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Shape optimization of parameterized thin shell structures is increasingly considered by automotive industry in order to face nonlinear dynamics problems like crashworthiness. Since the number of shape parameters is important, traditional multidisciplinary optimization methods such as metamodeling techniques become less efficient due to expensive calculation times. A way to get around the problem is to switch to gradient methods which are less sensitive to the number of parameters. However, shape sensitivities are often hard and costly to calculate for highly nonlinear problems.

Inspired by the Equivalent Static Loads Method, we defined linear static problems on which we perform a shape sensitivity analysis. After linking sensitivity maps with CAD parameters, gradients are used as descent directions for the nonlinear objective function. We applied successfully the method to two test cases: minimization of a nodal displacement and maximization of the absorbed energy. Because the calculation of this descent direction is inexpensive, this new optimization method allows performing crashworthiness optimization studies with a large number of parameters. 2.

Shape optimization method for crashworthiness design based on Equivalent Static Loads concept 3. Introduction

Depending on the optimization variables that describe the shape of the domain to be optimized, shape optimization can be classified in three categories : topology, shape and parametric optimizations [START_REF] Froment | CAD-based large scale shape optimization method with intensive simulations[END_REF]. Automotive industry has a growing interest on parametric shape optimization since it directly takes into account the manufacturing process. Indeed, knowing more severe specifications and a will of mass reduction, this industry is enlarging the optimization design space to shape parameters.

Crashworthiness is one of the most dimensioning specifications of the body in white and is still problematic. Even if it is possible to calculate a descent direction with finite difference [START_REF] Marklund | Optimization of a car body component subjected to side impact[END_REF], this method has not been used due to the numerical noise, the high nonlinearity and the heavy calculation time (e.g. crashworthiness time calculation for a full vehicle: around 10h/16 processors) of this rapid dynamics problem. Instead, car designers used metamodeling techniques which have been succesfully applied to optimization problems with thickness and materials parameters and also with a few number of shape parameters [START_REF] Mercier | Deployment of optimization studies using Alternova : design of a hood inner panel for pedestrian safety performance[END_REF][START_REF] Duddeck | Multidisciplinary optimization of car bodies[END_REF].

However, the optimization cost of those methods dramatically increase with the number of shape parameters. A way to get around this issue is to switch to gradient methods where the number of parameters has a reduced effect on the optimization cost.

Recently, a new optimization algorithm for nonlinear problems, the Equivalent Static Loads Method, has been proposed by Park [START_REF] Park | Technical overview of the equivalent static loads method for non-linear static response structural optimization[END_REF]. Inspired by this method, we have defined linear static problems equivalent to the rapid dynamic problem on which we calculate shape sensitivity. This gradient is then used as descent direction for the nonlinear problem. This method and its applications to two crashworthiness specifications are explained in following parts.

Calculation of the descent direction

In order to test our descent directions, we have applied the method to mono-objective crashworthiness problems. The rapid dynamic problem could be written as follow :

Optimization problem in rapid dynamic

Find the n shape parameters P = {P i } , i = 1..n To minimize J NL (P), the nonlinear objective function Subject to constraints on the variation of the shape parameters P min i

≤ P i ≤ P max i , i = 1..n
Where X NL is the solution of the rapid dynamic equation [START_REF] Chase | Design optimization of progressively crushing rails[END_REF].

M(P) ẌNL (t, P) + K T [X NL (t, P), P]∆X NL (t, P) = F NL (t, P) , t = t 1 ..t f (1) 
With M the mass matrix, K T the tangent stiffness matrix, F NL the external loading vector and X NL the displacement vector.

Equivalent Static Loads concept

Park proposed the Equivalent Static Loads Method (ESLM) and succesfully applied it to several nonlinear problems [START_REF] Park | Technical overview of the equivalent static loads method for non-linear static response structural optimization[END_REF][START_REF] Yi | Crashworthiness design optimization using equivalent static loads[END_REF]. As illustrated in Figure 1, ESLM consists in the creation of f linear static problems equivalent to the nonlinear problem at a time t s and this for each time step s = 1.. f . The optimization is performed on the Design Domain (linear static problems) and the result is used to update the Analysis Domain (nonlinear problem). A new nonlinear analysis is performed and new equivalent static problems are created. This process is repeated until convergence.

Analysis Domain Design Domain

Nonlinear analysis

M ẌNL (t) + K T ∆X NL (t) = F NL (t) t = t 1 ..t f
Linear static problems optimization

K L X L (s) = f eq (s) s = 1.. f
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Calculation of equivalent static loads Solution field f eq

Figure 1: Optimization process of the Equivalent Static Loads Method

Linear static equations are defined in equation [START_REF] Duddeck | Multidisciplinary optimization of car bodies[END_REF].

K L (P)X L (s, P) = f eq (s) , s = 1.. f (2) 
where K L is the static linear stiffness matrix of the initial (non-deformed) domain, X L the linear displacement vector solution of the equation and f eq (s) is the equivalent static load chosen to preserve the field at step time t s we want to optimize in the linear static problem.

For example, if we want to optimize the displacement of a node, we have to preserve the non-linear displacement X NL (t s ) solution of (1) at t s . Writing f eq (s) = K L X NL (t s ), we preserve the nonlinear displacement field: X L (s) = X NL (t s ).

Presentation of the method

Inspired by the Equivalent Static Loads Method, we propose to use the shape sensitivity calculated on equivalent linear static problems as a descent direction for the rapid dynamic problem. We studied two crashworthiness specifications. The first one is to minimize a nodal displacement. Then, we defined a static linear problem that preserve the displacement field. In the second study, we had to maximize the absorbed energy of a part of the domain. In this case, we had to preserve both strain and stress fields in a linear static problem.

Methods of calculation of the two descent directions are explained in this part. Shape sensitivities are first calculated on the nodes position of the CAE * model. The link between this sensitivity mapping and CAD † parameters is explained in the next section.

Descent direction calculation for the optimization of a nodal displacement

The objective function that we want to minimize is J NL (P) = u NL (t a , P) where u NL (t a , P) is a nodal displacement at t a fixed. Since the objective function is a displacement function, we need to preserve X NL in the equivalent linear static equation [START_REF] Froment | CAD-based large scale shape optimization method with intensive simulations[END_REF].

K L (P)X L (P) = f eq (3)
with K L the linear stiffness matrix of the initial non-deformed domain and f eq = K L X NL (t a ). The shape sensitivity is issued from the linear model, that meens that we approximate d P J NL by d P J L . Because ∂ P J L = 0, the descent direction used for the nonlinear objective function is

d P J L = ∂ Q J L .∂ P Q where Q is the nodes * Computer Aided Engineering † Computer Aided Design
position of the CAE model. We have seen that, under quasi-static and quasi-proportionnal loadings (reversibility) hypotheses [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], we have d P J NL , d P J L ≥ 0 and then -d P J L is well a descent direction of the rapid dynamic problem.

Since the explicit algorithm used to solve equation ( 1) is stable, quasi-static hypothese is validated. The following conditions are needed to validate the second hypothese:

-the initial state is the non-deformed and non-hardened state, -the material law is a Prandtl-Reuss law, -the hardening law is a power function, -principal directions of stress tensor are quasi-constants, -and elastic strains are negligible.

4.2.2. Descent direction calculation for the optimization of the absorbed energy Another important crashworthiness specification is to ensure a good behavior of the crash scenario. Engineers have to control the energy absorbed by a component of the car. The nonlinear objective function is defined in equation (4).

J NL (P) = Ω(P)

t f t 1 σ NL (x,t) {ε NL (x,t)} dt dV (4) 
where σ NL is the stress field and εNL (x,t) ≈ 1 ∆τ (ε NL (x,t)ε NL (x,t -∆τ)) with ε NL the strain field. Doing a temporal discretization and writing ∆τ = t st s-1 , we rewrite equation ( 4) to [START_REF] Marklund | Optimization of a car body component subjected to side impact[END_REF].

J NL (P) = f ∑ s=1 Ω(P) σ NL (x,t s ) [{ε NL (x,t s )} -{ε NL (x,t s-1 )}] dV (5) 
With this kind of objective function, we need to preserve both stress and strain fields within the same linear static problem. To do so, we have to use the secant stiffness matrix K S (P,t s ) which is calculated by assembling the element secant stiffness matrices: K S (P,t s ) = nb.elem. By using the secant stiffness matrix, we can define linear static problems for each time step which preserve σ NL (x,t s 1 ) and ε NL (x,t s 2 ) in the same equation [START_REF] Mercier | Deployment of optimization studies using Alternova : design of a hood inner panel for pedestrian safety performance[END_REF]. The equivalent static load is calculated to preserve the strain field.

K S (P,

s 1 , s 2 )X L (P) = f ε eq (6)
The equivalent linear objective funtion is then J L (P) = f ∑ s=1 JL (P, s, s) -JL (P, s, s -1), where JL (P, s 1 , s 2 ), calculated with equation ( 6), is defined in equation [START_REF] Park | Technical overview of the equivalent static loads method for non-linear static response structural optimization[END_REF].

JL (P) = Ω(P) σ L (x, s 1 ) [{ε L (x, s 2 )} dV (7)
Since JL is a compliance-like criteria, it is quite easy to assess a shape derivative. The descent direction used for the nonlinear problem is then defined in equation [START_REF] Yi | Crashworthiness design optimization using equivalent static loads[END_REF].

∂ P J L (P) = f ∑ s=1 ∂ P JL (P, s, s) -∂ P JL (P, s, s -1) (8) 

Test algorithm

In order to test the descent directions calculated previously, we have used the algorithm illustrated in figure 3. By using an adaptative step-length, the test algorithm is closed to a line-search algorithm. Previously, we said that the shape sensitivity is calculated on the nodes position. We still have to link the sensitivity mapping to CAD parameters. In our case, we know the mathematical definition of the geometry : it is a B-spline surface S headed by its control points P. Because we know the mathematical definition of the parametric surface, we can easily link the nodal position of a node q and the position of the control point p αβ .

Initial geometry

ESLs calculation

Shape sensitivity calculation

Updating of geometry

∂ p αβ q = ∂ S(u q , v q ) ∂ p αβ = b α,l (u q )b β ,m (v q ) ( 9 
)
where S is the B-spline surface of orders (l, m), b .,a the B-spline function of order a and (u q , v q ) the parametric coordinates of the node q obtained by minimizing the distance D(S, q) between the node and the surface by a Newton-Raphson method.

Applications

We have used our method on two industrial cases : the minimization of a crash-box crushing that is a nodal displacement minimization problem and the maximisation of the PEA ‡ that is an absorbed energy problem.

Minimization of a crash-box crushing

In this test case, we want to minimize the crushing of the 150mm length crash-box in steel defined in figure 4-a. This beam has a thickness of 1.5mm and is launched through a rigid wall with an initial velocity of 16km.h -1 (pushing mass : 450kg). The geometry is defined with 3 sketches heading 16 control points illustrated in figure 4-b. Due to symetries, we defined 3 shape parameters on each sketch (9 shape parameters for the problem). Figure 5 represents the results of the optimization. The line-search of the first iteration, figure 5-a, shows that the problem is noisy and nonlinear. We have done several optimization studies in order to see the effect of the ‡ Progressive Energy Absorbed repeatability and of the mesh length. These results are visible in figure 5-b and show that a good CAE model quality is needed. We can also see in figure 5-c the crushing of the initial model and of the optimized one. The result which seems like a castle could be explained by the fact that the geometry is the one that have the greater second moment of area. Traditionnaly, the strategy chosen by engineers to absorbe kinetic energy is a progressive crush of the front side member. Chase proposed a criterion called Progressive Energy Absorbed (PEA) in order to ensure a good behavior of the crushing process [START_REF] Chase | Design optimization of progressively crushing rails[END_REF]. We choosed to maximize this objective function for our second test case. The S-beam visible in figure 6-a is defined with 120 CAD parameters and is launched onto a rigid wall with an initial velocity of 30km.h -1 (pushing mass : 450kg, thickness : 1.5mm). We also defined 6 zones in order to calculate the PEA with equation (10). Results are in figure 7. The initial geometry has a bad behavior: buckling. By maximizing the PEA, the rear part is renforced and in 6 iterations, the front side member is crushing progressively. 

Conclusions

We have proposed a method that use linear static problems in order to calculate a descent direction for a nonlinear crashworthiness problem. Since the calculation of the shape sensitivity is really fast compared to the crashworthiness calculation, this descent direction can be used for crashworthiness problems with a high number of parameters without having a too expensive optimization cost. We still have to calculate a descent direction for other crashworthiness problems like pulses or the Occupant Load Criterion and use them for multi-objectives optimization problems.
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