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Abstract. In this paper, we study the fundamental problem of count-
ing, which consists in computing the size of a system. We consider the
distributed communication model of population protocols of finite state,
anonymous and asynchronous mobile devices (agents) communicating
in pairs (according to a fairness condition). This work significantly im-
proves the previous results known for counting in this model, in terms of
(exact) space complexity. We present and prove correct the first space-
optimal protocols solving the problem for two classical types of fairness,
global and weak. Both protocols require no initialization of the counted
agents.

The protocol designed for global fairness, surprisingly, uses only one bit of
memory (two states) per counted agent. The protocol, functioning under
weak fairness, requires the necessary log P bits (P states, per counted
agent) to be able to count up to P agents. Interestingly, this protocol
exploits the intriguing Gros sequence of natural numbers, which is also
used in the solutions to the Chinese Rings and the Hanoi Towers puzzles.

1 Introduction

Counting is a fundamental task in computer science, as illustrated by numerous
and important applications of this paradigm in many domains, like network
traffic monitoring, database query optimization, or data mining. The context of
this work is that of dynamic wireless ad-hoc networks. In this context, many
efficient counting protocols have been proposed recently (e.g., [18,23,25,27]).
More precisely, we consider large-scale ad-hoc networks of mobile sensors, in
which cheap and tiny devices, with limited communication, memory and compu-
tation power, move around and cooperate for achieving some task. Such networks
are of an unknown size, fundamentally asynchronous (no common clock), anony-
mous (no identifiers) and not permanently connected (due to communication

* The extended version of this paper can be consulted in [8].
** The work of this author was partially supported by the Israeli-French Maimonide
research project.
*** Contact author. The work of this author was partially supported by the Israeli-
French Maimonide and the INS2I PEPS JCJC research projects.



2 Joffroy Beauquier, Janna Burman, Simon Claviéere, and Devan Sohier

limitation). The design of these networks is now focused on complex collections
of heterogeneous devices that should be robust, adaptive and self-organizing,
serving requests that vary with time. There are many reasons for these devices
to fail: extreme external conditions of temperature or pressure, battery exhaus-
tion, failures inherent to their cheap realization, etc. The ability to count them
(e.g., for, possibly, replacing some) may be crucial for ensuring that the tasks
are performed efficiently. In this work, we propose solutions to this problem,
concerning especially the reliability and the size requirements of the memory of
the network nodes.

To be able to analyze our solutions, we adopt a formal communication model
that suits the considered networks. This is the model of population protocols
(PP) [3]. In PP, mobile devices, called agents, are anonymous, undistinguishable
and asynchronous. Each agent has a finite state, that evolves over the course of
interactions. When two agents are sufficiently close one to the other, they inter-
act, and the effect of the interaction is a change of their states. The mobility is
modeled in a very general way, by a fairness assumption which is called global
fairness. In addition to this original fairness of PP, we consider also a classical
type of fairness for distributed computing, which we call here weak. While global
fairness captures the randomization inherent to many real systems, weak fairness
only ensures progress of system entities. In general, PP is well adapted to dy-
namic networks in which the topology changes (like in peer-to-peer networks), or
to networks in which nodes move unpredictably (like in mobile sensor networks).

The objective of this paper is to make a step towards a better understanding
of the possibilities and limitations of such networks, in studying the feasibility
and the complexity of the fundamental task of counting the number of agents.
The task of counting anonymous agents in PP has already been studied and
several results are known. Basically, we improve these results in terms of ex-
act space complexity. Moreover, the solutions we give are space optimal. Space
is a crucial factor, since a low memory is a basic condition in large-scale and
unreliable networks.

Current and previous studies on counting in PP consider various parameters
of the model that affect attractivity, efficiency and feasibility of the solutions.
We list and explain them below together with the related impossibility results:

— The first parameter is the nature of the fairness: global or weak. We consider
both cases, as already explained above. See formal definitions in Sec. 2.

— The second parameter is the requirement of initialization of agent states.
On one hand, efficient protocols for dynamic and unreliable networks should
not require initialization. There are at least two reasons for that. First, the
agents are cheap and prone to failures. So, it should be expected that some
memory or communication errors happen. Second, in dynamic and unreli-
able environments, it should be possible to execute most of the tasks, and
counting too, in a repetitive way. In both cases, re-initializing the network
could be a real problem. Moreover, it is generally hard to know when such a
re-initialization should be done, as termination detection is generally difficult
to obtain in such networks.
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On the other hand, if no agent state can be initialized, it is impossible to
realize counting in PP, under weak or global fairness. This can be proven by
using a classical technique of network partitioning (see [9] and [8], Prop. 1).
Thus, to be able to solve the problem and still avoid initialization, all previ-
ous works, as well as the current one, assume the initialization of only one
particular (and thus distinguishable) agent called the base station (BS).

— For defining the data structures used by finite-state agents in the solutions,
all previous studies assume the existence of a known upper bound P on the
number of (non-BS) agents. The space complexity of the solution is then
expressed as a function of the necessary number of states per agent with
respect to P. This is justified in the case of weak fairness, since it has been
proved in [9] that P (or more) agents cannot be counted with strictly less
than P states per agent by deterministic protocols (considered here as well).
However, in case of global fairness, we show that this assumption is not
needed, by presenting a protocol using only two states per agent.

— Finally, population protocols may be symmetric or asymmetric. In symmetric
protocols, two agents in an interaction (and thus in the corresponding tran-
sition) are indistinguishable if their states are identical. Thus, their states
are identical also after the transition. In asymmetric protocols, two agents in
an interaction can be always distinguished (e.g., there is always an initiator
and a responder in the interaction). Our study considers the more difficult
and general case of symmetric protocols. Such protocols can be deployed in
networks with either symmetric or asymmetric communications.

Most Related Work. Before presenting the contributions, we summarize the
previous results about counting in symmetric PP. For the reasons explained
above, all these results assume a distinguishable agent BS and do not require
any initialization of non-BS agents. Moreover, BS is considered to be a powerful
device, so its resources are in general not concerned by the protocol design.

In [9], the authors present different solutions to counting in PP. In particular,
they propose a symmetric protocol using 4 P states per non-BS agent under weak
fairness, and prove the above-mentioned lower bound of P states. The authors
of [18] improve the solution in [9] from 4P to 2P states, under weak fairness, and
to %P under global fairness. This latter result for global fairness is improved to
P in [7].

Note that an asymmetric population protocol can be transformed into a symmet-
ric one using the transformer of [10]. However, this transformer requires global
fairness and doubles the number of states per agent. This makes it inadequate
for obtaining a space efficient symmetric solution from an asymmetric one (in
terms of exact space complexity).

Contributions. For the first time, we present and prove correct two space-
optimal symmetric population protocols solving the counting problem. One solves
the problem under global fairness, and uses only one bit of memory (two states)
per non-BS agent (Protocol 1, Sec. 3). It is shown that one agent state is not
enough to solve the problem. The other protocol, designed for weak fairness,
uses only the necessary P states per non-BS agent (Protocol 2, Sec. 4). Both
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protocols do not assume any initialization of the counted agents, but the neces-
sary initialization of BS. The protocol assuming weak fairness is silent (i.e., no
state changes after convergence). However, we show that no silent space-optimal
counting protocol exists in our framework under global fairness.

Other Related Work. Apart from the works already mentioned in the con-
text of PP, there are many others related to counting in related models. Many,
like [23,27, 14, 25, 24], consider the synchronous model of dynamic graph. In this
model, a computation proceeds by synchronous rounds and, for each round, an
adversary chooses the links available for sending messages. Similarly to our case,
in the cited works, all nodes execute the same code and have no information
about the network (in most cases). In addition, all, except [23], assume anony-
mous nodes having no unique identifiers. However, in contrast with this work,
all nodes have to be initialized, and authors are concerned with asymptotic com-
plexity in terms of rounds, bits and messages. All, but [14], study counting. [14]
studies a related problem of assigning (short) labels to nodes.

The problem of counting approrimatively the number of nodes in a network,
using probabilities, is known under the term of size estimation. A common ap-
proach to network size estimation is to use random walks [29, 16] relying on a
token traversing the network and collecting information from the visited agents.
Another strategy is to use randomly generated numbers [22], and then exploit
classical results on order statistics to infer the number of participants [6, 31].
In the context of large scale peer-to-peer and dynamic networks in general, prob-
abilistic and gossiping methods have also been proposed for estimating the size
of the network [26, 15, 20, 28, 22].

Another problem related to counting is the resource controller problem, intro-
duced in [1] and optimized in [21, 13]. One of the main difference with our model
is that the topological changes there can be delayed until permission has been
granted by the controller.

To summarize, the most significant differences of the works mentioned in this
section with the current work is that we consider a totally asynchronous model
of finite state anonymous and non-initialized deterministic processes. Moreover,
in the considered model, termination detection is difficult and in many cases
impossible. This makes sequential composition of protocols challenging.

2 Model and Notations

As a basic model we use the model of population protocols of Angluin et al.
[5] with some adaption as detailed below. In this model, a system consists of
a collection A of pairwise interacting agents, also called a population. Each
agent represents a finite state sensing and communicating mobile device. Among
the agents, there may be a distinguishable agent called the base station (BS),
which can be as powerful as needed, in contrast with the resource-limited non-BS
agents. The non-BS agents are also called mobile, interchangeably. The size of
the population is the number of mobile agents, denoted by N, and is unknown
(a priori) to the agents.
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A (population) protocol can be viewed as a finite transition system whose
states are called configurations. A configuration is as a vector of (local) states of
all the agents. Each agent has a state taken from a finite set, the same for all
mobile agents, but generally different for BS.

In this transition system, every transition between two configurations is de-
scribed by a transition between two agents happening during an interaction.
That is, when two agents x, in state p, and y, in state g, interact (meet), they
execute a transition (p,q) — (p/,¢'). As a result, x changes its state from p to p’
and y from ¢ to ¢’. If p = p’ and ¢ = ¢/, the corresponding transition is said to
be null (such transitions are specified by default), and non-null otherwise.® The
transitions are deterministic, if for every pair of states (p, ¢), there is exactly one
(p',q") such that (p,q) — (p/,¢’). We consider only deterministic transitions and
thus, only deterministic protocols. Transitions and protocols can be symmetric
or asymmetric. Symmetric means that, if (p,q) — (p/,¢’) is a possible transition,
then (¢,p) — (¢',p’) is also a possible transition. In particular, if (p,p) — (¢, ¢')
is symmetric, p’ = ¢’. Asymmetric is the contrary of symmetric.

Let C and C’ be configurations. Then, C—C" is a transition (between two
configurations), if C’ can be obtained from C by a single transition of two
agents in an interaction. This means that C' contains two states p and ¢ and
C’ is obtained from C by replacing p and ¢ by p’ and ¢’ respectively, where
(p,q) = (p',¢') is a transition. If there is a sequence of configurations C =
Co,C1,...,Cr = C’, such that C; — C;14 for all ,0 < i < k, we say that C’ is
reachable from C, denoted C' = C'.

An execution of a protocol is an infinite sequence of configurations Cy, C1,Cs, . ..
such that Cj is the starting configuration and for each i > 0, C; — C;11.

An execution is said weakly fair, if every pair of agents in A interacts infinitely
often. An execution is said globally fair, if for every two configurations C' and
C’ such that C — ', if C occurs infinitely often in the execution, then C’ also
occurs infinitely often in the execution. This definition together with the finite
state space assumption, implies that, if in an execution there is an infinitely often
reachable configuration, then it is infinitely often reached [4]. Global fairness can
be viewed as simulating randomized systems (without introducing randomization
explicitly) [19].

A problem is defined by a predicate D on executions. A population protocol
PP is said to solve a problem D, if and only if every execution of PP satisfies
the conditions defining D. The problem of counting is defined by the following
conditions: eventually, in any execution, there is at least one agent (BS, in our
case) obtaining a value of N in some variable and this value does not change. Note
that the counting predicate is required to be satisfied only eventually (and forever
after). When it happens, we say that the protocol has converged. We consider

3 In practice, when interacting with BS, the computations can be done completely on
the side of BS (i.e., the state of BS is not communicated to the mobile agent). The
non-BS agent only updates its state with the resulting one. In interactions between
two mobile agents, in the protocols described in this paper, the agents only have to
be able to compare their states.
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only semi-uniform protocols in the sense that the size of the population N is not
used by a protocol and all agents, except BS, are (a priori) indistinguishable and
interact according to the same possible transitions [12,30]. A protocol is called
silent, if in every execution, eventually, no agent state changes [11].

For simplicity, we do not present the rules of our protocols under the form
of possible transitions, but under the equivalent form of a pseudo-code.

3 Space-Optimal Counting under Global Fairness

In this section, we present a space-optimal protocol (Protocol 1 below) solving
the counting problem under global fairness. The protocol uses only one bit of
memory, i.e., only two states per mobile (non-BS) agent.

It is easy to see that with only one state per mobile agent, counting is impos-

sible. Indeed, in this case, BS cannot distinguish between populations of one or
more mobile agents ([8], Prop. 2). In addition, a partition argument can be used
to show why no silent (uniform) counting protocol exists with only two states
per agent ([8], Prop. 3).
Protocol 1 Description. Each mobile agent x has one bit mark,, which is
flipped at each interaction of x with BS. Between any two mobile agents, there
are only null transitions. BS maintains a variable size_totalgg that eventually
and forever holds the size of the population N. In addition, it maintains an array
sizepg[2] of two elements, where sizepg[0] holds an estimation for the num-
ber of mobile agents currently marked 0 (i.e., with mark = 0), and similarly,
sizepg[l] estimates the number of agents currently marked 1. Eventually, these
estimations become correct forever and size_totalgpg too, because the latter is
computed at each transition as the sum of sizepg[0] and sizepg[1] (line 6). The
protocol itself can be described in a simple way. Whenever an agent marked
0 interacts with BS, BS flips its mark (to 1), decrements the estimation of 0
marked agents, i.e., sizegg[0] (if it is not 0), and increases the estimation of 1
marked agents, i.e., sizegg[l] (similarly for an agent marked 1).

The idea behind this solution is to try to reach a configuration, using the force
of global fairness, where all agents are marked similarly, let us say, by 0 (the proof
of Theorem 1 shows that it occurs eventually). From such a configuration, there
is always a possible segment of execution where each agent x interacts with BS,
exactly once. In each such interaction, the mark of x is flipped, to “remember”
that it has been “counted”. By the end of such an execution segment, all agents
are marked 1 (i.e., as “counted”). Moreover, both estimations of the number of
agents marked 1 and 0 in sizepg[l] and in sizepg|0], respectively, are correct
and stay correct from this moment on. Thus, the estimation of the size of the
population (in size_totalgg) becomes also correct.

Correctness of Protocol 1. Let us denote by #0(C), respectively #1(C), the
number of agents marked 0 (i.e., with mark = 0), respectively 1, in a configura-
tion C.

Lemma 1. For every configuration C, sizeps[0] < #0(C) (resp. sizepg[l] <

#1(C))-
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Protocol 1 Space-Optimal Counting under Global Fairness (one bit per agent)

Variables at BS:
sizeps[2]: array of two non-negative integers, initialized to 0
size_totalps: non-negative integer initialized to 0; eventually holds N
Variable at a mobile agent z:
markg: in {0, 1}, initialized arbitrarily

when a mobile agent x interacts with BS do
if size[mark,] > 0 then
size[markz) < size[marksz] — 1
marks < 1 — mark;
size[markg) < size[marksz] + 1
size_totalps < sizeps[0] + sizeps[1]

Proof. First, let us prove the lemma for sizepg[0]. We prove by induction on the
index k > 0 of a configuration in an execution (Cy,C1,Ca,...,Clk,...). At the
starting configuration Cj, k = 0, the lemma holds because of the initialization
of sizepg[0] to 0. Let us assume that the lemma holds for k = &k’ and prove it
for k = k' 4+ 1. Then, sizeps[0] < #0(Cy/). From any configuration, and from
Cy in particular, the only possible interaction (BS,x) is of two types, either x
is marked 0 (mark, = 0), or 1:

- If z is marked 0, during the following transition, its mark is flipped to 1 (line 4)
and thus #0(Clr41) = #0(Cyr) — 1. At line 3, sizepg[0] is decremented too (if it
is not 0), and this is the only line that changes sizepg[0] in this transition (line 5
changes sizepg[1]). Thus, after this transition, in Cy 41, sizepg[0] < #0(Clr41).
- If; during an interaction (BS,xz) at Cys, x is marked 1, during the following
transition, its mark is flipped to 0 (line 4) and thus #0(Ck41) = #0(Ci/) + 1.
At line 5, sizepg|0] is incremented too, and this is the only line that changes
sizepg[0] in this transition (line 3 changes sizepg[1]).Thus, after this transition,
in Cyr 41, sizeps[0] < #0(Chry1).

Thus, the lemma holds for sizepg[0]. As sizepg[l] is managed exactly in the
same (but symmetric) way as sizeps|[0], the lemma also holds for sizegg[l]. O

As size_totalpg is always set to the sum of sizepg[0] and sizepg[1] (line 6),
we have the following corollary.

Corollary 1. In any configuration, size_totalgg < N.
Lemma 2 below is easily obtained by observing the pseudo-code.
Lemma 2. The value of size_totalgs never decreases.

Proof. The value of size_totalgg can decrease only by executing line 3, size[mark,] <
size|mark,] — 1. Whenever this line is executed in a transition, line 5 is exe-
cuted in the same transition too. Due to line 4, in line 5, size[l — mark,] <
size[l — mark,;] + 1. Thus, if line 3 is executed in some transition, size_totalpg
does not change. In all other cases, it can only increase. O
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Theorem 1. Under global fairness, (symmetric) Protocol 1 solves the counting
problem. Eventually, size_totalgs = N and does not change anymore.

Proof. To prove the theorem, we show below that, from any possible configura-
tion, there is a reachable configuration C* s.t., in C*, size_totalgs = N. Then,
by global fairness, such configuration is eventually reached. Finally, by corollary
1 and lemma 2, we have size_totalgg = N in all subsequent configurations.
Now we show why C* is always reachable. Consider a configuration C'. In C,
let sizepg|0] = xo, sizepg[l] = x1, where xg, 21 are non-negative integers < N.
By lemma 1, there are 0 < z{, z} < Ns.t. #0(C) = zo+xz( and #1(C) = z1+a}.
Then, from C| there is the following possible execution (that reaches C*). First,
x1 + o) agents marked 1 interact with BS, each one exactly once. It is easy to
verify, by the code of Protocol 1, that at the end of this segment of execution,
sizeps[0] = xo + x1 + 2, sizepg[l] = 0 and #0(C) = a0 + xy + 1 + 2} =
N, #1(C) = 0 (all agents are marked 0). Now, zo+xz1 42} agents interact with BS
(each one exactly once), what results in sizepg[0] = 0, sizepg[l] = zo + 1 +
and #0(C) = z(, #1(C) = xo+x1+2). Finally, z{, agents marked 0 interact with
BS, each one exactly once. Now, sizeps[0] = 0, sizepg[l] = xo+z(+z1+2) =N
and #0(C) = 0,#1(C) = zp + a2 + 1 + 27 = N (all agents are marked 1).
In this configuration, size_totalgs = N, and thus C* is reachable from (any
configuration) C. O

4 Space-Optimal Counting under Weak Fairness

In this section, we present a silent symmetric space-optimal protocol (Protocol
2 below) solving the counting problem under weak fairness (see Theorem 2 and
Corollary 2). The protocol is correct starting from arbitrary states in mobile
agents, but BS. It uses at most P states per agent, which is necessary in the
current conditions for solving counting in populations with at most P mobile
agents (N < P) [9].

Protocol 2 General Description. In this protocol, BS eventually counts the
mobile agents and stores the value in variable n. To realize this, BS successively
attempts to guess the number of mobile agents in the population, starting from
1 and ending with N (this guess is stored in n). For each guess n < P, BS tries
to name (differently) mobile agents in state 0 (zero-state) interacting with BS
(lines 3 and 9). That is, BS tries to assign to these agents distinct states from
{1,...,n} (also called here names). State 0 has a special technical role. Whenever
two agents with identical names (homonyms) interact, they change their state to
0 (line 12). Thus, this state indicates to BS that, either it has created homonyms
before, or that homonyms (or, simply, agents in state 0) existed already in the
population in the starting configuration.

Thus, zero-state mobile agents are named by BS. The names are given one
by one following some finite sequence U* of names (line 9). For simplicity, in
the presented protocol, this sequence is computed in advance and depends on
P. However, for an optimized version, the required prefix of U, Uy, can be
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computed on the fly, during an execution (see Remark 1). Sequence U* guar-
antees that, if there are N < P agents, whatever their starting states are, the
naming succeeds. If no naming succeeds, BS concludes that there are more than
P — 1 agents, that is N = P. Thus, the protocol actually realizes a (consecutive
minimal) naming for any N < P in order to realize finally a counting for any
N<P.

Another important property of U* is that, for every guess n, if all the terms
of U*, from the first to some [* term, have been used by BS to name interacting
agents, then BS can conclude that the guess of n is wrong. It is safe then to
switch to the next guess n + 1 (line 8). In the sequel, we denote the prefix of
U* of length I,, by U,, (I, = |Uy|). Any term of U, is in {1,...,n}. Thus, if BS
meets an agent in a state > n, it can conclude that it has never seen this agent
before. Hence, it can safely deduce that N > n, and switch to the next guess
n+1 (lines 5 - 8).

As long as there are agents in state 0 or in a state > n, and n < P (line 2),
the base station continues renaming and counting, because all these agents will
eventually interact with BS (by weak fairness). If there are homonyms, eventually
they meet too and switch to state 0 (again, by fairness).

Protocol 2 Space-Optimal Counting under Weak Fairness (P states per agent)

Variables at BS:

n: non-negative integer initialized to 0 // guess of N

k: non-negative integer initialized to 0 // pointer to the k' element of U*
Shortcuts at BS:

U*: constant sequence of elements in [1,..., P — 1] computed in advance

by the recursion Uy =1, U" = Up_1 = Up_2, P — 1,Up_»
U*(k): returns the k" element of U*
l,=2"—1(=|U,]|)

Variable at a mobile agent z:

name,: non-negative integer in [0, ..., P — 1], initialized arbitrarily
1: when a mobile agent = interacts with BS do
2:  if n < P A (namey, = 0V name; > n) then
3: if name,; = 0 then
4: k< k+1 // advance k to point to the next element of U*
5: else if name, > n then
6: k < I, +1// because agent x with a name > n could not be seen before by

BS, the population must be larger than n, and k is updated accordingly

7: if £ > [, then
8: n+<n+1 // pointer k indicates that the population is larger
9: namey < U*(k) // set the name of z to the the k*" element of U*
10: when two mobile agents = and y interact do
11: if name, = namey then

12: nameg < namey < 0 // set homonym states to 0
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Naming Sequence U" - the Gros Sequence

As a matter of fact, sequence U* is not unique. We choose and define one of the
possible such sequences. We also prove the properties claimed about it above.
To define the sequence U*, we consider the infinite sequence U,,, whose left
prefix U, is defined recursively by U, = U,,_1,n, U,_1, where U; = 1.
Sequence U™ is obtained for n =P —1,i.e., U = Up_1 = Up_s, P — 1, Up_s.
For example, the prefix Uy of Uy is: 1,2,1,3,1,2,1,4,1,2,1,3,1,2, 1.

Let 1, = |U,|. By construction of sequence Uy, I1 = 1, and 1,41 = 21, + 1,

which gives [,, = 2" — 1. Then, using the recursive definition of U,, we obtain
that Vn, U (2") =n+ 1 and Vn,V1 < k < 2", U (2" + k) = U (k).

Remark 1. Based on this alternative description, Uy, and U" in particular, can
be defined iteratively. The k" term of U, is one plus the index of the least
significant non-zero bit in the binary decomposition of k. Thus, BS does not need
to store the whole sequence of names in advance. It can compute the next state
to assign to a mobile agent based on a single integer variable. Such computation
of the sequence does not depend on P, but on the number of the sequence terms
which will be actually used. For this sequence, the number of terms used to name
n agents is at most [,, = 2™ —1. In consequence, the number of interactions (before
convergence) between BS and an agent in state 0 or > n is at most Iy.

Remark 2. Tt appears that Uy, is known in the literature under the name of Gros
sequence. This sequence can be found all over mathematics. It has remarkable
properties with respect to the binary numeration, generating a Gray code. It
encodes an Hamiltonian cycle on the edges of a n-dimensional cube. It is also
the “greediest” square-free sequence (if one builds the sequence in choosing at
each step the smallest integer that does not produce a square). Finally, the Gros
sequence solves the Chinese Rings puzzle and, surprisingly, solved the Tower of
Hanoi puzzle long before the latter was at all invented. For details refer to [17, 2].

One of the intuitions behind the use of the Gros sequence for counting is re-
lated to the Hamiltonian cycle property on a cube. Consider a multi-dimensional
cube whose vertices are labeled by the multi-sets of n names and edges connect
vertices that differ by exactly one name. Whatever the initial names are (the
agents can be arbitrarily initialized), the Gros sequence leads, by traveling along
the Hamiltonian cycle it encodes, to the vertex where all names are distinct. In
the corresponding configuration the counting can be performed.

Now we give a more precise, but also more technical, explanation why, by
using this particular sequence U, BS correctly counts N (< P) agents. Consider
the prefix U, = U,_1,n,U,_1 of U". By assigning successively the numbers
given by U,, and in particular by the prefix U,_1, BS can assign distinct names
from {1,...,n—1} to all agents, only if N < n—1. If it is not the case (N > n—1),
BS eventually detects it whenever it meets an agent x, either in state > n — 1,
or in state 0 after the last name in U,_; has been assigned (i.e., homonyms
still exist). Then, BS guesses that N = n, and continues naming with the sub-
sequence (n, U,_1). That is, it assigns state n to agent & which becomes unique, if
effectively N = n. If this is the case, BS should successfully rename the remaining
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n — 1 agents with n — 1 states from {1,...,n — 1}, following, once again, the
naming sequence defined by U,_;. From now on, the procedure repeats for the
sequence U, 11 = U,,n+ 1, U,. If the guess of N = n was wrong, BS eventually
detects it (at least, by the end of the prefix U,), and switches to guess n + 1.
That is, it will continue naming according to (n + 1, U,,). This continues until
the guess of BS is correct, or till all attempts have failed, meaning that N = P.

Correctness of Protocol 2

In the proofs below, we consider a set E of non-zero-states associated to a
configuration C s.t., for every s € E, the number of mobile agents in state
s in C' is odd. This allows to focus only on the transitions involving BS, and
not on transitions between homonyms, which will happen eventually and do
not change the parity of the number of agents in any state. Moreover, for any
E,E" C {1,...,n}, we denote by EAE' = FUE' — EN E' their symmetric
difference. In particular, EA{e} (e € {1,...,n})is EU{e}ife ¢ E, and E—{e}
ifee FE.

In Lemma 3 below, we prove that when the sequence U" is used by the
protocol, it guarantees that, if N < P, F evolves until £ = {1,..., N}, where all
mobile agents have distinct names. Then, using Lemma 3 we obtain the main
Theorem 2.

Lemma 3. Let Eg C {1,...,n} and Ex41 = ExAN{Ux(k + 1)}. There exists
some 1 < j < 2" —1 such that E; = {1,...,n}.

Proof. Let H,, (n € N) be the induction hypothesis “for any subset Ey C
{1,...,n} and such that Eyi1 = ExAN{Us(k + 1)}, there is E; = {1,...,n}
for some 1 < j<2" —17.

Let us prove the basis for n = 1, i.e., for H1. As Uy (1) = 1, if Eg = 0, then
E, ={1} and j=1.If Ey = {1},j = 0. Thus H; is true.

Assume that, for n € N, H,, is true, and consider Ey C {1,...,n+ 1}.

First, consider the case where n + 1 € Ey. Set Ej = Ey — {n + 1} and
E ., = E,A{Ux(k+1)}. Forall k < 2"—1, B} = E;U{n+1}. According to H,,
there exists j such that £ = {1,...,n}. Then, £; = E;U{n+1} = {1,...,n+1}.

Now consider n + 1 ¢ Ep. For all k < 2" — 1, Uy (k) < n, and n+ 1 ¢ E.
Then, as Ux(2") = n+ 1, Fon = Eon_y U {n + 1}. Set Ej = Ean_; and
By = EA{Us(k+1)}. For all k < 2" — 1, Egnyy, = Ej U {n+1}. According
to My, there exists j such that £ = {1,...,n}. Then, Eyny; = {1,...,n+ 1}.
By induction, the lemma is true. O

Theorem 2. Protocol 2 solves the counting problem, under weak fairness, for
up to P mobile agents, each with P states. Moreover, the protocol names up to
P — 1 mobile agents with distinct names (for any N < P, the names are in

{1,...N}).

Proof. Consider an execution (Cp, C1,Cs,...) of the protocol. For every i > 0,
let E; denote the set of states s.t., for every s € E;, the number of mobile agents
in state s in C; is odd. If E; = {1,..., N}, then all the agents have distinct
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states. Let n; and k; denote (respectively) the values of the variables n and k of
BS in a configuration C;.

Lemma 3 implies that, for any N < P, if By C {1,...,N} and Ex11 =
EpA{U*(k + 1)}, there exists some 1 < j < 2N —1 (Iy = 2V — 1) such that
E;={1,....N} (U | =2F —1).

If n; < N, agents cannot all have distinct non-zero-states in {1,...,n;}. Con-
sider a configuration where n; < N. There are two cases (i) and (ii) concerning
possible transitions with BS. In case (i), there are agents in state 0, or/and there
are different agents in the same state (homonyms), that will eventually interact
and change their states to 0 (line 12). In both sub-cases, a mobile agent in state
0 eventually meets BS; and in the corresponding transition, in line 4, k increases.
Once kj > I,; (j > i), n; is incremented (lines 7 - 8). In case (ii), there exists
a mobile agent x with name, > n;, what causes n to increase too. Thus, even-
tually, n; = N. We show now that the protocol converges to n = N and not a
larger value.

— First, assume that the case (ii) does not occur. Consider the first configura-
tion (C;) with n; = N, and suppose N < P. Starting from this configuration,
BS assigns states to agents following Uy. E; € 2L N} >IN (lines 7 -
8), and only the following transitions between C; and C;11 are possible:

1. atransition between homonyms (lines 11 - 12), which results in F; 11 = E;;

2. a transition between BS and an agent in state 0 (lines 3, 4 and 9), which

results in Ei+1 = ElA{U*(kl)}

The number of non-zero homonyms in a given configuration is finite, and
transitions of type 1 decrease this number, so that an infinite sequence of
transitions of this type is impossible. Thus, while E; # {1,..., N} (meaning
that there are homonyms or agents in state 0), transitions of type 2 happen.
These transitions also increment k;. Let i1, 42, ... denote the indexes of
transitions of type 2: E;,,, = E;; A{U"(k;)}. Lemma 3 implies that there is
some j such that E;, = {1,...,N}. At this point, all agents are in distinct
states, and the protocol has converged with n = N, because n increases only
if the naming with n states has failed, i.e., when k > I, (lines 7 - 8) and
this impossible in the considered case.

— In case (ii), BS interacts with an agent x with name, > n;. Agent x has not
been assigned before, since otherwise, it would have been given a state < n;.
The naming with n; — 1 agents would have failed already, while this agent
had no interaction. Thus, the execution up to step 7 is undistinguishable from
an execution with at least n; agents, but with the agent currently meeting
BS, there are at least n; + 1 agents. Thus, N > n; 4+ 1. In any case, n; < N.

O

Corollary 2. Protocol 2 is silent.

Proof. By Theorem 2, for any N < P, the protocol finally names all mobile
agents with distinct names in {1,... N}, and thus the condition at line 2 stops
being satisfied. Hence, in this case, eventually, no agent changes its state. In
the remaining case of N = P, the condition at line 2 stops being satisfied when
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n reaches and stays equal to N (what happens, by Theorem 2). After that, no
agent can change its state. O

5 Conclusion and Perspectives

In this paper, we presented two population protocols for counting, under two
classical fairness assumptions. Under global fairness, we gave a protocol with
only two states per agent and, under weak fairness, a protocol with P states
(P being an upper bound on the size of the system). In terms of exact space
complexity, both protocols are optimal in space and considerably improve the
best solutions known up to now, presenting a totally different angle of attack.*

Using a memory of only one bit has certainly practical advantages in appli-
cations for large-scale networks connecting very simple artifacts. Moreover, the
assumption of global fairness, necessary for the correctness of the corresponding
protocol, is realized in practice. As described in [5], this is because in practice,
a variety of parameters and events (like power-supply, local clock frequency or
movement of nodes) affect the scheduling of a system in a random way, making
the assumption of global fairness realistic.

The second protocol, under weak fairness, solves the challenge of counting
up to P with exactly P states per agent. Nevertheless, due to the nature of the
Gros sequence, its time complexity, in terms of non-null transitions or in terms of
(asynchronous) rounds, is exponential (a round being a shortest fragment of exe-
cution where each agent interacts with each other). This is because, in the worst
case, the number of non-null transitions (or rounds) till convergence depends on
the number of times BS renames a mobile agent. This is 2~ — 1 times, due to
the length of the used Gros sequence (|U*| = 2F~! — 1; see Remark 1).

We conjecture that this complexity is necessary for the optimal memory
space. Intuitively, starting from an arbitrary configuration with P mobile agents,
and with only P available states, no protocol at BS can detect the lacking names
(states) in the population, during a worst case execution. That is why, in this
case, BS cannot advance in naming (required for counting) faster than by follow-
ing a sequence of at least O(2F) names. This length is necessary, because there
exist O(2F) different starting configurations and from any such configuration,
a sequence of at least O(2F) names is required (in the worst case), for BS to
obtain a configuration with distinctly named mobile agents, and count them.

Studying formally the trade off between space and time complexities for
counting algorithms in population protocols could be a valuable sequel to the
present work. Considering existing counting protocols designed for weak fairness,
we can identify the following tendency. With log P bits of memory per mobile

4 One may notice that the proposed protocols look more like centralized protocols than
distributed ones. This comes from the nature of the problem and from the strong
memory constraints. First, as without BS the problem is impossible, any solution
has to use some sort of centralization; otherwise BS would not be necessary. Second,
reducing the memory to the minimum, strongly limits the useful information that
mobile agents can exchange to progress towards the solution.
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agent, the space-optimal protocol that we present in this paper has an exponen-
tial complexity. An additional bit of memory allows to design protocols like in
[18] with a logarithmic round complexity, while another additional bit allows to
solve this problem in a constant number of rounds [9]. It will be interesting to
study whether such drastic trade-offs are necessary.

For global fairness, much less studies about counting protocols and especially
about their complexity analysis exist. This is certainly an additional interesting
research direction.

Finally, another possible perspective concerns the space complexity of BS.
One may imagine a system, where all agents including the distinguishable BS
are resource-limited, motivating the study of the necessary space requirements
for BS.
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