) in L2(9).

(ii) Computations of k3, T3 and 73. Let us multiply problem (2.5) by €2 and let ¢ tend
to zero. We get the following equation:

C3333k33 + 2Ca333Ka3 + P33373 + Capszeas () + Pag3da® + R33303¢ — B330 = 0.



16 F. Bonaldi, G. Geymonat, F. Krasucki, M. Serpilli

By multiplying problem (2.5) by ¢, choosing test functions v3 = ¢ = n = £ = 0 and letting
€ tend to zero, we have that

Ca333633 + 2Ca353583 + P3a373 + Copaseos () + Pra3lo® + R3a303¢ — Bash = 0.

Similarly, by multiplying problem (2.5) by e and choosing test functions v; =n =& =0,
when ¢ tends to zero, we find

—Ps33k33 — 2P3a3Ka3 + X3373 — P3ageas(lt) + Xa30a@ + assdsl — psd = 0.

Finally, if we multiply by € and choose test functions v; = 1 = £ = 0, we obtain the last
equation ~

K3373 + Ka30al = 0.
By combining the whole set of equations above we are now in a position to characterize

ki3, 73 and 3. Let 1t = (lll) be the vector whose components are defined by ltll = 2Kq3
and l% ‘= k33, and (d;j) 1= (Ci3j3)_l, then

lil = —d;j {(Caﬁjg + klpgjgpgl,ag) eaﬁ(ﬁ) + (Pozj3 - k/P3j3X&3) dapt
+ (Rsj3 — k' P3j3ai3) 03¢ — (B3 — k' P3j3ps) é} ,
5 =K (Péa,geaﬁ(ﬁ) — X4300p — a§333§+p§é) ;
.
V3= - a3aa9-

Coefficients k', P?I)aﬁ’ X(’l3, ag3, pé and K(’l3 are defined in Appendix 1.

(iii) Definition of the limit problem. We let test functions be V = (v,4,&,7n) € Vi (Q) X
H! (Q,T0) x X () x H! (©,Tp) in problem (2.5) and let & — 0, by substituting expressions
(3.6), we obtain, as customary, the limit evolution problem

Find U(t) € Vi, (Q) x H'(Q,Tg) x X(Q) x H(Q,T), t € (0,T) such that

[ {(Casoreor((v) + Phastod®) + Fhastsl() = Baah(t)) can()+
+ (= Paorear (a(1) + XA 505(t) + Gasdal() — Fad(t)) dath+
+ (~Fhapeas(@lt)) + @hadad () + Mizal(t) — m3() ) ds+ (3.7)
+ (Bageas(i(t) — m30sl(t) — adad(t) +C10(H) ) n+
+RAp050(0)0an + pli (Hv; } dz = L1 (V),

C=¢tonTlyg, forall Ve Vi (Q) x HY(Q,Tg) x Xo(Q) x H(€,T)

Problem (3.7) is formally equivalent to (3.4), presented in the statement of Theorem 3.2)

3.1.1. The limit evolution problem

In this subsection we present the variational and differential formulations of the evo-
lution problem for a sensor-actuator magneto-electro-thermo-elastic plate. The pri-
mary unknowns of the limit problem are collected into the limit state U(t) =

(a(t), 3(t),C(t),0(t)) € V() x HH(Q,To) x X(Q) x H(Q,T'y), whose components take
the following form:

1}0(((?,1'3)) = ua((?)) — x38au3(x), uyg = (Ua),
uz\r,r3) = u3z(xr),
o(,x3) = ¢(Z), (3.8)
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In the case of a homogeneous materlal the reduced magneto -electro-thermo-elastic co-
efficients CaBa‘rf aB’ aﬂ, [,aﬁ, Baﬁ, pa m3, R3a5 and &, aa3 are constant functions and,
thus, the limit evolution problem decouples into two variational subproblems, namely, the
flexural problem, which gives us, and the thermo-piezoelectric membrane problem, which
gives the triplet (ug, ¢, ). Moreover, we can characterize explicitly the limit magnetic
potential f as a second order polynomial function of x3.

Indeed, by choosing test functions V = (0,0,&,0) in (3.7), after an integration by parts
along 3, we get the expression of the limit magnetic potential §~ :

2
(%, x3) Z (3.9)

where

h’R1 R}
0 30 1_[C] 2 Hzap
<C> + 2M313 8 pu3, =z = 2’ z = ]’\‘411 8(15’11,3,

with (¢) := CJ’%C_ and [(] := ¢t — ¢~ representing, respectively, the mean value and
the jump function between the top and bottom boundary values of (. As the careful
reader can notice, the limit magnetic potential becomes a known function depending on
the transversal displacement uz of the plate and on the values of the magnetic potentials
¢ i, applied on the upper and lower surfaces I"t.

By virtue of the characterization (3.9) of the limit magnetic potential ¢, we can now
rewrite the limit evolution problem. After an integration by parts along x3, we obtain a
two-dimensional problem defined over the middle surface w of the plate:

Find U = (ug (), us(t), 6(t), 9(t)) € Vi (w,v0) x Va(w,v0) x H' (w,70) x H' (w,70),
2h [ {Ns(un (0600 9(0)cas(vi) + pita(toe ) dit

+2h / {=Dh(un (1), 6(8), 9(8)Dat + S (wps (£), 6(6), D)1 — Gr(9(2)) D | d+
2h3 1 .. 3 . . 5
H 2 [ M a®)0upva + poui0ues + Fypieyes i = £19),

for all V = (v, v3,%,1) € Vi (w,70) X Va(w,70) x H' (w,70) x H (w,70),

with
Liv):= / {fw’ — Malavs + petp + 7777} dz + / {Eivi — N Oavz — dip — 577} dy—
- /w [ RbaplCleas(vr) + aaalC10aw — b [cIn ) di.

The initial conditions are given by

6(0) = 89 = (ua,0 — 39au3,0,u3,0),
1(0) = a1 = (ua,1 — 230au3,1,u3,1),
6(0) = G = V.

(Nalﬁ), (M}w), (DY), 8! and (gl) represent, respectively, the membrane stress tensor,
the moment tensor, the reduced electric displacement vector, the reduced thermodynamic
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entropy and the reduced heat flow vector of the plate, whose components are defined by
the constitutive laws below:

ng = Coéﬁg.reor(uH) ﬁao¢ ,Baﬁﬁ
Dé = l)léO'TeO'T(uH) aﬁaﬁ¢+pa
Sti= Bageaﬂ(uH) Padad +

Ml of = AQBUTaMug,

qa =K} 58519

~1 RSQBRBU’F
Where A ()15177' —+ T
33

Moreover, the two-dimensional applied thermo-electro-mechanical loads are

afor *

fitt / fi(H)dzs + g () + g7 (0),

h
ma(t) = /_ @3 falt)drs + hlgl (1) - ga (1),

h h
gi(t) == thi(t)dw3, na(t /hm3ga )dx3,

h _ h
pet)i= [ peltydas =" (0~ d"(0), )= [ d(tydos,

h h
mt) = / r(t)des — o (8) — o~ (1), B(t) == /_ oltydes,

—h

where v* := v|r, = v(&,+h) denotes the restriction of v to I'+.
This problem can be split into two two-dimensional decoupled problems: the flexural
problem and the thermo-piezoelectric membrane problem. The flexural problem is:

Find us3(t) € Va(w,70), t € (0,T) such that

2h3 ) 3 N
Y /w {Miﬁ (u3(t))0apvs + pOuiiz(t)Oavs + ﬁpu?)(t)vs} dz =

= / {]?31)3 - maaa’Ufs} dz + {531)3 — ’I‘Laaa’vg} d’y,
w Y1

for all vg € Va(w,70).
The two-dimensional thermo-piezoelectric membrane problem takes the following form

Find (ug(t), ¢(t),9(t)), € Vi (w,70) x H (w,70) x H (w,v0), t € (0,T) such that
2h/ {N;ﬁ(uH(t),¢>(t),19(t))eaﬁ(vH) + pita(t)va } di+
20 [ {=Dh s (1) 609000t + 8 (1), 6(0) 9(O)n — T (9(2)) P } i =
= [ {Fove+ B = RaaplClleas (vin) = Foalcl0wss + -+ alcliny i+

+ [ {gava—dv -} anr
71
for all (VHJ/%’?) € VH(‘*’»'YO) X Hl(wa’YO) X Hl(w770)'

We are now in a position to write the decoupled flexural and thermo-piezoelectric mem-
brane problems into their differential form by using Green’s formulae on w.
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The transversal displacement ug solves the following flexural differential problem:

Field equation:

2h3 QBMQB gg pPOaaiiz + 2hpiis = F3 inw x (0,7),
Imtzal conditions:

u3(0) = uz,0, u3(0) = u3,1 inwx (0,7),

1
Boundary conditions: (FDP)

%{paaﬁ:ﬂ/a - aaM,lwug - 8T(Mi5yarﬁ)} =Gz onn~; x (0,T),
Maﬁyaulg =0 on 1 x (0,7),

uz = Opugz =0 on v x (0,7T),

where F3 := fg + Oama and Gz := g3 — maVa + Oana.
The thermo-electro-mechanical state (ug(t), ¢(t),¥(t)) solves the following thermo-
piezoelectric membrane differential problem:
Field equations:
2h(piia — IsNLg) = fo + Ryapl05¢]  inw x (0,7),
2h0a Dy = pe + al3[0al] inw x (0,7),
2h(S! + Dain) =7 + m3[(] in w x (0,7),
Initial conditions:
Ua(0) = uq 0, wa(0) =uq,1, 9(0) =99 inwx (0,T),

Boundary conditions:

Zh./\/gﬁyﬁ = Jo — E%aﬁyﬁ[[g]] on 1 x (0,7),
2hDjva = d+ dpsval(] on v x (0,7),
2hGhve =0 on vy x (0,T),
U ==V =0 on yg x (0,7T).

It is important to remark that the information regarding the piezomagnetic behavior of
the plate is now contained in the source terms appearing on the right-hand side of the
equations, depending on the jump of the applied magnetic potentials at the upper and
lower faces of the plate.

3.2. The Actuator Model

Theorem 3.3. Under assumption (8.2), the sequence {U(e)}.~ weakly converges to the
limit U := (@, 3,¢,0) in the space L*(0,T; H' () x L?(0,T;X()) x L2(0,T; X()) x
L2(0,T; HY()).

Theorem 3.4. The weak limit U(t) = (a(t), (t),C(t),0(t)) is the solution to the limit
variational problem:

Fmd Z/I( )€ Virn(Q) x X(Q) x X(Q) x HY(Q,Tg), t € (0,T) such that
As(U(t ) V) =L3(V), for all V € Vi1 (Q) x Xo(Q) x Xo(2) x H'(2,Tg),  (3.16)
¢ =p*, czci on T,

KL
L3
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where

A0, ) = [ {(Clprear (@) + Paptu(t) + Bapdsl) — Fsb(0) cap(v)+

Q
+ (= Phageas(@(®) + X35055(t) + 8305 (t) — 530(1)) Do+
+ (— Rapeas (a(t) + as0s(t) + Ms0sl () — m30(1) ) Oaé+
+ (Basean(@lt)) — m30sl(t) - Fos5() +20()) n+
+K L 5050(t)9an + pﬁi(t)vi} da,

La(V) i= (£,v) + (& Vo) + (1) = (00 gy + (0e, ).

The reduced magneto-electro-thermo-elastic coefficients 52[307’ )?33, 1\7§3, ]Sg’aﬁ, 525, ﬁ%,
ﬁz%, ﬁgaﬁ, ’o7§3 and & are listed in Appendiz 1.

3.2.1. The limit evolution problem

The primary unknowns U = (11, , ¢, 0) € Vi1,(Q) x X(€2) x X(Q) x H' (€, T¢) are defined
by:

Ua(Z,r3) = ua(Z) — 230au3(Z), upg = (ua),
U3 (%, x3) = ug (), (3.17)
6(, z3) = 9(7)

We consider the case of a homogeneous material. The limit evolution problem decouples
into two variational subproblems, namely, the flexural problem, which gives us3, and the
thermo-elastic membrane problem, which gives the couple (ug, ). Moreover, the charac-
terization of the limit electric and magnetic potentials ¢ and CN is:

2 2
o k/an Kk T ko~ Kk
G(@,a3) =Y fH@as, (@ z3) = 2"(@)ah, (3.18)
k=0 k=0
where
0 h? 1 el L2 1
[ =(0) + 5 AapOapus, [ =, [ =—5Ay305us3,
2 2h 2
h? 1
L=+ 5 Laplapus, Z = % 2= 5l aplapus.
with
A . MgBP??a,B - agBRgaB . ag:SP??aB - XgSRgaﬁ
af T T o — ) aff T T —p —
M§3X§3 - (0‘§3)2 M3§3X§’3 - (0433)2

The limit magnetic and electric potentials depend on the transversal displacement us of
the plate and on the values of the known boundary magnetic potentials Ci and electric
potentials (pi.

Thanks to the characterization (3.18) of the limit magnetic and electric potentials, we
can now rewrite the limit evolution problem. After an integration by parts along x3, we
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obtain a two-dimensional problem defined over the middle surface w of the plate

Find U = (ugy

(1), u(t), 9(t)) € Vi (w,70) x Va(w,70) x H' (w,70), such that
2h/w {NS;B ug (1), 9())eas (Vi) +piia(t)va}d§c+

+oh / {83 Can (1), 9(0))n — G (6(
2h3
_’_7

t))@an} di+
.. 3 . - ~
5 /. {Mig(ug(t))aagvg + pOatiz(t)davs + ﬁpug(t)vg} dz = L3(V)

for all V = (v, v3,1) € Vi(w,70) x Va(w,70) x H'(w,0), t € (0,T),
with

£a(P)i= [ {Fovi = moduva -+ ev + 7 da + [ {Givs = noduvs - G} dr-
w 71

~ [ {(Faallc) + Plaalel) cop(vu) ~ (3161 + K1)}

The initial conditions are given by

1(0) = g = (ua,0 — 302u3,0,u3,0)
u(0) = 01 = (ua,1 — ¥30au3,1,u3,1),
6(0) = B = .

(/\/35), (Miﬁ) S? and (go) represent, respectively, the membrane stress tensor, the mo-

)
ment tensor, the reduced thermodynamic entropy and the reduced heat flow vector of the
plate, whose components are defined by the constitutive laws below

'/V;ﬁ - ~aBaTeUT(uH) ﬂa5ﬁ7

S = ,3 ﬁeab’(uH) + Cvﬁ 3.91

M3 5= A3 o Ooru (3:21)
5 aﬁo’r oT U3,

G = — - K} 5089,

where AO&B oT = Ngﬁo._r — ﬁg)OZBAUT — ﬁgaﬁrg‘r.

The variational problem above can be split into the flexural problem and the thermo-
elastic membrane problem. The flexural problem reads as follows

Find u3(t) € V3(w,7v0), t € (0,T) such that

2h3 3 N
008v3 + pOaii3(t)Oavz + ﬁpug(t)vg dz =

/ f3v3 — maaavg} dz +
w

{g3v3 — nadavs}dy,
for all vz € V3(w,70).

71

21
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The two-dimensional thermo-elastic membrane problem takes the following form
Find (ug(t),9(t)), € Vi (w,v0) x H (w,7), t € (0,T) such that
2 [ {NEsan(®). 00)cap(vir) + pita(Byvn } di+

w
w2h [ {84 an (), 900)n - 30 2un s =
w
— [ {Fovo + 70— (Basldl + Phasliol) canvmr) + (7 + Blg1 + LD n} do+
w

{Gava — o0} dv,
71

for all (vi,n) € Vi (w,70) x H' (w,70)-

By using Green’s formulae on w, we can derive the differential formulations of the above
problems. The transversal displacement ug solves a flexural differential problem (FDP)3
analogous to (FDP)! with /\/ltllﬁ replaced by Miﬁ defined in (3.21)3.

The thermo-elastic state (ug(t),¥(t)) solves the following thermo-elastic membrane
differential problem:

Field equations:

2h(piia — 0pN35) = fa + R3apl05¢] + Piapldse] inw x (0,T),
2h(S? + Dada) = 7+ M3[C] + B3[¢] in w x (0,7),
Initial conditions:

Ua(0) = a0, Ua(0) =uq,1, ¥(0) =g inw x (0,7),
Boundary conditions:

2hN3gus = Go — R, svslC] — Pansvplel on 1 x (0,T),
2hiava =0 on 1 x (0,7),
U =9=0 on v x (0,7).

As in the sensor-actuator problem, the piezomagnetic and piezoelectric behaviors are con-
tained in the load terms on the right-hand side of the equations.

3.3. The Sensor Model

Theorem 3.5. Under assumption (3.2), the sequence {U(e)},~ o weakly converges to the
limit U := (&, 3, ¢, 0) in the space L?(0,T; H(Q)) x L0, T; H'(Q)) x L%(0, T; H*()) x
L2(0,T; HY(Q)).

Theorem 3.6. The weak limit U(t) = (a(t), d(t),C(t),0(t)) is the solution to the limit
variational problem:

Find U(t) € Vi,(Q) x H'(Q,Tg) x H'(Q,To) x H'(Q,To), t € (0,T) such that
AgU(t), V) = La(V), (3.25)
for all V € Vi (Q) x H' (w,70) x H' (w,70) x H"(w, ),
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where

A@(0).V) 1= [ {(Chioreor@0) + Plagdodt) + Rhapdodol(t) = Bhsit)) ean(v)+

+ (= Pdoreqr (@) + Xapdp(t) + Gapdpl(t) = pAO) ) dati+
+ (~Rorear (6(1) + @hs055(8) + Mapdsl(t) — mb(1)) dat+

+ (Bapeas(Bt) — madal(t) - Padad(t) +20(1)) n+
+Ras00(t)0an + piis(t)v; | da,

E4(V) = (f,v) + (&, V)Lz(f) +(r,n) — (o, 77)L2(f) + (pe, ¥) — (d, w)LZ(f) — (b, §)L2(f)'

The reduced magneto-electro-thermo-elastic coefficients 535077 Xiﬁ, IN(;LQ, f’;laﬁ, Béﬁ,

Pay T, ﬁﬁaﬁ, Miﬁ, &iﬁ and & are listed in Appendiz 1.

3.3.1. The limit evolution problem

In this section we present the variational and differential formulations of the evolution
problem for a sensor magneto-electro-thermo-elastic plate. The primary unknowns U(t) =
(a(t), 3(t), (1), 0(t)) € V() x HY(Q,Tg) x HY(Q,Tg) x H(Q,Ty) satisfy the following
kinematical assumptions

Ua(Z,23) = ua(Z) — v30au3(Z), ug := (ua),
u3(,z3) = u3§56)7

3(F. 23) = 0(2). (3.20)
g(aﬁxg) = C(i‘),
0(2,x3) = I(Z).

The limit evolution problem for a homogeneous material decouples into the flexu-
ral problem, which gives u3, and the magneto-electro-thermo-elastic membrane problem,
which gives the quadruplet (ug, ¢,s, ). After an integration by parts along x3, we obtain
a two-dimensional problem defined over the middle surface w of the plate:

Find (ug(t), us(t), ¢(t),s(t),9(t)) € Vi (w,v0) X Va(w,v0) x [H'(w,70)]?, such that
2h [ {Ns(an (060050 0O cap(vir) + pita(Byvn } di+

~2h [ {Dun(®). 60, 5(0), 9000t + B (wn (1), 0(0),s(0). 9(0)dut } di+

+2h f {S4un(®),6(0). (0, 9(E)n - B O®)an} di+

4
2h .. 3 . N 5
+3- {Miﬁ(%(t))@aﬁw + pOaiiz(t)Oavs + ﬁPU:’)(t)v:’a} dz = L4(V),
w

for all V = (v, v3,%,&,n) € Vi (w,70) x Va(w,v0) x [H (w,70)]*, t € (0,T),
with

£4(]~/) = / {ﬁvl — ma0av3 + petp + Fn} dz + / {ﬁivi — NaOa¥3 — cﬁ/; —Ef — Z)n} dry.
w Y1

The initial conditions are given by

0(0) =g = (Ua,0 — ¥30au3,0,u3,0),
0(0) = a1 = (ua,1 — 230au3,1,u3,1),
0(0) = 0g = Jo.
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(N3 3): (M ) (DY), (BY), 8* and (g}) represent, respectively, the membrane stress
tensor the moment tensor, the reduced electric displacement vector, the reduced magnetic
induction vector, the reduced thermodynamic entropy and the reduced heat flow vector
of the plate, whose components are defined by the constitutive laws below:

N4,6’ - NaﬁaTeg”'(uH) ﬁ?aﬁag()b + R§a585§ - géﬁﬂ’
-94 = ~éO'TeUT(uH) iﬂaﬁ¢ - aigaﬁg +ﬁ3¢197

Bg = RamegT(uH) — G g03p — Mygdss + mad,

S = Bl seas(Up) — Padad — Madas + Co0,

Miﬁ = CiﬂUT(?gTU3,

Go = — 75 K509,

(3.28)

As previously announced this variational problem can be split into the flexural problem
and the magneto-electro-thermo-elastic membrane problem. The flexural problem reads:

Find u3(t) € V3(w,70), t € (0,T) such that
2h3
/ (,ﬁ (u3(t))0apv3 + pOaii3(t)Oavs + 72 pu3( )v3} dz =

{fgvg - ma(?a'ug} dz + {g3v3 — nadavs}dy,
w Y1
for all v3 € Va(w, o).

The two-dimensional magneto-electro-thermo-elastic membrane problem is:

Find (ug (t), ¢(t),s(t),9(t)), € Vi (w,v0) x [H  (w,70)]3, t € (0,T) such that
oh [ (Mo (01,000 (0. 90 s (var) + pit(t)ea | dit

~2n [ { Do (). 6(0).5(0). 9(0)0uw + B (11 (0) 60, 5(0). 9(0)) P } i+
+2h [ {81n0),000),50. 00 - T O®)Ian | di =
= [ {Fuve+pev+Fabas+ [ fGave—dv—Tc-am}ar

for all (VH71/)7£777) € VH((’J7’YO) X [Hl(w7’70)}3'

By means of Green’s formulae on w, we have that the transversal displacement ug solves a
flexural differential problem (FDP)? analogous to (FDP)' with M7, 3 replaced by M 8
defined in (3.28)5, whereas the membrane state (ug(t), ¢(¢),s(t), 9(t)) solves the following
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magneto-electro-thermo-elastic membrane differential problem:

Field equations:

2h(piia — 9sNiig) = fo in w x (0,7),
2h8a D2 = pe inw x (0,7),
2h0a B = —(bt +b7) inw x (0,7),
(S + Dah) = 7 in w x (0,T),
Initial conditions:

Ua(0) = a0, wa(0) =uq,1, ¥9(0) =099 inw x (0,T), (3.31)
Boundary conditions:

QhNiﬁuﬁ = Ja on v X (0,T),
2hDive =d on v1 x (0,7),
2h§3ua =b on vy x (0,T),
Whihve =& on 71 x (0,7),
Uy =¢p=c¢c=19=0 on vy x (0,7).

Conclusions

We set forth an asymptotic two-dimensional plate model for linear magneto-electro-
thermo-elastic sensors and actuators, under the hypotheses of homogeneity and anisotropy.
A validation of the results obtained comes from the weak convergence theorems 3.1, 3.3
and 3.5. Each of the four plate problems originating from the four different boundary
conditions presented decouples into a flexural problem and a partially or totally coupled
membrane problem, depending on how the plate is supposed to behave. As in [14], the four
models differ between one another in the scaling assumptions on the electric and magnetic
potentials (see (2.4), (2.9), (2.12), (2.15)). The formulae in Appendix 1 giving the reduced
material coefficients appear complex, however numerical values of such coefficients can be
easily computed, as reported in Appendix 2 for the usual BaTiO3-CoFesOy4 composite.
Concerning directions for future research, a first important issue to deal with is, of
course, coming up with efficient numerical methods to perform simulations, based either on
the two-dimensional plate problems or on the three-dimensional problem. Then, another
problem of interest is to extend our results to shell-like bodies; in situations where the
geometry is particularly simple, as in the case of cylindrical shells, one should probably
be able to determine analytical solutions by separation of variables, as in [12]. Finally,
a further interesting problem is the study of a whole laminated structure (plate-like or
shell-like) including a thin magneto-electro-thermo-elastic layer (see, e.g., [10]).

Appendix 1

In the sequel we define the reduced magneto-electro-thermo-elastic coefficients character-
izing the different models. We recall that (d;;) is the inverse of a second-order tensor whose

ij components are C;3;3. The tensor (I?éﬂ) is the same throughout the models. In the list
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below, we give at first the definitions of the general reduced coefficients.

I ._ Kas
C&BUT = CaBo’T dz]Ca,BZSCO'T]37 Rgaﬁ = RBaﬂ dzgca,BZSRSJS: If‘i‘?’ T Kas ,
Xp?, = Xp3 + deP323ij37 ﬁ B = Baﬁ dwcaﬁwﬁ]?n K;O"B ::1Ka5 B KO‘3K’H37
Mp3 = p3 + dzgRBzSRpJ37 p3 =p3+ d?,]P3_73/3137 = X337
a33 = a3z + d;j P33 R3;3, my = m3 + d;j R3i305;3, 0= 5,
Pyap = Ppap = dijPpizCapjs; ¢y 1= cv + dij BiaBjs, SR S—

d/z'j i=d;j —cdy (M35 P33 P33 + X33R303R3j3 — a3 (Rse3P353 + PagsRsj3)) -

Reduced Coefficients for the Sensor-Actuator Model

écltﬂo"r = Capor — Capisdij (Corjz + k' P3j3Piy.) + k' PsapPiyr,
P;ocﬂ = Pyap — Capiadij (Pojs — k' P3j3Xg3) — k' P3apXgs,
Rgaﬁ = R3ap — Capiadij (Rsjs — k' P3jzals) — k' Pyagass,
5 ,8 = ﬁaﬁ Caﬁzde (6]3 k P3j3p3) K PSaﬂPSv
X15 = Xop + Paizdi (ngg k’nggXég)) — K X3 X3,
a3 = a3 + Pajadij (Rajs — K Pyjzals) — k' Xasals,
@Vé ‘= pa + Paisdij (Bj3 — k' Psjaps) — k' Xasps,
M§3 := M33 + Rsj3d;; (Raj3 — k' P3jzas3) — K asgass,
m3 1= mg3 + Raizd;j (Bjs — k' Psjsp3) — K assp'3,

G = cu + Bisdij (Bj3 — k' P3japs) — K'paph.

Reduced Coefficients for the Sensor Model

04,@” = Capor = Capiz [d iCorjs + (033 R3i3 — M33P3;3) P3or + (033 Pai3 — X33 R3i3)R3or| +
—c P3aﬁ [di; M33P3J3 - a33R3]3)CaBi3 — M33P5,3 + a33R308] +
—c R3a[3 [dij (X 3333;3 - 0433P3g3)ca/%3 — X33R30 + a33P308] ,

P} B = Paaﬁ Capis [dij — (a53R3i3 — M§3P3z3)Xa3 — (a33P3i3 — X33R3i3) 03] +
—c P3aﬁ [d; (M33P333 - 0633R333)Pms + M33Xcr3 — ajzags] +

N —/ R3qp [dij(X33R3j3 — 33 P3j3) Poiz + X33 My3 — 33 X3,

Rﬁag = Roap — Ca5i3 [d}Roj3 — (a33R3i3 — M33P313)0403 - (0433P3z3 — X33R3;3)Mo3] +
—Clpgaﬁ [[dij(Mgg)Pg]‘g 0533R3j3)R(”3 + M33O¢03 — 0(33MU3 +

N —c'R3ap [dij (X33 R353 — a33P3j3) Roiz + X33 M3 — ajzaes]

Bap = Bap — Capis [dijBjs + (a3 Rais — Miz Psi3)ps + (ah3Pai3 — X33 Rsi3)ms] +
—¢' P3op [dij(M33P353 + o33 R33) Bis — M3zps + as3ma] +

N —c'Ryap [dij(X33R353 — ai33P353)Bis — X33ms + asaps]

Xig = Xop + Paiz [di; Pgjs — (a33R3i3 — M33P3i3) X g3 — (33 P3i3 — X33 R3i3) 3] +
_C:XOAS [dij(]w/:/),sp3j3 - a/égR:zj:z)PBi?, + 1\/453)(63 - 0;330453] +

» —c g3 [dijl(X33R3j3 */0633P3j3)PL—/¢i3 + X33Mps3 */a33Xﬁ3} -

Tpp = ap + Puiz [dijRpj3 — (a3 R3i3 — M33Psi3)ags — (a3 Pyiz — X33 R3:3) Mps) +
—' Xa3 [di; Rgjs — (a3 R3i3 — M3 P3iz)ogs — (a3 Paiz — X33 R3i3) Mg +
—c' o3 [dij(X33Rs53 — o33 P3j3) Rais + X33Ma3 — a33aa3] ,
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Pa 1= Pa — Pais [d;Bj3 + (a3 Rais — Mj3P3i3)ps + (ah3 Pais — X53Rai3)ms) +
—C:Xa:s ﬁdij(]wlé?)PSjS - 0¢/§,3st3)52‘3 - ]V/fésps + Oé/égms] +

—, —caqs [dij(X33Rs53 + a33P353)Bis — X33ma + a3ps] ,

Myg = Maﬂl+ Rais [dgj{iﬂjB - (a§/333i3 - M§3P3i3)/a,63 - (aé,/3P3i3 — X43Rg3i3)Mps| +
—c g3 [dij(M33P3j3 — a3 R353)Rgis + M3zzags — 0433Mﬁ3] +
—' Mo3 [dij (X33 R353 — o33 P3j3) Rgiz + X33 Mps — as3ups]

fitg, :=ma — Rais [di;Bj3 — (a3 Raiz + M33 P3iz)ps + (a3 Pais — X33 Raiz)ma] +
—C/Oéag [dij(Mé3P3j3 — ag3R3j3)ﬁi3 — Mégpg + 04537713] +
—c' M3 [dij(X33Rs53 — a33Ps353)Biz — X33m3 + a3p3)

Ty = co + Bys [di; Bj3 + (ah3 Rais — MigPsi3)ps + (a3 Pyiz — XbgRaiz)ms] +
—c'p3 fdij(Mé3P3j3 — a3 R353)Biz — Misps + azgma] +
—c'mg [dij(X33R3j3 — a3 Psj3) iz — X3gms + agps] -

Appendix 2
Numerical Values of Reduced Material Coefficients

The table below shows the calculated numerical values (based on Table 1 in [2]) of the
reduced coefficients in the case of a plate behaving as an actuator, both piezoelectric and
piezomagnetic. One can analogously obtain such values also in the other three cases. In
this particular case, since K33 is the only nonzero component of K, the reduced thermal

conductivity tensor (K,g) is null; this holds true for the other three models as well, since
the expression of K3 is unmodified, as pointed out previously.

Table 1. Reduced coefficients for a magneto-electro-thermo-elastic actuator made up of a BaTiO3z—
CoFe204 composite with 0.6 volume fraction of BaTiOs.

Elastic moduli Magnetic permeability
C3,,, = 02y, (GPa) 136 M3, (107* Ns2/C2?) 0.75
5{’122 (GPa) 46 Piezomagnetic constants
C3y15 (GPa) 45 R}, = R3,, (N/Am) 49.5
Piezoelectric constants Magnetoelectric constant
P3,, = P&, (C/m?) -9.86 &35 (1078 Ns/V Q) 1.75
Dielectric permittivity Pyroelectric constant
X3, (1079 C2/Nm?) 8.1 P8 (107* C/m?K) 2.5
Thermal stresses Pyromagnetic constant
B3, = B3, (106 N/Km?) | 2.36 M3 (1073 N/AmK) 5.91
Calorific capacity
22 (J/m3K?) 423
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