
HAL Id: hal-01207244
https://hal.science/hal-01207244v1

Submitted on 30 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Transactions in Nonvolatile Memory
Hillel Avni, Eliezer Levy, Avi Mendelson

To cite this version:
Hillel Avni, Eliezer Levy, Avi Mendelson. Hardware Transactions in Nonvolatile Memory. DISC
2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-48653-5_41�.
�hal-01207244�

https://hal.science/hal-01207244v1
https://hal.archives-ouvertes.fr

Hardware Transactions in Nonvolatile Memory

Hillel Avni1, Eliezer Levy1, and Avi Mendelson2

1 Huawei Technologies European Research Center
first.last@huawei.com

2 Technion CS & EE departments
avi.mendelson@technion.ac.il

Abstract. Hardware transactional memory (HTM) implementations al-
ready provide a transactional abstraction at HW speed in multi-core sys-
tems. The imminent availability of mature byte-addressable, nonvolatile
memory (NVM) will provide persistence at the speed of accessing main
memory. This paper presents the notion of persistent HTM (PHTM),
which combines HTM and NVM and features hardware-assisted, lock-
free, full ACID transactions. For atomicity and isolation, PHTM is based
on the current implementations of HTM. For durability, PHTM adds the
algorithmic and minimal HW enhancements needed due to the incorpo-
ration of NVM. The paper compares the performance of an implementa-
tion of PHTM (that emulates NVM aspects) with other schemes that are
based on HTM and STM. The results clearly indicate the advantage of
PHTM in reads, as they are served directly from the cache without lock-
ing or versioning. In particular, PHTM is an order of magnitude faster
than the best persistent STM on read-dominant workloads.

1 Introduction

In [10], Herlihy and Moss defined hardware transactional memory (HTM),
as a way to leverage hardware cache coherency to execute atomic transac-
tions in the cacheable shared memory of multicore chips. The basic idea
was that each transaction is isolated in the local L1 cache of the core that
executes it. The semantics of atomicity were borrowed from the database
research [4]. However, database transactions, unlike HTM transactions,
are persistent, i.e. once a transaction committed successfully, it is also
backed up to stable storage.

As HTM lingered, much research was done on software transactional
memory (STM) in order to obtain low overhead and scalable synchro-
nization among memory transactions without hardware assistance. Intel’s
first HTM implementation reached the market in 2013. At the same time,
STM was incorporated into the GCC compiler [3, 12].

Latest developments in memory technology (such as phase change
memory, STT-RAM, and memristors) introduce the possibility of NVM

devices that are fast and byte-addressable as DRAM, more power-efficient
than DRAM, yet non-volatile and cheap as HDD. This paper proposes
to provide HTM transactions with fast persistent storage by using NVM
instead of (or in addition to) DRAM while keeping the volatile cache
hierarchy intact.

The remainder of this paper is organized as follows. We conclude the
Introduction section by reviewing related work. Section 2 introduces the
model and terminology of PHTM. Section 3 defines the PHTM imple-
mentation, and explains the correctness of PHTM. Section 4 evaluates
PHTM performance, and Section 5 concludes and discusses future work.

1.1 Related Work

Coburn et al. [5] suggested NV-Heaps, a software transactional memory
(STM) that works correctly with NVM. The basic idea follows DSTM [9],
in which transactional objects are stored in NVM. A transactional object
can be opened for writing, and then the STM transaction, T, copies it to
an undo log, and locks it. T maintains a volatile read log and a non-volatile
undo log for each transaction. If a system failure occurs, T is aborted and
the undo log, which is persistent, is used to reverse the changes of T.

While NV-Heaps is object-based, the Mnemosyne STM [13], which
was published at the same time, is word-based and is derived from TinySTM
[8]. However, the ideas behind these algorithms, i.e. nonvolatile undo log
and a volatile read log, are identical.

While correct and feasible, the software-based methods exhibit poor
performance due to bookkeeping overhead and locking serialization. Thus,
some database implementations [14, 11] use HTM for synchronization.
However, these databases still use HDDs for persistence.

PMFS [7] uses NVM for storage of a file system and [6] uses NVM
for persistence in an OLTP database. PMFS does use HTM, but only for
very specific purposes of managing file system metadata.

This paper introduces the combination of NVM and HTM for the
purpose of transaction processing. Our contribution is the presentation
of a concrete implementation that provides full ACID semantics to trans-
actions. We emulate this implementation and compare its performance to
other approaches using STM, HTM, and NVM.

2 Persistent HTM

The imminent availability of mature Non-Volatile RAM (NVM) technol-
ogy is bound to disrupt the way transactional systems are built. NVM
devices are fast and byte-addressable as DRAM, more power-efficient
than DRAM, yet non-volatile and cheap as HDD. Therefore, NVRAM
will obliterate the traditional multi-tier memory hierarchy that is funda-
mental to the durability guarantees of ACID transactions. In this foreseen
situation, maintaining invalid states in main memory can render a system
crash unrecoverable. Therefore, a fresh and careful approach is required in
the design of persistence and recovery after a crash (Restart) schemes that
would harness the benefits of NVM. In the sequel, we use the following
terms:

– HTM: A synchronization mechanism that commits transactions atom-
ically, and maintains isolation. Once an HTM transaction T commits,
all its newly modified data is in volatile cache.

– An HTM transaction Tk: A transaction executed by a processing
core Pk.

– NVM: nonvolatile, byte addressable, writable memory.
– Restart: The task of a restart is to bring the data to a consistent

state, removing effects of uncommitted transactions and applying the
missing effects of the committed ones.

The hardware model investigated here includes unlimited NVM, many
cores and no disk. All NVM is cacheable and caches are volatile and
coherent. The system includes limited size DRAM. Finally, we use the
term Persistent HTM (PHTM) to refer to the notion of existing HTM
realizations, with the minimal necessary hardware and software adjust-
ments needed for the incorporation of NVM. The PHTM system includes
software and hardware.

2.1 Problem Definition

A difficulty arises when NVM persistency meets the growing number of
cores on modern hardware. On the one hand, as data is in NVM, it is
unnecessary to allocate another persistent storage for it, which reduces
persistency overhead. On the other hand, as an address is written, the new
value must be exposed atomically with a new consistent and persistent
state. One alternative for guaranteeing this atomicity is by means of locks.
With the ever growing number of cores, locking will introduce bottlenecks.
A method to achieve atomicity without locking is HTM, but HTM cannot

access physical memory. The problem is to close the gap between HTM
and NVM and allow an application to maintain consistent and persistent
states in NVM without locking and without duplicating the data.

2.2 Data Store Flow

The state of a data item x (an addressable word), which is written by
an HTM transaction T, is specified as follows (see Figure 1). Note that x
may be cached in the volatile cache or reside only in the NVM (just like
any other addressable word):

1. Private / Shared: Private means x is only in the L1 cache of one
thread, and is not visible to other threads. When x is Shared, the
cache coherency makes its new value visible.

2. Persistent / Volatile: Persistent means that the last write of x is
in NVM, otherwise, the new value of x is Volatile in cache and will
disappear on a power failure.

3. Logged / Clear: When x is Logged, a restart will recover x from
non-volatile log. If x is Clear, the restart will not touch x, since its
log record has been finalized or its transaction aborted.

Notice that although Figure 1 illustrates the state machine of a single
write in a PHTM transaction, the Logged state should be for the entire
transaction. That is, turning all writes of a single transaction from clear
to logged requires a single persistent write. In a PHTM commit, all writes
are exposed by the HTM and are simultaneously logged. Each write must
generate a persistent log record, but until a successful commit, the write
is not logged in the sense that it will not be replayed by a restart process.

When the HTM transaction Tk writes to a variable x, x is marked as
transactional in the L1 cache of Pk and is private, i.e., exclusively in the
cache of Pk. It is volatile, as it is only in cache, and clear, i.e. not logged,
as the transaction is not yet committed. Upon an abort or a power failure,
the volatile private value of x will be discarded and it will revert to its
previous shared and persistent value.

In the PHTM commit, the state of x changes twice. It becomes shared,
i.e. visible and at the same time it is also logged. Both changes must
happen atomically in a successful commit. After a successful commit, the
PHTM flushes the new value of x transparently to NVM and clears x. If
there is a system failure and restart when x is logged, the recovery process
uses the log record of x to write the committed value of x and then clears
x.

It is important to observe that the log in NVM is not a typical se-
quential log. Instead, it holds unordered log records only for transactions
that are either in-flight or are committed and their log records have not
been recycled yet.

3 PHTM Implementation

Shared, Persistent, Clear

Private, Volatile, Clear

Shared, Volatile, Logged

Shared, Persistent, Logged

Logged

Write in an
HTM transaction

HTM Commit

Flush to NVM

Failure +
Restart

Recycle Log
Record

Abort /
 Failure + Restart

Replay Log and
Flush to NVM

Failure +
Restart

Fig. 1: State machine for a persistent trans-
actional variable

If the L1 cache was non-
volatile, HTM would be
persistent as is without
any further modifications.
A restart event could abort
the in-flight transactions,
and a committed HTM
transaction, while in the
cache, would be instantly
persistent and not require
any logging. However, due
to hardware limitations,
e.g. fast wear out and
slow writes of NVM, the
cache hierarchy will stay in
volatile SRAM in the fore-
seeable future.

3.1 Hardware
ramifications

As shown in Figure 1,
PHTM requires that the
successful commit of the
transaction Tk will atom-
ically set the persistent
commit record of Tk. The
tx end log(Tk) instruction
is added for this purpose. This instruction performs an HTM commit
and sets the commit record of Tk. Figure 2 shows the layout of the per-
sistent footprint of Tk in NVM. It includes the logged indication which
serves as the commit record of Tk. The tx end log(Tk) writes the commit
record in NVM, and in addition sets the status of the writes of Tk to
Logged.

PHTM requires that log records are flushed from cache to NVM
by a live transaction without aborting itself. We call this process the
Finalization of T. In T finalization, after tx end log(T), flushing of the
data written by T from cache to NVM must not abort ongoing concurrent
transactions that read this value. Considering the HTM eager conflict res-
olution, these flushes must not generate any coherency request and for
performance, they should not invalidate the data in the cache. Such op-
erations are designated “transparent flushes” (TF) as they have no effect
of the cache hierarchy and the HTM subsystem.

`

Memory
 (Cache Lines)

PHTM transaction
Persistent Object

map

NVM

DRAM

tx_id

DATA

record_index

map

DATA

size

Log
records

log_marks

logged

Fig. 2: PHTM System

In summary, we define
a new HW-related prim-
itive called Transparent
flush (TF) as follows: If α
is a cached shared memory
address, TF(α) will write
α to physical shared mem-
ory, but will not invalidate
it and will not affect cache
coherency in any way. If
Tk reads α transactionally,
and then Tq, where possi-
bly k 6= q executes TF(α),
Tk will not abort because
of it. The ARM DC CVAC
instruction to clean data
cache by virtual address to
point of coherency [1], and
the cache line write back
(CLWB) instruction from
Intel future architecture [2]
are examples in this direc-
tion.

3.2 Software Details

The API of PHTM is tx start() and tx end() as in a non-persistent, Intel
HTM transaction. tx start() is translated to starting an HTM transac-
tion, while tx end() is translated to flushing the transaction persistent
structure, followed by a tx end log(T) instruction, followed by flushing
of the data itself. The machine store instructions are replaced by the
preprocessor with the tx write() function.

The log records and the size field that appear in the PHTM transac-
tion persistent object (Figure 2) are flushed as part of the transaction, but
not as part of the tx end log(Tk) instruction. However, multiple writes
to the same cache line will write to the same log record. Thus, as an opti-
mization, the log records are flushed only once before commit to prevent
multiple flushes of the same data.

In a system with NVM, it is assumed that the compiler will automati-
cally replace the tx end() with tx finalization(T) (Algorithm 2), and the
store instructions with tx write (Algorithm 1). This type of preprocessing
already exists for GCC STM support. In case a PHTM transaction gets
aborted, all its writes (to volatile memory) are undone automatically, and
the commit record is not set, so there is no overhead.

Fallback The HTM follows a best effort policy, which means it does not
supply a progress guarantee. As a result, after a certain number of aborts
in the standard volatile HTM, the transaction must take a global lock and
commit. However with NVM, a global lock is not enough as the tentative
writes may have already contaminated memory. Therefore, an undo log
entry must be created for every volatile HTM write, or a full redo log
must be created before the first value is written to NVM. The first option
was chosen to avoid read after write overhead.

Scalable Logging and Fast Recovery With volatile cache and com-
mitted HTM transactions that accommodate all their writes in cache, it
is necessary to log the writes in order to allow recovery in case a restart
happened after HTM commit, when the writes were still volatile.

All writes to the log must reach non-volatile memory before an HTM
commit, while all transactional writes stay in the cache. This implies
that the log to NVM needs to be flushed without aborting the executing
transaction. As the log is local, non-transactional stores to write the log
records can be used, and later, a flush is used to write them to NVM. The
flush should be a TF so the log stays in the cache and no transaction is
aborted.

Logging must provide the restart process with the last committed
value for each logged variable x. The two ways to do this with concurrent
transactions is to attach a version to x or to verify that x is logged only
once in the system. If the appearance of x in multiple logs is allowed,
then the latest version of the log of x must be kept. Thus, freeing the
log safely will require communication among the committed transactions,
e.g. barriers. This communication is not scalable. On the other hand,

not freeing the log will require unbounded memory and a longer time for
recovery in restarts.

Instead, each address is allowed to appear at most in one log. To
avoid instances of the same address in multiple logs, a volatile array of
log marks is added in which each memory address is mapped to one mark.
When a transaction is about to write x, it also marks x as logged. Until
x is flushed, no other transaction can write it. The reason marks are used
is to prevent a write to a variable that was already written by another
transaction, but not yet flushed, so it is still logged. All other conflicts
are handled directly by the HTM. The array of marks can be volatile, as
in case of restart it is known that the logged addresses are unique, and
that the restart and recovery process do not create any new log records.
After restart, a new and empty array of marks can be allocated.

The writing of the marks is a part of a transaction, i.e. if Tk writes
x, it also marks x and in committing, the writing and the marking will
take effect simultaneously as they are both transactional writes, while at
abort, they are both canceled. As long as the mark is set, the value of
x, which appears in the log of Tk, cannot be changed. Therefore, after
x is secured in NVM and cleared, the mark is unset. It is important to
emphasize that the transactional load instructions ignore the marks and
execute in full speed, which is a key advantage of PHTM as Reads are
processed in hardware speed.

Write It is assumed there is a map function that extracts the index of
the mark from the address. The map not only performs mapping of every
address to a unique mark, but also maps all the addresses in the same
cache line to the same mark. As cache flushing is in cacheline units, the
log records and the marks are maintained in cacheline granularity.

Algorithm 1 shows the implementation of tx write. It starts by locat-
ing the mark of the address (Line 3). If the mark was already marked by
T (Line 6), T extracts the record index from the mark (Line 7). Oth-
erwise, if the mark is free (Line 10), T sets the mark to point to itself
(Line 11). Next, T allocates a log entry (Lines 12 - 14), which is in the
index currently pointed by the size field. T stores the index in the mark
so later writes to the same line by T will use this index and increment
the size field. Next, T stores the address in the log (Line 15) and since
this is the first access to this cacheline, T stores the original content of
this cacheline (Line 16). The restart will write full cache lines, and thus
the original values of the unwritten parts of the lines need to be kept.

Algorithm 1 PHTM Write Instrumentation

1: function tx write(addr, val, T)
2: id← T.self id
3: m← log marks[map(addr)]
4: . Caddr is the cache line of addr
5: if m.tx id = T.self id then
6: . T already accessed Caddr

7: rec index← m.rec index
8: else
9: if m.tx id = null then

10: . Caddr is not marked
11: m.tx id← id
12: rec index← T.size
13: m.rec index← rec index

14: T.size← T.size + 1
15: T.addr[rec index]← addr
16: T.data[rec index]← Caddr

17: else
18: . Caddr is marked
19: xabort(MARKED)
20: end if
21: end if
22: . log the writing
23: T.data[rec index][offset] = val
24: . Perform the actual writing
25: addr ← val
26: end function

If the address is currently marked by another transaction, T explicitly
aborts with the code MARKED (Line 19). When the abort handler sees
the reason for the abort was MARKED, it will not count this as a conflict
and will not fallback to locking. After acquiring the log mark, the value
is written into the private, logged copy of the cache line (Line 24), and
then it is written to actual memory (Line 25). Writing the marks is done
in transactional mode, so they are added to the transaction size, and may
cause size violation and aborts that do not occur in the standard HTM.

Finalization In Algorithm 2, the code for tx finalize is presented. This
code replaces the HTM xend instruction to commit persistent HTM
transactions. Before committing the HTM transaction, the log, including
its size (Line 3), and data (Lines 6 and 5) are flushed to NVM using TF.
Then the PHTM commits using the new tx end log, and if the commit
was successful it simultaneously sets the logged indication of T (Line 11).
Next, all the cache lines that include data that was written during the
transaction are flushed to NVM (Line 13). After flushing, the data is
persistent, so the log is cleared by writing zero to the log indication and
flushing it to NVM (Line 17). Only after clearing the log can the marks
(line 22) be freed and the size of the log (Line 20) be reset.

3.3 Correctness and Liveness

The correctness and liveness of PHTM are derived from HTM with the
necessary adjustments.

Algorithm 2 PHTM Finalization

1: function tx finalize(T)
2: . Transparently flush the log
3: sz ← T.size
4: for all s < sz do
5: TF (T.addr[s])
6: TF (T.data[s])
7: end for
8: TF (T.size)
9: . HTM commit and log

10: tx end log(T.logged)
11: . Transparently flush data
12: for all s < sz do

13: TF (T.addr[s])
14: end for
15: . Clear log with regular flushes
16: T.logged← 0
17: Flush(T.logged)
18:
19: T.size← 0 . Clear the marks
20: Flush(T.size)
21: for all s < sz do
22: marks[map(addr[s])]← null
23: end for
24: end function

Correctness When power is not interrupted the PHTM is operating
exactly as HTM with the addition of each transaction maintaining private
information about its writes and success. It is left to show that after a
power failure in any point of the execution, the last committed write of
an address is in NVM. If the last committed write is not logged than in
Line 13 of Algorithm 2 it was already flushed to NVM. If it is is logged
than it was marked in Line 3 of Algorithm 1 and it is the only logged
write to the address, so the recovery process will set it in NVM. If the
last write is not successfully committed then it is only in the local volatile
cache of the transaction executor and it will vanish at power down.

Liveness As a PHTM transaction includes an HTM transaction and
HTM has no progress guarantees, PHTM has no progress guarantees
either. However, an HTM transaction cannot delay another concurrent
HTM transaction, while if a PHTM transaction stops before clearing its
marks in Line 22 of Algorithm 2 it can stop a concurrent transaction from
writing the marked address. The mark, which is a writer-writer lock, is
set only from commit to the end the data flush. If a transaction T1 com-
mitted but swapped out before clearing its write-set, it can lockout a
concurrent writer T2. To resolve this situation T2 may clear T1, as the
data is already shared. This help involves communication among trans-
actions so it is technically complicated and breaks the isolation among
transactions. It may also require that the synchronization primitives used
will be persistent.

4 Evaluation

In this section the performance of PHTM is evaluated using an RB-Tree
data structure and a synthetic benchmark. The synthetic benchmark
checks the overheads of PHTM and how it interacts with the size lim-
itation of the HTM.

These tests were executed on an Intel Core i7-4770 3.4 GHz Haswell
processor with 4 cores, each with 2 hyper threads. Each core has private
L1 and L2 caches, whose sizes are 32 KB and 256 KB respectively. There
is also an 8 MB L3 cache shared by all cores. Section 4.1 describes how the
PHTM hardware was emulated, i.e. the NVM and the tx end log instruc-
tion. Section 4.2 explains how a persistent STM for a fair comparison
was emulated and in Section 4.3 some preliminary performance results
are presented.

4.1 Hardware Emulation

Intels Haswell processors feature an HTM facility that is used the exper-
iments. However, NVM and PHTM are still not realized in hardware so
they are emulated for evaluation. We emulate the effects of power failure
in PHTM by leaving the power on and zeroing only the volatile regions,
i.e. the log marks. To emulate the tx end log, the commit record is writ-
ten during the transaction. As this is part of the transaction, the HTM
itself makes the commit record visible simultaneously with a successful
commit. In TF emulation, only the NVM access time is emulated by
inserting a 100 nanosecond delay according to the expected NVM perfor-
mance. The interconnect traffic is not emulated, as this traffic is identical
to the interconnect traffic in the solution compared to, i.e., the persistent
STM.

4.2 Compared Algorithms

PHTM is compared with standard HTM, with an emulation of a persis-
tent software transactional memory (PSTM), and with standard STM
without persistence. The STM is from GCC [3, 12], but in the lowest
optimization level. In order to provide a fair comparison of all 4 algo-
rithms, compiler optimization, which can reduce the number of accesses,
is avoided.

Analagous to PHTM, PSTM implements a redo log in persistent mem-
ory. The overhead of writes in PSTM is one flush of the log entry before
commit and one flush of the data after commit, so it is comparable to

PHTM. PSTM is based on Mnemosyne [13], but with few adjustments.
A redo log and in-place writing was chosen to be implemented in order to
avoid huge read after write penalties. PHTMs advantage over STM con-
cerns the processor speed loads. For a fair comparison, the PSTM loads
should be as fast as possible in order to challenge the PHTM.

The shortcomings of PSTM concern its STM nature, i.e. the overhead
associated with instructions instrumentation, locking and versioning. The
problems of PHTM concern its HTM origin, i.e. limited transaction size
and sensitivity to contention.

4.3 Benchmarks

PHTM performance is evaluated without contention on a synthetic array
benchmark. It is then tested on an RB-Tree to see its performance under
contention. The algorithms checked include HTM, PHTM, STM and
PSTM. In the graphs, the HTM-CAP and PHTM-CAP lines are
added to count the number of HTM capacity aborts and the HTM-
CON and PHTM-CON lines are added to count the number of conflict
aborts in some of the graphs. Aborts are counted in operations per second
that where aborted. A conflict abort is retried 20 times before taking a
global lock, but a capacity abort is not retried and locks immediately, as
a retry has low chance for success.

Array workloads In this workload all transactions have the same num-
ber of accesses in order to make their execution time comparable. The
tests access a set of consecutive memory addresses, so the cache is filled
with no fragmentation. Each accessed address is in a separate cache line.

Read-Only: First, the performance of PHTM on a read-only workload
is observed. This is the best case for PHTM, as a PHTM load is in proces-
sor speed. In Figure 3a, every transaction performs 512 load instructions
cyclically to various numbers of consecutive cache lines. It can be seen
that as long as HTM capacity limit is avoided, PHTM and HTM perform
the same and outperform STM and PSTM by an order of magnitude.
The tests in Figure 3a execute on all 8 hardware threads. There is hyper
threading and the cache size of each thread is half as that which is on
a core, i.e. 16KB or 256 cache lines of 64 bytes, so when the access set
size is 512 all HTM and PHTM transactions violate capacity limitation
and abort. At this point, HTM and PHTM performance becomes equal
to STM as it uses the fallback. As expected STM and PSTM perform
equivalently.

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 128 256 512

M
 o

ps
 /

se
c

of Read Cache Lines

Array, Read Only, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CAP
PHTM-CAP

(a) Array - Read only

 0

 10

 20

 30

 40

 50

 60

5 10 15 20 25 30 35 40 45 50

M
 o

ps
 /

se
c

Inserts % / Delets %

RB-Tree, Various Updates, 1K Nodes, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CON
HTM-CAP

PHTM-CON
PHTM-CAP

(b) RB - 1K Nodes

 0

 0.5

 1

 1.5

 2
 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8 16 32 64 128 256 512

M
 o

ps
 /

se
c

of Written Cache Lines

Array, Increments, No Conflicts, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CAP
PHTM-CAP

(c) Array - Write Only

 0

 1

 2

 3

 4

 5

 6

 7

 8

5 10 15 20 25 30 35 40 45 50

M
 o

ps
 /

se
c

Inserts % / Delets %

RB-Tree, Various Updates, 1M Nodes, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CON
HTM-CAP

PHTM-CON
PHTM-CAP

(d) RB 100K Nodes

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

M
 o

ps
 /

se
c

Reads out of 10 Accesses

Array, Read-Write, 8 Threads

PHTM
STM

PSTM

(e) Array - Read and Write Mix

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5 10 15 20 25 30 35 40 45 50

M
 o

ps
 /

se
c

Inserts % / Delets %

2 X RB-Tree, Various Updates, 1M Nodes, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CON
HTM-CAP

PHTM-CON
PHTM-CAP

(f) RB - 1M Nodes

Fig. 3: Synthetic array and a red-black tree benchmarks

Write-Only: In this test, the performance of PHTM writes is exam-
ined. The benchmark in Figure 3c is very similar to the one in Figure 3a.
Every transaction performs 512 store instructions cyclically to various
numbers of consecutive cache lines.

It is observed that as the number of accessed cache lines increases, the
HTM performance is not affected but the PHTM approaches the perfor-
mance of PSTM because the flushes to NVM dominate the performance.
It must be emphasized that the PHTM and PSTM only flush a cache line
once in a transaction even if they write the line multiple times. Therefore
if the transaction accesses only one cache line, it will write the same cache
line 512 times but flush only twice - one flush for the data after commit,
and one for the log before commit. This overhead can be mitigated if the
TF is made non-blocking.

When the HTM and PHTM transactions start reaching the capacity
limitation, they execute with a global lock which dramatically reduces
their performance and prevents scaling. PHTM reaches the capacity lim-
itation well before standard HTM. This is because PHTM writes a log
entry for every write, so it accesses a larger amount of memory. In ad-
dition, the log entries are not in continuous memory, so they can violate
the cache associativity even before the cache is full. Note that in a real
implementation non-transactional store instructions could be used for
the log and avoid an increase the transactional footprint.

Read-Write Mix: This test checks how the proportion of transactional
load instruction vs. the number of transactional store instructions af-
fects the performance of PHTM compared to STM and PSTM when the
capacity aborts issue is eliminated, i.e. in small transactions.

In Figure 3e, every transaction performs 10 accesses of 10 separated
cache lines with various number of writes. HTM is not shown in because
it performs a read and a write approximately in the same speed. Figure 3e
illustrates that until the read-only part reaches 80%, STM is faster than
PHTM. However, when the portion of read-only instructions reaches 90%,
PHTM is already double the performance of STM. As seen in Figure 3a,
when the portion reaches 100%, PHTM is 12 times faster than STM.

RB-Tree workloads To evaluate the PHTM in the face of contention,
an RB-Tree benchmark is used. All transactions access a tree with random
keys to insert, delete or lookup. The workloads executed run on 8 cores
with a fixed keys-range size and vary the amount of updates from 10%
to 100%. Each tree starts half full and the number of inserts equals the
number of deletes to preserve the tree size.

The first set of tests is performed on a small 1K nodes tree. As seen
in Figure 3b there are no capacity aborts in HTM and PHTM. Conflict
aborts rise but the scalability is comparable to STM. In this test PHTM
is about 6 times faster than PSTM. The second set of tests in Figure
3d is executed on a 1M tree, and we can see that capacity aborts are
visible, but low. As a result, PHTM is only 40% faster than PSTM. Still
the scalability is the same even though conflict aborts are high, which
suggests STM also experiences similar aborts rate. To further increase the
capacity challenge, we execute transactions that do the same operation
on two 1M trees atomically. As seen in Figure 3f, the capacity aborts rises
and PHTM performance drops to PSTM.

As expected, capacity limitation is the worst problem of HTM as it
forces transactions to serialize, and the big obstacle to PHTM perfor-
mance is capacity aborts which it inherits from HTM. In each of the per-
formed tests PHTM keeps a constant difference from HTM (and PSTM
from STM) throughout the contention levels. The difference is due to the
portion of writes in the workload. The smaller the tree, less time is spent
on traversing it, so the relative part of writing grows, and the persistent
algorithm overhead increases.

5 Conclusion

Future generations of systems are expected to accommodate thousands
of cores and petabytes of NVM. Lock based synchronization, as well as
traditional log-based persistence will introduce unacceptable overhead in
those systems. PHTM is a first step towards ACID transactions that avoid
locking and provide persistence in a way that is specialized to NVM. Pre-
liminary experiments show PHTM is 12x faster than its persistent STM
counterpart on read-dominant workloads. When contention exists, it is
still 6x faster, and when the capacity limit is hit, PHTM falls back to a
software-based approach and then its performance equals the performance
persistent STM. These performance advantages stem from the fact that
PHTM avoids all locking in the reader path and its commit is instanta-
neously visible. PHTM presents a concept that should serve as a blueprint
for possible realizations that would evolve with the availability of mature
NVM technology. Once the HW model we used will be instantiated as
a concrete system, further optimizations might be needed. Moreover, we
expect that the current limitations of HTM technology will be alleviated
and then the applicability of the PHTM scheme can be extended.

References

1. Arm architecture reference manual for armv8-a architecture profile.
https://silver.arm.com/download/ARM and AMBA Architecture/AR150-DA-
70000-r0p0-00bet6/DDI0487A e armv8 arm.pdf.

2. Intel architecture instruction set extensions programming reference.
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf.

3. Tm support in the gnu compiler collection.
http://gcc.gnu.org/wiki/TransactionalMemory.

4. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

5. Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. Nv-heaps: Making persistent objects fast and
safe with next-generation, non-volatile memories. In Proceedings of the Sixteenth
International Conference, ASPLOS XVI, pages 105–118, New York, NY, USA,
2011. ACM.

6. Justin DeBrabant, Joy Arulraj, Andrew Pavlo, Michael Stonebraker, Stan Zdonik,
and Subramanya Dulloor. A prolegomenon on oltp database systems for non-
volatile memory. In ADMS@VLDB, 2014.

7. Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 15:1–15:15, New York, NY, USA, 2014. ACM.

8. Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 237–246. ACM, 2008.

9. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of
the Twenty-second Annual Symposium on Principles of Distributed Computing,
PODC ’03, pages 92–101, New York, NY, USA, 2003. ACM.

10. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, pages 289–300, New York, NY,
USA, 1993. ACM.

11. Viktor Leis, Alfons Kemper, and Thomas Neumann. Exploiting hardware transac-
tional memory in main-memory databases. In IEEE 30th International Conference
on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,
pages 580–591, 2014.

12. Torvald Riegel. Software Transactional Memory Building Blocks. PhD thesis,
Technische Universität Dresden, Dresden, 01062 Dresden, Germany, 2013.

13. Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight
persistent memory. SIGPLAN Not., 47(4):91–104, March 2011.

14. Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. Using restricted trans-
actional memory to build a scalable in-memory database. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, pages 26:1–26:15,
New York, NY, USA, 2014. ACM.

