Joffroy Beauquier
email: joffroy.beauquier@lri.fr

Janna Burman
email: janna.burman@lri.fr

Simon Clavière
email: simon.claviere@prism.uvsq.fr

Devan Sohier
email: devan.sohier@prism.uvsq.fr

Space-Optimal Counting in Population Protocols

come

Introduction

Counting is a fundamental task in computer science, as illustrated by numerous and important applications of this paradigm in many domains, like network traffic monitoring, database query optimization, or data mining. The context of this work is that of dynamic wireless ad-hoc networks. In this context, many efficient counting protocols have been proposed recently (e.g., [START_REF] Izumi | Space-efficient self-stabilizing counting population protocols on mobile sensor networks[END_REF][START_REF] Kuhn | Distributed computation in dynamic networks[END_REF][START_REF] Luna | Counting in anonymous dynamic networks under worst-case adversary[END_REF][START_REF] Michail | Naming and counting in anonymous unknown dynamic networks[END_REF]).

More precisely, we consider large-scale ad-hoc networks of mobile sensors, in which cheap and tiny devices, with limited communication, memory and computation power, move around and cooperate for achieving some task. Such networks are of an unknown size, fundamentally asynchronous (no common clock), anonymous (no identifiers) and not permanently connected (due to communication limitation). The design of these networks is now focused on complex collections of heterogeneous devices that should be robust, adaptive and self-organizing, serving requests that vary with time. There are many reasons for these devices to fail: extreme external conditions of temperature or pressure, battery exhaustion, failures inherent to their cheap realization, etc. The ability to count them (e.g., for, possibly, replacing some) may be crucial for ensuring that the tasks are performed efficiently. In this work, we propose solutions to this problem, concerning especially the reliability and the size requirements of the memory of the network nodes.

To be able to analyze our solutions, we adopt a formal communication model that suits the considered networks. This is the model of population protocols (PP) [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF]. In PP, mobile devices, called agents, are anonymous, undistinguishable and asynchronous. Each agent has a finite state, that evolves over the course of interactions. When two agents are sufficiently close one to the other, they interact, and the effect of the interaction is a change of their states. The mobility is modeled in a very general way, by a fairness assumption which is called global fairness. In addition to this original fairness of PP, we consider also a classical type of fairness for distributed computing, which we call here weak. While global fairness captures the randomization inherent to many real systems, weak fairness only ensures progress of system entities. In general, PP is well adapted to dynamic networks in which the topology changes (like in peer-to-peer networks), or to networks in which nodes move unpredictably (like in mobile sensor networks).

The objective of this paper is to make a step towards a better understanding of the possibilities and limitations of such networks, in studying the feasibility and the complexity of the fundamental task of counting the number of agents. The task of counting anonymous agents in PP has already been studied and several results are known. Basically, we improve these results in terms of exact space complexity. Moreover, the solutions we give are space optimal. Space is a crucial factor, since a low memory is a basic condition in large-scale and unreliable networks.

Current and previous studies on counting in PP consider various parameters of the model that affect attractivity, efficiency and feasibility of the solutions. We list and explain them below together with the related impossibility results:

-The first parameter is the nature of the fairness: global or weak. We consider both cases, as already explained above. See formal definitions in Sec. 2. -The second parameter is the requirement of initialization of agent states.

On one hand, efficient protocols for dynamic and unreliable networks should not require initialization. There are at least two reasons for that. First, the agents are cheap and prone to failures. So, it should be expected that some memory or communication errors happen. Second, in dynamic and unreliable environments, it should be possible to execute most of the tasks, and counting too, in a repetitive way. In both cases, re-initializing the network could be a real problem. Moreover, it is generally hard to know when such a re-initialization should be done, as termination detection is generally difficult to obtain in such networks.

On the other hand, if no agent state can be initialized, it is impossible to realize counting in PP, under weak or global fairness. This can be proven by using a classical technique of network partitioning (see [START_REF] Beauquier | Self-stabilizing counting in mobile sensor networks with a base station[END_REF] and [START_REF] Beauquier | Space-Optimal Counting in Population Protocols[END_REF], Prop. 1). Thus, to be able to solve the problem and still avoid initialization, all previous works, as well as the current one, assume the initialization of only one particular (and thus distinguishable) agent called the base station (BS). -For defining the data structures used by finite-state agents in the solutions, all previous studies assume the existence of a known upper bound P on the number of (non-BS) agents. The space complexity of the solution is then expressed as a function of the necessary number of states per agent with respect to P . This is justified in the case of weak fairness, since it has been proved in [START_REF] Beauquier | Self-stabilizing counting in mobile sensor networks with a base station[END_REF] that P (or more) agents cannot be counted with strictly less than P states per agent by deterministic protocols (considered here as well). However, in case of global fairness, we show that this assumption is not needed, by presenting a protocol using only two states per agent. -Finally, population protocols may be symmetric or asymmetric. In symmetric protocols, two agents in an interaction (and thus in the corresponding transition) are indistinguishable if their states are identical. Thus, their states are identical also after the transition. In asymmetric protocols, two agents in an interaction can be always distinguished (e.g., there is always an initiator and a responder in the interaction). Our study considers the more difficult and general case of symmetric protocols. Such protocols can be deployed in networks with either symmetric or asymmetric communications.

Most Related Work. Before presenting the contributions, we summarize the previous results about counting in symmetric PP. For the reasons explained above, all these results assume a distinguishable agent BS and do not require any initialization of non-BS agents. Moreover, BS is considered to be a powerful device, so its resources are in general not concerned by the protocol design.

In [START_REF] Beauquier | Self-stabilizing counting in mobile sensor networks with a base station[END_REF], the authors present different solutions to counting in PP. In particular, they propose a symmetric protocol using 4P states per non-BS agent under weak fairness, and prove the above-mentioned lower bound of P states. The authors of [START_REF] Izumi | Space-efficient self-stabilizing counting population protocols on mobile sensor networks[END_REF] improve the solution in [START_REF] Beauquier | Self-stabilizing counting in mobile sensor networks with a base station[END_REF] from 4P to 2P states, under weak fairness, and to 3 2 P under global fairness. This latter result for global fairness is improved to P in [START_REF] Beauquier | Comptage et nommage simples et efficaces dans les protocoles de populations symétriques[END_REF]. Note that an asymmetric population protocol can be transformed into a symmetric one using the transformer of [START_REF] Bournez | Playing with population protocols[END_REF]. However, this transformer requires global fairness and doubles the number of states per agent. This makes it inadequate for obtaining a space efficient symmetric solution from an asymmetric one (in terms of exact space complexity). Contributions. For the first time, we present and prove correct two spaceoptimal symmetric population protocols solving the counting problem. One solves the problem under global fairness, and uses only one bit of memory (two states) per non-BS agent (Protocol 1, Sec. 3). It is shown that one agent state is not enough to solve the problem. The other protocol, designed for weak fairness, uses only the necessary P states per non-BS agent (Protocol 2, Sec. 4). Both protocols do not assume any initialization of the counted agents, but the necessary initialization of BS. The protocol assuming weak fairness is silent (i.e., no state changes after convergence). However, we show that no silent space-optimal counting protocol exists in our framework under global fairness. Other Related Work. Apart from the works already mentioned in the context of PP, there are many others related to counting in related models. Many, like [START_REF] Kuhn | Distributed computation in dynamic networks[END_REF][START_REF] Michail | Naming and counting in anonymous unknown dynamic networks[END_REF][START_REF] Fraigniaud | Assigning labels in an unknown anonymous network with a leader[END_REF][START_REF] Luna | Counting in anonymous dynamic networks under worst-case adversary[END_REF][START_REF] Luna | Conscious and unconscious counting on anonymous dynamic networks[END_REF], consider the synchronous model of dynamic graph. In this model, a computation proceeds by synchronous rounds and, for each round, an adversary chooses the links available for sending messages. Similarly to our case, in the cited works, all nodes execute the same code and have no information about the network (in most cases). In addition, all, except [START_REF] Kuhn | Distributed computation in dynamic networks[END_REF], assume anonymous nodes having no unique identifiers. However, in contrast with this work, all nodes have to be initialized, and authors are concerned with asymptotic complexity in terms of rounds, bits and messages. All, but [START_REF] Fraigniaud | Assigning labels in an unknown anonymous network with a leader[END_REF], study counting. [START_REF] Fraigniaud | Assigning labels in an unknown anonymous network with a leader[END_REF] studies a related problem of assigning (short) labels to nodes. The problem of counting approximatively the number of nodes in a network, using probabilities, is known under the term of size estimation. A common approach to network size estimation is to use random walks [START_REF] Ribeiro | Estimating and sampling graphs with multidimensional random walks[END_REF][START_REF] Gkantsidis | Random walks in peer-to-peer networks: Algorithms and evaluation[END_REF] relying on a token traversing the network and collecting information from the visited agents. Another strategy is to use randomly generated numbers [START_REF] Kostoulas | Active and passive techniques for group size estimation in large-scale and dynamic distributed systems[END_REF], and then exploit classical results on order statistics to infer the number of participants [START_REF] Baquero | Extrema propagation: Fast distributed estimation of sums and network sizes[END_REF][START_REF] Varagnolo | Distributed statistical estimation of the number of nodes in sensor networks[END_REF]. In the context of large scale peer-to-peer and dynamic networks in general, probabilistic and gossiping methods have also been proposed for estimating the size of the network [START_REF] Merrer | Peer to peer size estimation in large and dynamic networks: A comparative study[END_REF][START_REF] Ganesh | Peer counting and sampling in overlay networks based on random walks[END_REF][START_REF] Kempe | Gossip-based computation of aggregate information[END_REF][START_REF] Mosk-Aoyama | Computing separable functions via gossip[END_REF][START_REF] Kostoulas | Active and passive techniques for group size estimation in large-scale and dynamic distributed systems[END_REF]. Another problem related to counting is the resource controller problem, introduced in [START_REF] Afek | Local management of a global resource in a communication network[END_REF] and optimized in [START_REF] Korman | Controller and estimator for dynamic networks[END_REF][START_REF] Emek | New bounds for the controller problem[END_REF]. One of the main difference with our model is that the topological changes there can be delayed until permission has been granted by the controller. To summarize, the most significant differences of the works mentioned in this section with the current work is that we consider a totally asynchronous model of finite state anonymous and non-initialized deterministic processes. Moreover, in the considered model, termination detection is difficult and in many cases impossible. This makes sequential composition of protocols challenging.

Model and Notations

As a basic model we use the model of population protocols of Angluin et al. [START_REF] Angluin | Self-stabilizing population protocols[END_REF] with some adaption as detailed below. In this model, a system consists of a collection A of pairwise interacting agents, also called a population. Each agent represents a finite state sensing and communicating mobile device. Among the agents, there may be a distinguishable agent called the base station (BS), which can be as powerful as needed, in contrast with the resource-limited non-BS agents. The non-BS agents are also called mobile, interchangeably. The size of the population is the number of mobile agents, denoted by N, and is unknown (a priori) to the agents.

A (population) protocol can be viewed as a finite transition system whose states are called configurations. A configuration is as a vector of (local) states of all the agents. Each agent has a state taken from a finite set, the same for all mobile agents, but generally different for BS.

In this transition system, every transition between two configurations is described by a transition between two agents happening during an interaction. That is, when two agents x, in state p, and y, in state q, interact (meet), they execute a transition (p, q) → (p , q). As a result, x changes its state from p to p and y from q to q . If p = p and q = q , the corresponding transition is said to be null (such transitions are specified by default), and non-null otherwise. 3 The transitions are deterministic, if for every pair of states (p, q), there is exactly one (p , q) such that (p, q) → (p , q). We consider only deterministic transitions and thus, only deterministic protocols. Transitions and protocols can be symmetric or asymmetric. Symmetric means that, if (p, q) → (p , q) is a possible transition, then (q, p) → (q , p) is also a possible transition. In particular, if (p, p) → (p , q) is symmetric, p = q . Asymmetric is the contrary of symmetric.

Let C and C be configurations. Then, C→C is a transition (between two configurations), if C can be obtained from C by a single transition of two agents in an interaction. This means that C contains two states p and q and C is obtained from C by replacing p and q by p and q respectively, where (p, q) → (p , q) is a transition. If there is a sequence of configurations

C = C 0 , C 1 , . . . , C k = C , such that C i → C i+1 for all i, 0 ≤ i < k, we say that C is reachable from C, denoted C * → C . An execution of a protocol is an infinite sequence of configurations C 0 , C 1 , C 2 , . . . such that C 0 is the starting configuration and for each i ≥ 0, C i → C i+1 .
An execution is said weakly fair, if every pair of agents in A interacts infinitely often. An execution is said globally fair, if for every two configurations C and C such that C → C , if C occurs infinitely often in the execution, then C also occurs infinitely often in the execution. This definition together with the finite state space assumption, implies that, if in an execution there is an infinitely often reachable configuration, then it is infinitely often reached [START_REF] Angluin | The computational power of population protocols[END_REF]. Global fairness can be viewed as simulating randomized systems (without introducing randomization explicitly) [START_REF] Jiang | Distributed Systems of Simple Interacting Agents[END_REF].

A problem is defined by a predicate D on executions. A population protocol PP is said to solve a problem D, if and only if every execution of PP satisfies the conditions defining D. The problem of counting is defined by the following conditions: eventually, in any execution, there is at least one agent (BS, in our case) obtaining a value of N in some variable and this value does not change. Note that the counting predicate is required to be satisfied only eventually (and forever after). When it happens, we say that the protocol has converged. We consider only semi-uniform protocols in the sense that the size of the population N is not used by a protocol and all agents, except BS, are (a priori) indistinguishable and interact according to the same possible transitions [START_REF] Dolev | Self-stabilization of dynamic systems assuming only read/write atomicity[END_REF][START_REF] Tel | Introduction to Distributed Algorithms[END_REF]. A protocol is called silent, if in every execution, eventually, no agent state changes [START_REF] Dolev | Memory requirements for silent stabilization[END_REF].

For simplicity, we do not present the rules of our protocols under the form of possible transitions, but under the equivalent form of a pseudo-code.

Space-Optimal Counting under Global Fairness

In this section, we present a space-optimal protocol (Protocol 1 below) solving the counting problem under global fairness. The protocol uses only one bit of memory, i.e., only two states per mobile (non-BS) agent.

It is easy to see that with only one state per mobile agent, counting is impossible. Indeed, in this case, BS cannot distinguish between populations of one or more mobile agents ([START_REF] Beauquier | Space-Optimal Counting in Population Protocols[END_REF], Prop. 2). In addition, a partition argument can be used to show why no silent (uniform) counting protocol exists with only two states per agent ([START_REF] Beauquier | Space-Optimal Counting in Population Protocols[END_REF], Prop. 3). Protocol 1 Description. Each mobile agent x has one bit mark x , which is flipped at each interaction of x with BS. Between any two mobile agents, there are only null transitions. BS maintains a variable size total BS that eventually and forever holds the size of the population N. In addition, it maintains an array size BS [START_REF] Allouche | Automatic Sequences -Theory, Applications, Generalizations[END_REF] of two elements, where size BS [0] holds an estimation for the number of mobile agents currently marked 0 (i.e., with mark = 0), and similarly, size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] estimates the number of agents currently marked 1. Eventually, these estimations become correct forever and size total BS too, because the latter is computed at each transition as the sum of size BS [0] and size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] (line 6). The protocol itself can be described in a simple way. Whenever an agent marked 0 interacts with BS, BS flips its mark (to 1), decrements the estimation of 0 marked agents, i.e., size BS [0] (if it is not 0), and increases the estimation of 1 marked agents, i.e., size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] (similarly for an agent marked 1).

The idea behind this solution is to try to reach a configuration, using the force of global fairness, where all agents are marked similarly, let us say, by 0 (the proof of Theorem 1 shows that it occurs eventually). From such a configuration, there is always a possible segment of execution where each agent x interacts with BS, exactly once. In each such interaction, the mark of x is flipped, to "remember" that it has been "counted". By the end of such an execution segment, all agents are marked 1 (i.e., as "counted"). Moreover, both estimations of the number of agents marked 1 and 0 in size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] and in size BS [0], respectively, are correct and stay correct from this moment on. Thus, the estimation of the size of the population (in size total BS) becomes also correct. Correctness of Protocol 1. Let us denote by #0(C), respectively #1(C), the number of agents marked 0 (i.e., with mark = 0), respectively 1, in a configuration C.

Lemma 1. For every configuration C, size BS [0] ≤ #0(C) (resp. size BS [1] ≤ #1(C)).

Protocol 1 Space-Optimal Counting under Global Fairness (one bit per agent)

Variables at BS: sizeBS [START_REF] Allouche | Automatic Sequences -Theory, Applications, Generalizations[END_REF]: array of two non-negative integers, initialized to 0 size totalBS: non-negative integer initialized to 0; eventually holds N Variable at a mobile agent x: markx: in {0, 1}, initialized arbitrarily 1: when a mobile agent x interacts with BS do 2:

if size[markx] > 0 then 3: size[markx] ← size[markx] -1 4: markx ← 1 -markx 5: size[markx] ← size[markx] + 1 6: size totalBS ← sizeBS[0] + sizeBS[1]
Proof. First, let us prove the lemma for size BS [0]. We prove by induction on the index k ≥ 0 of a configuration in an execution (C 0 , C 1 , C 2 , . . . , C k , . . .). At the starting configuration C 0 , k = 0, the lemma holds because of the initialization of size BS [0] to 0. Let us assume that the lemma holds for k = k and prove it for k = k + 1. Then, size BS [0] ≤ #0(C k). From any configuration, and from C k in particular, the only possible interaction (BS, x) is of two types, either x is marked 0 (mark x = 0), or 1:

-If x is marked 0, during the following transition, its mark is flipped to 1 (line 4) and thus #0

(C k +1) = #0(C k) -1. At line 3, size BS [0] is decremented too (if it
is not 0), and this is the only line that changes size BS [0] in this transition (line 5 changes size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF]). Thus, after this transition, in

C k +1 , size BS [0] ≤ #0(C k +1).
-If, during an interaction (BS, x) at C k , x is marked 1, during the following transition, its mark is flipped to 0 (line 4) and thus #0(C k +1) = #0(C k) + 1. At line 5, size BS [0] is incremented too, and this is the only line that changes size BS [0] in this transition (line 3 changes size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF]).Thus, after this transition, in

C k +1 , size BS [0] ≤ #0(C k +1).
Thus, the lemma holds for size BS [0]. As size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] is managed exactly in the same (but symmetric) way as size BS [0], the lemma also holds for size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF].

As size total BS is always set to the sum of size BS [0] and size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] (line 6), we have the following corollary. Proof. To prove the theorem, we show below that, from any possible configuration, there is a reachable configuration C * s.t., in C * , size total BS = N. Then, by global fairness, such configuration is eventually reached. Finally, by corollary 1 and lemma 2, we have size total BS = N in all subsequent configurations. Now we show why C * is always reachable. Consider a configuration C. In C, let size BS [0] = x 0 , size BS [1] = x 1 , where x 0 , x 1 are non-negative integers ≤ N. By lemma 1, there are 0 ≤ x 0 , x 1 ≤ N s.t. #0(C) = x 0 +x 0 and #1(C) = x 1 +x 1 . Then, from C, there is the following possible execution (that reaches C *). First, x 1 + x 1 agents marked 1 interact with BS, each one exactly once. It is easy to verify, by the code of Protocol 1, that at the end of this segment of execution, size BS [0] = x 0 + x 1 + x 1 , size BS [START_REF] Afek | Local management of a global resource in a communication network[END_REF] = 0 and #0(C) = x 0 + x 0 + x 1 + x 1 = N, #1(C) = 0 (all agents are marked 0). Now, x 0 +x 1 +x 1 agents interact with BS (each one exactly once), what results in size BS [0] = 0, size BS [1] = x 0 + x 1 + x 1 and #0(C) = x 0 , #1(C) = x 0 +x 1 +x 1 . Finally, x 0 agents marked 0 interact with BS, each one exactly once. Now, size BS [0] = 0, size BS [1] = x 0 +x 0 +x 1 +x 1 = N and #0(C) = 0, #1(C) = x 0 + x 0 + x 1 + x 1 = N (all agents are marked 1). In this configuration, size total BS = N, and thus C * is reachable from (any configuration) C.

Space-Optimal Counting under Weak Fairness

In this section, we present a silent symmetric space-optimal protocol (Protocol 2 below) solving the counting problem under weak fairness (see Theorem 2 and Corollary 2). The protocol is correct starting from arbitrary states in mobile agents, but BS. It uses at most P states per agent, which is necessary in the current conditions for solving counting in populations with at most P mobile agents (N ≤ P) [START_REF] Beauquier | Self-stabilizing counting in mobile sensor networks with a base station[END_REF]. Protocol 2 General Description. In this protocol, BS eventually counts the mobile agents and stores the value in variable n. To realize this, BS successively attempts to guess the number of mobile agents in the population, starting from 1 and ending with N (this guess is stored in n). For each guess n < P , BS tries to name (differently) mobile agents in state 0 (zero-state) interacting with BS (lines 3 and 9). That is, BS tries to assign to these agents distinct states from {1, . . . , n} (also called here names). State 0 has a special technical role. Whenever two agents with identical names (homonyms) interact, they change their state to 0 (line 12). Thus, this state indicates to BS that, either it has created homonyms before, or that homonyms (or, simply, agents in state 0) existed already in the population in the starting configuration.

Thus, zero-state mobile agents are named by BS. The names are given one by one following some finite sequence U * of names (line 9). For simplicity, in the presented protocol, this sequence is computed in advance and depends on P . However, for an optimized version, the required prefix of U * , U N , can be computed on the fly, during an execution (see Remark 1). Sequence U * guarantees that, if there are N < P agents, whatever their starting states are, the naming succeeds. If no naming succeeds, BS concludes that there are more than P -1 agents, that is N = P . Thus, the protocol actually realizes a (consecutive minimal) naming for any N < P in order to realize finally a counting for any N ≤ P .

Another important property of U * is that, for every guess n, if all the terms of U * , from the first to some l th n term, have been used by BS to name interacting agents, then BS can conclude that the guess of n is wrong. It is safe then to switch to the next guess n + 1 (line 8). In the sequel, we denote the prefix of U * of length l n by U n (l n = |U n |). Any term of U n is in {1, . . . , n}. Thus, if BS meets an agent in a state > n, it can conclude that it has never seen this agent before. Hence, it can safely deduce that N > n, and switch to the next guess n + 1 (lines 5 -8).

As long as there are agents in state 0 or in a state > n, and n < P (line 2), the base station continues renaming and counting, because all these agents will eventually interact with BS (by weak fairness). If there are homonyms, eventually they meet too and switch to state 0 (again, by fairness). Variable at a mobile agent x: namex: non-negative integer in [0, . . . , P -1], initialized arbitrarily 1: when a mobile agent x interacts with BS do 2:

if n < P ∧ (namex = 0 ∨ namex > n) then 3: if namex = 0 then 4: k ← k + 1 // advance k to point to the next element of U * 5:
else if namex > n then 6:

k ← ln + 1// because agent x with a name > n could not be seen before by BS, the population must be larger than n, and k is updated accordingly 7:

if k > ln then 8:

n ← n + 1 // pointer k indicates that the population is larger 9:

namex ← U * (k) // set the name of x to the the k th element of U * 10: when two mobile agents x and y interact do 11:

if namex = namey then 12:

namex ← namey ← 0 // set homonym states to 0

Naming Sequence U * -the Gros Sequence As a matter of fact, sequence U * is not unique. We choose and define one of the possible such sequences. We also prove the properties claimed about it above. To define the sequence U * , we consider the infinite sequence U ∞ , whose left prefix U n is defined recursively by U n ≡ U n-1 , n, U n-1 , where U 1 ≡ 1. Sequence U * is obtained for n = P -1, i.e., U * ≡ U P -1 ≡ U P -2 , P -1, U P -2 . For example, the prefix U 4 of U ∞ is: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

Let l n ≡ |U n |. By construction of sequence U ∞ , l 1 = 1, and l n+1 = 2l n + 1, which gives l n = 2 n -1. Then, using the recursive definition of

U ∞ we obtain that ∀n, U ∞ (2 n) = n + 1 and ∀n, ∀1 ≤ k < 2 n , U ∞ (2 n + k) = U ∞ (k).
Remark 1. Based on this alternative description, U ∞ , and U * in particular, can be defined iteratively. The k th term of U ∞ is one plus the index of the least significant non-zero bit in the binary decomposition of k. Thus, BS does not need to store the whole sequence of names in advance. It can compute the next state to assign to a mobile agent based on a single integer variable. Such computation of the sequence does not depend on P , but on the number of the sequence terms which will be actually used. For this sequence, the number of terms used to name n agents is at most l n = 2 n -1. In consequence, the number of interactions (before convergence) between BS and an agent in state 0 or > n is at most l N .

Remark 2. It appears that U ∞ is known in the literature under the name of Gros sequence. This sequence can be found all over mathematics. It has remarkable properties with respect to the binary numeration, generating a Gray code. It encodes an Hamiltonian cycle on the edges of a n-dimensional cube. It is also the "greediest" square-free sequence (if one builds the sequence in choosing at each step the smallest integer that does not produce a square). Finally, the Gros sequence solves the Chinese Rings puzzle and, surprisingly, solved the Tower of Hanoi puzzle long before the latter was at all invented. For details refer to [START_REF] Hinz | The Tower of Hanoi -Myths and Maths[END_REF][START_REF] Allouche | Automatic Sequences -Theory, Applications, Generalizations[END_REF].

One of the intuitions behind the use of the Gros sequence for counting is related to the Hamiltonian cycle property on a cube. Consider a multi-dimensional cube whose vertices are labeled by the multi-sets of n names and edges connect vertices that differ by exactly one name. Whatever the initial names are (the agents can be arbitrarily initialized), the Gros sequence leads, by traveling along the Hamiltonian cycle it encodes, to the vertex where all names are distinct. In the corresponding configuration the counting can be performed. Now we give a more precise, but also more technical, explanation why, by using this particular sequence U * , BS correctly counts N (≤ P) agents. Consider the prefix U n = U n-1 , n, U n-1 of U * . By assigning successively the numbers given by U n , and in particular by the prefix U n-1 , BS can assign distinct names from {1, . . . , n-1} to all agents, only if N ≤ n-1. If it is not the case (N > n-1), BS eventually detects it whenever it meets an agent x, either in state > n -1, or in state 0 after the last name in U n-1 has been assigned (i.e., homonyms still exist). Then, BS guesses that N = n, and continues naming with the subsequence (n, U n-1). That is, it assigns state n to agent x which becomes unique, if effectively N = n. If this is the case, BS should successfully rename the remaining n -1 agents with n -1 states from {1, . . . , n -1}, following, once again, the naming sequence defined by U n-1 . From now on, the procedure repeats for the sequence U n+1 = U n , n + 1, U n . If the guess of N = n was wrong, BS eventually detects it (at least, by the end of the prefix U n), and switches to guess n + 1. That is, it will continue naming according to (n + 1, U n). This continues until the guess of BS is correct, or till all attempts have failed, meaning that N = P .

Correctness of Protocol 2

In the proofs below, we consider a set E of non-zero-states associated to a configuration C s.t., for every s ∈ E, the number of mobile agents in state s in C is odd. This allows to focus only on the transitions involving BS, and not on transitions between homonyms, which will happen eventually and do not change the parity of the number of agents in any state. Moreover, for any E, E ⊆ {1, . . . , n}, we denote by E E ≡ E ∪ E -E ∩ E their symmetric difference. In particular, E {e} (e ∈ {1, . . . , n}) is E ∪ {e} if e / ∈ E, and E -{e} if e ∈ E.

In Lemma 3 below, we prove that when the sequence U * is used by the protocol, it guarantees that, if N < P , E evolves until E = {1, . . . , N}, where all mobile agents have distinct names. Then, using Lemma 3 we obtain the main Theorem 2. Lemma 3. Let E 0 ⊂ {1, . . . , n} and E k+1 = E k {U ∞ (k + 1)}. There exists some 1 ≤ j ≤ 2 n -1 such that E j = {1, . . . , n}.

Proof. Let H n (n ∈ N) be the induction hypothesis "for any subset E 0 ⊂ {1, . . . , n} and such that E k+1 = E k {U ∞ (k + 1)}, there is E j = {1, . . . , n} for some 1 ≤ j ≤ 2 n -1".

Let us prove the basis for n = 1, i.e., for H 1 . As U ∞ (1) = 1, if E 0 = ∅, then E 1 = {1} and j = 1. If E 0 = {1}, j = 0. Thus H 1 is true.

Assume that, for n ∈ N, H n is true, and consider E 0 ⊂ {1, . . . , n + 1}. First, consider the case where n + 1 ∈ E 0 . Set E 0 = E 0 -{n + 1} and

E k+1 = E k {U ∞ (k+1)}. For all k ≤ 2 n -1, E k = E k ∪{n+1}.
According to H n , there exists j such that E j = {1, . . . , n}. Then, E j = E j ∪{n+1} = {1, . . . , n+1}.

Now consider n + 1 / ∈ E 0 . For all k ≤ 2 n -1, U ∞ (k) ≤ n, and n + 1 / ∈ E k . Then, as U ∞ (2 n) = n + 1, E 2 n = E 2 n -1 ∪ {n + 1}. Set E 0 = E 2 n -1 and E k+1 = E k {U ∞ (k + 1)}. For all k ≤ 2 n -1, E 2 n +k = E k ∪ {n + 1}.
According to H n , there exists j such that E j = {1, . . . , n}. Then, E 2 n +j = {1, . . . , n + 1}. By induction, the lemma is true. Theorem 2. Protocol 2 solves the counting problem, under weak fairness, for up to P mobile agents, each with P states. Moreover, the protocol names up to P -1 mobile agents with distinct names (for any N < P , the names are in {1, . . . N}).

Proof. Consider an execution (C 0 , C 1 , C 2 , . . .) of the protocol. For every i ≥ 0, let E i denote the set of states s.t., for every s ∈ E i , the number of mobile agents in state s in C i is odd. If E i = {1, . . . , N}, then all the agents have distinct states. Let n i and k i denote (respectively) the values of the variables n and k of BS in a configuration C i .

Lemma 3 implies that, for any N < P , if E 0 ⊂ {1, . . . , N} and E k+1 = E k {U * (k + 1)}, there exists some 1 ≤ j ≤ 2 N -1 (l N = 2 N -1) such that E j = {1, . . . , N} (|U * | = 2 P -1).

If n i < N, agents cannot all have distinct non-zero-states in {1, . . . , n i }. Consider a configuration where n i < N. There are two cases (i) and (ii) concerning possible transitions with BS. In case (i), there are agents in state 0, or/and there are different agents in the same state (homonyms), that will eventually interact and change their states to 0 (line 12). In both sub-cases, a mobile agent in state 0 eventually meets BS; and in the corresponding transition, in line 4, k increases. Once k j > l nj (j > i), n j is incremented (lines 7 -8). In case (ii), there exists a mobile agent x with name x > n i , what causes n to increase too. Thus, eventually, n j = N. We show now that the protocol converges to n = N and not a larger value.

-First, assume that the case (ii) does not occur. Consider the first configuration (C i) with n i = N, and suppose N < P . Starting from this configuration, BS assigns states to agents following U N . E i ∈ 2 {1,...,N} , k i > l N-1 (lines 7 -8), and only the following transitions between C i and C i+1 are possible: 1. a transition between homonyms (lines 11 -12), which results in E i+1 = E i ; 2. a transition between BS and an agent in state 0 (lines 3, 4 and 9), which results in E i+1 = E i {U * (k i)}. The number of non-zero homonyms in a given configuration is finite, and transitions of type 1 decrease this number, so that an infinite sequence of transitions of this type is impossible. Thus, while E i = {1, . . . , N} (meaning that there are homonyms or agents in state 0), transitions of type 2 happen. These transitions also increment k i . Let i 1 , i 2 , . . . denote the indexes of transitions of type 2: E ij+1 = E ij {U * (k j)}. Lemma 3 implies that there is some j such that E ij = {1, . . . , N}. At this point, all agents are in distinct states, and the protocol has converged with n = N, because n increases only if the naming with n states has failed, i.e., when k > l n , (lines 7 -8) and this impossible in the considered case.

-In case (ii), BS interacts with an agent x with name x > n i . Agent x has not been assigned before, since otherwise, it would have been given a state ≤ n i . The naming with n i -1 agents would have failed already, while this agent had no interaction. Thus, the execution up to step i is undistinguishable from an execution with at least n i agents, but with the agent currently meeting BS, there are at least n i + 1 agents. Thus, N ≥ n i + 1. In any case, n i ≤ N.

Corollary 2. Protocol 2 is silent.

Proof. By Theorem 2, for any N < P , the protocol finally names all mobile agents with distinct names in {1, . . . N}, and thus the condition at line 2 stops being satisfied. Hence, in this case, eventually, no agent changes its state. In the remaining case of N = P , the condition at line 2 stops being satisfied when n reaches and stays equal to N (what happens, by Theorem 2). After that, no agent can change its state.

Conclusion and Perspectives

In this paper, we presented two population protocols for counting, under two classical fairness assumptions. Under global fairness, we gave a protocol with only two states per agent and, under weak fairness, a protocol with P states (P being an upper bound on the size of the system). In terms of exact space complexity, both protocols are optimal in space and considerably improve the best solutions known up to now, presenting a totally different angle of attack. 4 Using a memory of only one bit has certainly practical advantages in applications for large-scale networks connecting very simple artifacts. Moreover, the assumption of global fairness, necessary for the correctness of the corresponding protocol, is realized in practice. As described in [START_REF] Angluin | Self-stabilizing population protocols[END_REF], this is because in practice, a variety of parameters and events (like power-supply, local clock frequency or movement of nodes) affect the scheduling of a system in a random way, making the assumption of global fairness realistic.

The second protocol, under weak fairness, solves the challenge of counting up to P with exactly P states per agent. Nevertheless, due to the nature of the Gros sequence, its time complexity, in terms of non-null transitions or in terms of (asynchronous) rounds, is exponential (a round being a shortest fragment of execution where each agent interacts with each other). This is because, in the worst case, the number of non-null transitions (or rounds) till convergence depends on the number of times BS renames a mobile agent. This is 2 P -1 -1 times, due to the length of the used Gros sequence (|U * | = 2 P -1 -1; see Remark 1).

We conjecture that this complexity is necessary for the optimal memory space. Intuitively, starting from an arbitrary configuration with P mobile agents, and with only P available states, no protocol at BS can detect the lacking names (states) in the population, during a worst case execution. That is why, in this case, BS cannot advance in naming (required for counting) faster than by following a sequence of at least O(2 P) names. This length is necessary, because there exist O(2 P) different starting configurations and from any such configuration, a sequence of at least O(2 P) names is required (in the worst case), for BS to obtain a configuration with distinctly named mobile agents, and count them.

Studying formally the trade off between space and time complexities for counting algorithms in population protocols could be a valuable sequel to the present work. Considering existing counting protocols designed for weak fairness, we can identify the following tendency. With log P bits of memory per mobile 4 One may notice that the proposed protocols look more like centralized protocols than distributed ones. This comes from the nature of the problem and from the strong memory constraints. First, as without BS the problem is impossible, any solution has to use some sort of centralization; otherwise BS would not be necessary. Second, reducing the memory to the minimum, strongly limits the useful information that mobile agents can exchange to progress towards the solution.

agent, the space-optimal protocol that we present in this paper has an exponential complexity. An additional bit of memory allows to design protocols like in [START_REF] Izumi | Space-efficient self-stabilizing counting population protocols on mobile sensor networks[END_REF] with a logarithmic round complexity, while another additional bit allows to solve this problem in a constant number of rounds [START_REF] Beauquier | Self-stabilizing counting in mobile sensor networks with a base station[END_REF]. It will be interesting to study whether such drastic trade-offs are necessary. For global fairness, much less studies about counting protocols and especially about their complexity analysis exist. This is certainly an additional interesting research direction.

Finally, another possible perspective concerns the space complexity of BS. One may imagine a system, where all agents including the distinguishable BS are resource-limited, motivating the study of the necessary space requirements for BS.

Corollary 1 .Lemma 2 .Theorem 1 .

 121 In any configuration, size total BS ≤ N.Lemma 2 below is easily obtained by observing the pseudo-code. The value of size total BS never decreases.Proof. The value of size total BS can decrease only by executing line 3, size[mark x] ← size[mark x] -1. Whenever this line is executed in a transition, line 5 is executed in the same transition too. Due to line 4, in line 5, size[1 -mark x] ← size[1 -mark x] + 1. Thus, if line 3 is executed in some transition, size total BS does not change. In all other cases, it can only increase. Under global fairness, (symmetric) Protocol 1 solves the counting problem. Eventually, size total BS = N and does not change anymore.

Protocol 2

 2 Space-Optimal Counting under Weak Fairness (P states per agent) Variables at BS: n: non-negative integer initialized to 0 // guess of N k: non-negative integer initialized to 0 // pointer to the k th element of U * Shortcuts at BS: U * : constant sequence of elements in [1, . . . , P -1] computed in advance by the recursion U1 ≡ 1, U * ≡ UP -1 ≡ UP -2, P -1, UP -2 U * (k): returns the k th element of U * ln = 2 n -1 (≡ |Un|)

In practice, when interacting with BS, the computations can be done completely on the side of BS (i.e., the state of BS is not communicated to the mobile agent). The non-BS agent only updates its state with the resulting one. In interactions between two mobile agents, in the protocols described in this paper, the agents only have to be able to compare their states.

Acknowledgments

The authors would like to thank Jean-Paul Allouche and Jean Berstel for identifying the Gros sequence, and the anonymous reviewers for their thoughtful and helpful remarks.

The extended version of this paper can be consulted in [8]. The work of this author was partially supported by the Israeli-French Maimonide research project. Contact author. The work of this author was partially supported by the Israeli-French Maimonide and the INS2I PEPS JCJC research projects.