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1. Abstract
Shape optimization of parameterized thin shell structures is increasingly considered by automotive industry

in order to face nonlinear dynamics problems like crashworthiness. Since the number of shape parameters is im-
portant, traditional multidisciplinary optimization methods such as metamodeling techniques become less efficient
due to expensive calculation times. A way to get around the problem is to switch to gradient methods which are
less sensitive to the number of parameters. However, shape sensitivities are often hard and costly to calculate for
highly nonlinear problems.

Inspired by the Equivalent Static Loads Method, we defined linear static problems on which we perform a
shape sensitivity analysis. After linking sensitivity maps with CAD parameters, gradients are used as descent di-
rections for the nonlinear objective function. We applied successfully the method to two test cases: minimization
of a nodal displacement and maximization of the absorbed energy. Because the calculation of this descent direction
is inexpensive, this new optimization method allows performing crashworthiness optimization studies with a large
number of parameters.
2. Keywords: Shape optimization, Crashworthiness, Equivalent Static Loads, Approximated gradient.

3. Introduction
Depending on the optimization variables that describe the shape of the domain to be optimized, shape optimiza-

tion can be classified in three categories : topology, shape and parametric optimizations [3]. Automotive industry
has a growing interest on parametric shape optimization since it directly takes into account the manufacturing
process. Indeed, knowing more severe specifications and a will of mass reduction, this industry is enlarging the
optimization design space to shape parameters.

Crashworthiness is one of the most dimensioning specifications of the body in white and is still problematic.
Even if it is possible to calculate a descent direction with finite difference [5], this method has not been used due
to the numerical noise, the high nonlinearity and the heavy calculation time (e.g. crashworthiness time calculation
for a full vehicle: around 10h/16 processors) of this rapid dynamics problem. Instead, car designers used meta-
modeling techniques which have been succesfully applied to optimization problems with thickness and materials
parameters and also with a few number of shape parameters [6, 2].

However, the optimization cost of those methods dramatically increase with the number of shape parameters.
A way to get around this issue is to switch to gradient methods where the number of parameters has a reduced
effect on the optimization cost.

Recently, a new optimization algorithm for nonlinear problems, the Equivalent Static Loads Method, has been
proposed by Park [7]. Inspired by this method, we have defined linear static problems equivalent to the rapid
dynamic problem on which we calculate shape sensitivity. This gradient is then used as descent direction for
the nonlinear problem. This method and its applications to two crashworthiness specifications are explained in
following parts.

4. Calculation of the descent direction
In order to test our descent directions, we have applied the method to mono-objective crashworthiness prob-

lems. The rapid dynamic problem could be written as follow :

Optimization problem in rapid dynamic
Find the n shape parameters P = {Pi} , i = 1..n
To minimize JNL(P), the nonlinear objective function
Subject to constraints on the variation of the shape parameters Pmin

i ≤ Pi ≤ Pmax
i , i = 1..n
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Where XNL is the solution of the rapid dynamic equation (1).

M(P)ẌNL(t,P)+KT [XNL(t,P),P]∆XNL(t,P) = FNL(t,P) , t = t1..t f (1)

With M the mass matrix, KT the tangent stiffness matrix, FNL the external loading vector and XNL the displacement
vector.

4.1. Equivalent Static Loads concept
Park proposed the Equivalent Static Loads Method (ESLM) and succesfully applied it to several nonlinear

problems [7, 8]. As illustrated in Figure 1, ESLM consists in the creation of f linear static problems equivalent
to the nonlinear problem at a time ts and this for each time step s = 1.. f . The optimization is performed on the
Design Domain (linear static problems) and the result is used to update the Analysis Domain (nonlinear problem).
A new nonlinear analysis is performed and new equivalent static problems are created. This process is repeated
until convergence.

Analysis Domain Design Domain

Nonlinear analysis

MẌNL(t)+KT ∆XNL(t) = FNL(t)
t = t1..t f

Linear static problems
optimization

KLXL(s) = feq(s)
s = 1.. f

New parameters

Calculation of
equivalent static

loads
Solution field feq

Figure 1: Optimization process of the Equivalent Static Loads Method

Linear static equations are defined in equation (2).

KL(P)XL(s,P) = feq(s) , s = 1.. f (2)

where KL is the static linear stiffness matrix of the initial (non-deformed) domain, XL the linear displacement vector
solution of the equation and feq(s) is the equivalent static load chosen to preserve the field at step time ts we want
to optimize in the linear static problem.

For example, if we want to optimize the displacement of a node, we have to preserve the non-linear dis-
placement XNL(ts) solution of (1) at ts. Writing feq(s) = KLXNL(ts), we preserve the nonlinear displacement field:
XL(s) = XNL(ts).

4.2. Presentation of the method
Inspired by the Equivalent Static Loads Method, we propose to use the shape sensitivity calculated on equiva-

lent linear static problems as a descent direction for the rapid dynamic problem. We studied two crashworthiness
specifications. The first one is to minimize a nodal displacement. Then, we defined a static linear problem that
preserve the displacement field. In the second study, we had to maximize the absorbed energy of a part of the
domain. In this case, we had to preserve both strain and stress fields in a linear static problem.

Methods of calculation of the two descent directions are explained in this part. Shape sensitivities are first cal-
culated on the nodes position of the CAE∗ model. The link between this sensitivity mapping and CAD† parameters
is explained in the next section.

4.2.1. Descent direction calculation for the optimization of a nodal displacement
The objective function that we want to minimize is JNL(P) = uNL(ta,P) where uNL(ta,P) is a nodal displace-

ment at ta fixed. Since the objective function is a displacement function, we need to preserve XNL in the equivalent
linear static equation (3).

KL(P)XL(P) = feq (3)

with KL the linear stiffness matrix of the initial non-deformed domain and feq = KLXNL(ta).
The shape sensitivity is issued from the linear model, that meens that we approximate dPJNL by dPJL. Because

∂PJL = 0, the descent direction used for the nonlinear objective function is dPJL = ∂QJL.∂PQ where Q is the nodes
∗Computer Aided Engineering
†Computer Aided Design
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position of the CAE model. We have seen that, under quasi-static and quasi-proportionnal loadings (reversibil-
ity) hypotheses [4], we have 〈dPJNL,dPJL〉 ≥ 0 and then −dPJL is well a descent direction of the rapid dynamic
problem.

Since the explicit algorithm used to solve equation (1) is stable, quasi-static hypothese is validated. The fol-
lowing conditions are needed to validate the second hypothese:

– the initial state is the non-deformed and non-hardened state,
– the material law is a Prandtl-Reuss law,
– the hardening law is a power function,
– principal directions of stress tensor are quasi-constants,
– and elastic strains are negligible.

4.2.2. Descent direction calculation for the optimization of the absorbed energy
Another important crashworthiness specification is to ensure a good behavior of the crash scenario. Engineers

have to control the energy absorbed by a component of the car. The nonlinear objective function is defined in
equation (4).

JNL(P) =
∫

Ω(P)

∫ t f

t1
〈σNL(x, t)〉{ε̇NL(x, t)} dt dV (4)

where σNL is the stress field and ε̇NL(x, t)≈ 1
∆τ
(εNL(x, t)− εNL(x, t−∆τ)) with εNL the strain field.

Doing a temporal discretization and writing ∆τ = ts− ts−1, we rewrite equation (4) to (5).

JNL(P) =
f

∑
s=1

∫
Ω(P)
〈σNL(x, ts)〉[{εNL(x, ts)}−{εNL(x, ts−1)}] dV (5)

With this kind of objective function, we need to preserve both stress and strain fields within the same linear
static problem. To do so, we have to use the secant stiffness matrix KS(P, ts) which is calculated by assembling the

element secant stiffness matrices: KS(P, ts) =
nb.elem.

∑
e=1

[T e(P)]T [Ke
S(P, ts)]loc[T e(P)] where [T e(P)] is the change of

basis matrix and [Ke
S(P, ts)]loc is calculated with the secant modulus of elasticity visible in Figure 2.

ESE

ε̄NL ε̄

σ̄NL

σ̄

ES =
σ̄NL
ε̄NL

Figure 2: Definition of the secant modulus of elasticity ES

By using the secant stiffness matrix, we can define linear static problems for each time step which preserve
σNL(x, ts1) and εNL(x, ts2) in the same equation (6). The equivalent static load is calculated to preserve the strain
field.

KS(P,s1,s2)XL(P) = fε
eq (6)

The equivalent linear objective funtion is then JL(P) =
f

∑
s=1

J̃L(P,s,s)− J̃L(P,s,s−1), where J̃L(P,s1,s2), calcu-

lated with equation (6), is defined in equation (7).

J̃L(P) =
∫

Ω(P)
〈σL(x,s1)〉[{εL(x,s2)} dV (7)

Since J̃L is a compliance-like criteria, it is quite easy to assess a shape derivative. The descent direction used
for the nonlinear problem is then defined in equation (8).

∂PJL(P) =
f

∑
s=1

∂PJ̃L(P,s,s)−∂PJ̃L(P,s,s−1) (8)
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4.3. Test algorithm
In order to test the descent directions calculated previously, we have used the algorithm illustrated in figure 3.

By using an adaptative step-length, the test algorithm is closed to a line-search algorithm.

Initial geometry

ESLs calculation

Shape sensitivity
calculation

Updating of
geometry

New geometry
testing

End

NOK

↘ αk

OK

↗ αk+1

1

2

3

4

5

1 : CAD creation, meshing and crashworthiness calculation

2 : Post-processing and linear static problems definition

3 : JL sensitivity calculation (on nodal positions) ∂QJL and
calculation of the link between nodal positions and shape
parameters ∂PQ

4 : Updating of the shape parameters
Pk+1 = Pk−αk.∂QJL.∂PQ

5 : Meshing of the new CAD model and crashworthiness cal-
culation. We increase or decrease the step-length αk de-
pending on the result.

Figure 3: Algorithm used for testing the descent direction

Previously, we said that the shape sensitivity is calculated on the nodes position. We still have to link the
sensitivity mapping to CAD parameters. In our case, we know the mathematical definition of the geometry : it is a
B-spline surface S headed by its control points P. Because we know the mathematical definition of the parametric
surface, we can easily link the nodal position of a node q and the position of the control point pαβ .

∂pαβ
q =

∂S(uq,vq)

∂ pαβ

= bα,l(uq)bβ ,m(vq) (9)

where S is the B-spline surface of orders (l,m), b.,a the B-spline function of order a and (uq,vq) the parametric
coordinates of the node q obtained by minimizing the distance D(S,q) between the node and the surface by a
Newton-Raphson method.

5. Applications
We have used our method on two industrial cases : the minimization of a crash-box crushing that is a nodal

displacement minimization problem and the maximisation of the PEA‡ that is an absorbed energy problem.

5.1. Minimization of a crash-box crushing
In this test case, we want to minimize the crushing of the 150mm length crash-box in steel defined in figure

4-a. This beam has a thickness of 1.5mm and is launched through a rigid wall with an initial velocity of 16km.h−1

(pushing mass : 450kg). The geometry is defined with 3 sketches heading 16 control points illustrated in figure
4-b. Due to symetries, we defined 3 shape parameters on each sketch (9 shape parameters for the problem).

(a) (b)

Figure 4: ”Crash-box” test case (a) and its sketches (b)

Figure 5 represents the results of the optimization. The line-search of the first iteration, figure 5-a, shows that
the problem is noisy and nonlinear. We have done several optimization studies in order to see the effect of the

‡Progressive Energy Absorbed
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repeatability and of the mesh length. These results are visible in figure 5-b and show that a good CAE model
quality is needed. We can also see in figure 5-c the crushing of the initial model and of the optimized one. The
result which seems like a castle could be explained by the fact that the geometry is the one that have the greater
second moment of area.
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Figure 5: Results : line-search used for the first iteration (a),
Effect of repeatability and mesh length on optimization process (b) (mesh length : 2-5mm),

Initial and optimized models crushing (c)

5.2. Maximization of the Progressive Energy Absorbed of a front side member
Traditionnaly, the strategy chosen by engineers to absorbe kinetic energy is a progressive crush of the front side

member. Chase proposed a criterion called Progressive Energy Absorbed (PEA) in order to ensure a good behavior
of the crushing process [1]. We choosed to maximize this objective function for our second test case. The S-beam
visible in figure 6-a is defined with 120 CAD parameters and is launched onto a rigid wall with an initial velocity
of 30km.h−1 (pushing mass : 450kg, thickness : 1.5mm). We also defined 6 zones in order to calculate the PEA
with equation (10).

PEA =
5

∑
N=1

(EAN(UN)−EAN(UN−1))−EA6 (10)

Where EAN(UN) is the energy absorbed by zone N when the beam has crushed of UN , EA6 is the total energy
absorbed by zone 6 and values of UN can be seen in figure 6-b.

(a) (b)

U1 U2
U5

450mm

Z1 Z2 Z3 Z4 Z5 Z6

Figure 6: ”S-Beam” test case, its control net (a) and zones for the PEA calculation (b)

Results are in figure 7. The initial geometry has a bad behavior: buckling. By maximizing the PEA, the rear
part is renforced and in 6 iterations, the front side member is crushing progressively.
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(a)

Initial
crushing

Optimized
crushing

(b)

Figure 7: Results : PEA function of iterations (a),
Initial and optimized models crushing (b)

6. Conclusions
We have proposed a method that use linear static problems in order to calculate a descent direction for a

nonlinear crashworthiness problem. Since the calculation of the shape sensitivity is really fast compared to the
crashworthiness calculation, this descent direction can be used for crashworthiness problems with a high number
of parameters without having a too expensive optimization cost. We still have to calculate a descent direction
for other crashworthiness problems like pulses or the Occupant Load Criterion and use them for multi-objectives
optimization problems.
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