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Abstract Inverse parametric linear/quadratic programming has recently received in-
creasing attention due to its promising relevance in constrained control design for
linear systems. Its aim is to construct an appropriate optimization problem composed
of a set of linear constraints and a cost function such that the optimal solution to such
a problem, is equivalent to the given continuous piecewise affine function defined
over a polyhedral partition. This paper introduces a constructive procedure to find
this formulation. The main idea is based on convex lifting. Accordingly, an algorithm
to construct convex liftings of a given convexly liftable partition will be put forward.
Following this idea, an important result will be presented in this article: any contin-
uous piecewise affine function defined over a polytopic partition is the solution of a
parametric linear/quadratic programming problem. Furthermore, this convex lifting
based method requires at most one supplementary scalar variable. In view of linear
model predictive control, it will be shown that any continuous piecewise affine con-
trol law can be obtained via a reformulated linear model predictive control problem
with the control horizon at most equal to 2 prediction steps.
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1 Introduction

Parametric convex programming (PCP) has attracted significant attention from the
control community due to its interesting applications in model predictive control
(MPC). A parametric convex programming problem, characterized by a set of linear
constraints and a linear/quadratic cost function, is called a parametric linear/quadratic
programming problem. It is already known that optimal solution of such a linear/quadratic
programming problem is a piecewise affine (PWA) function defined over a polyhedral
partition of the parameter space. In control theory, this structure of control laws ap-
peared in the last decade as an approximation of the classical nonlinear control laws
with respect to a predefined error [1-4]. Then, it is shown that this PWA structure
is inherited by the exact optimal solution of a linear MPC problem with respect to a
linear/quadratic cost function [5-10].

Inverse parametric linear/quadratic programming aims to construct a linear con-
straint set and a linear/quadratic cost function such that the optimal solution of their
associated optimization problem is equivalent to a given PWA function, defined over
a given polyhedral partition. This inverse optimality problem has been investigated
for some years and has resulted in interesting results for the general nonlinear con-
tinuous functions [11] and recently for continuous PWA functions [12, 13].

The authors in [11] proved that every continuous feedback law can be obtained by
PCP. This is an insightful mathematical result; however, it remains pure theoretical;
neither a constructive procedure nor a qualitative interpretation of the dimension of
the optimization arguments is provided. The present work is motivated by a comment
therein: A natural question that can arise from this note would be to particularize our
results to piecewise linear controllers: can any continuous piecewise linear feedback
law be obtained by parametric linear programming ? The answer is positive and one
solution to such an inverse optimality problem is recently found in [12] wherein an
indirect solution, built upon a decomposition of a continuous PWA function into the
difference of two continuous convex functions, is introduced.

In this paper, we present the results obtained using a different approach: the con-
vex lifting approach. It will be proved that the proposed method can recover the given
PWA function with at most one supplementary 1—dimensional variable. The major
contributions in this direction are: 1) the introduction of the convex lifting concept
for use in the inverse optimality problem; 2) the convex liftability related condition
for the existence of a solution of the inverse optimality problem; 3) a constructive
procedure based on convex liftings for obtaining a solution of the inverse optimality
problem.

The most important result related to Model Predictive Control can be stated as
follows: any continuous piecewise affine control law can be recovered via a linear
model predictive control problem with a control horizon at most equal to 2 predic-
tion steps. The key concept used in the developments: the lifting can be defined as an
inverse operation of orthogonal projection. As underlined by its definition, this oper-
ation allows lifting of a given partition onto a higher dimensional space. In particular,
a so-called convex lifting of a given partition in R? amounts to a convex surface in
R+ such that

— each pair of neighboring regions are lifted onto two distinct hyperplanes and
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— its image via the orthogonal projection onto R? coincides with the given partition.

It is worth reminding that the lifting notion was introduced for the first time in
Maxwell’s research publications e.g. [14] some 150 years ago. Later, a plethora of
studies were dedicated for the existence conditions of such a convex lifting for a given
partition [15-21]. However, most of these results are difficult to apply in numerical
methods such as those usually employed in linear control design. Therefore, control
theory needs a systematic approach for the use of a lifting procedure in the inverse
optimality problem. This aspect will be discussed in details in this paper.

2 Notation and Definitions

R, R, N5 denote the field of real numbers, the nonnegative real numbers set and
the positive integer set, respectively. The following index set is also defined for ease
of presentation, with a given N € Ny o: Zy = {i € Nyo | i < N}

A polyhedron is defined as the intersection of finite number of closed halfspaces.
A polytope is defined as a bounded polyhedron. Given a full dimensional polytope S,
then V(&) denotes the set of its vertices, int(S) denotes its interior. dim(S) stands for
the dimension of the affine hull of S. conv(S) denotes the convex hull of a given set
S.If S is an arbitrary set in R? and S is a subspace of R?, then Proj ¢ S represents the
orthogonal projection of S onto the space S. Further, if S C R? is a full dimensional
polyhedron, a face of S is the intersection of S and one of its supporting hyperplanes.
k—face represents a face of dimension k. A O—face is called a vertex, an 1—face is
called an edge, a (d — 1)—face is called a facet. Particularly, (}, S are called improper
faces of polyhedron S. F(S) denotes the set of all facets of the polyhedron S.

For a given d € N5, 04 denotes a vector of dimension d whose elements are
equal to 0. Similarly, 0,,x, denotes a matrix in R™*"™ composed of the elements
equal to 0.

Let us recall also some useful definitions.

Definition 1 A collection of N € N full-dimensional polyhedra X; C R?, de-
noted by {X;},.7, , is called a polyhedral partition of a polyhedron X C R? if:

L X =Uez, A

2. int(X;) Nint(X;) = 0 with i # 4, (i,]) € Z%.

(X;, X;) are called neighbours if (i, j) € Z%,, ¢ # j and dim(X; N X;) = d — 1. Also,
if A is a compact set then {X}, 7 is called polytopic partition.

The definition of a cell complex was presented by Griinbaum in [22]. For simplicity, a
cell complex, in this paper, should be understood as a polyhedral partition whose face-
to-face property is fulfilled i.e. any pair of regions share a common face (recall that
() is also a face of a polyhedron). Accordingly, a polyhedral partition of a polyhedron
is a cell complex if any pair of neighboring regions share a common facet.

Definition 2 For a given polyhedral partition {X;}, ez, Of a polyhedron X' C R%, a
piecewise affine lifting is described by function z : X — R with:

z(x) = AiTJ; +a; foranyx € X, (D
and A; € Rd, a; € R, Vi € In.
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Definition 3 Given a polyhedral partition {Xi}iezN of a polyhedron X C R?, a
piecewise affine lifting: z(x) = ATx + a; forz € A;, is called convex piecewise
affine lifting if the following conditions hold true:

— z(z) is continuous over X,
- foreachi € Iy, z(z) > AJTx +ajforalle € X;\X; andall j # ¢, j € L.

The second condition in the above definition implies that z(z) is a convex function
defined over X'. Moreover, the strict inequalities ensure that any pair of neighboring
regions are lifted onto two distinct hyperplanes.

For ease of presentation, a slight abuse of notation is used in this paper: a convex
lifting is understood as a convex piecewise affine lifting. From the above definition, if
a polyhedral partition {X;}, 7 admits a convex lifting, then {X;}, ;  has to be a
cell complex. This observation is stated by the following proposition.

Proposition 1 A polyhedral partition of a polyhedron which admits a convex lifting,
is a cell complex.

Proof: Suppose the given polyhedral partition {Xi}iGIN of a polyhedron X C R,
which admits a convex lifting, is not a cell complex. Let z(z) = ATz + a; forz €
X; denote this convex lifting of {X},.7 . Then there exists a pair of neighboring
regions, denoted by X, X;, whose facet-to-facet property is not fulfilled.

According to the definition of convex liftings, the hyperplane denoted by H,
containing &; N X, can be described by

’Hoz{xeRﬂAiTa?-i-ai:Aij—i-aj}.

Also, due to the non-satisfaction of the facet-to-facet property, there exists a point,
denoted by ¢, such that xg € Ho N &; but zy ¢ A (an illustration can be found
in Fig.1). zg € Mo implies A] zo + a; = AJ 2o + a;. On the other hand, zy €
X, xo ¢ X; lead to ATzo +a; > A]Txo + a;. These two last inclusions are clearly
contradictory. Therefore, the partition { X}, has to be a cell complex. O

According to this proposition, a convex lifting is always defined over a cell com-
plex. However, the cell complex characterization of {&;}, ez, 18 the necessary con-
dition, but not a sufficient condition for the existence of a convex lifting.

Definition 4 A given cell complex {X;} in R? has an affinely equivalent poly-

i€IN
hedron if there exists a polyhedron X C R4+ such that for each i € Ty :
1. 3F; € F(X) satisfying: Projga F; = X;,

2. if z(z) = minz st [27 Z]T € X, then [z7 g(x)]T € F;forx € X;.

An illustration can be found in Fig.2 where a cell complex in R consists of the mul-
ticolored segments along the horizontal axis. One of its affinely equivalent polyhedra
in R? is the pink shaded region. Moreover, the lower facets of this polytope are an
illustration of the facets F; appearing in the definition.

Notice that given a cell complex {X;}, 7 of a polyhedron X' C R?, affinely

equivalent to a polyhedron X c R+ if ~ denotes the last coordinate of X such that
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Fig. 2: An illustration of affinely equiva-

Fig. 1: An illustration for Proposition 1.
lent polyhedron.

[a:T z] r cX , then {X;} ieTn is nothing other than the cell complex, associated with
the optimal solution to the following parametric linear programming problem:

z*(z) = min 2 subject to [z” z]T €X.

Also, z*(x) represents a convex lifting for this cell complex.

3 Problem statement
3.1 Parametric linear/quadratic programming problems

It is already known (see [5—9]) that a parametric linear/quadratic programming prob-
lem is defined as follows with respect to d,., dy € N<g:

mUin fU,z) subjectto: GU <W + Ex, )

where z € R% represents the parameter vector, U € R represents the decision
variable, and f(U,z) represents a linear/quadratic cost function in U and z. The
above problem has a continuous solution denoted as U*(x) (see [23] and Theorem 4
in [5]), known to be a piecewise affine function defined over a polyhedral partition
{X:}, 1, Of the parameter space denoted as X', as a polyhedron:

U*(z) = fowa(x) = Fix + Gy, Yz € X, 3)

Notice that the optimal solution to a parametric quadratic programming problem is
unique [5] in case f(U,x) along U is strictly convex. It is already known that this
uniqueness may no longer be preserved in case of a parametric linear programming
problem. However, a continuous selection of optimal solution to such a linear prob-
lem is shown in [23] to exist.

Conversely, given a continuous PWA function defined over a polyhedral partition,
the question is whether there exists an optimization problem such that its optimal so-
lution is equivalent to the given PWA function. The answer is shown in [11] to be
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affirmative, although the numerical construction of such an optimization problem is
still open. A possible candidate for this optimization problem may be characterized
by a linear/quadratic cost function and a set of linear constraints. For the moment,
the definition of an inverse parametric linear/quadratic programming problem is in-
troduced.

3.2 Inverse parametric linear/quadratic programming problems

From the mathematical point of view, an inverse parametric linear/quadratic program-
ming problem intends to reconstruct an appropriate optimization problem with re-
spect to a given continuous piecewise affine function u(x) = fpuq (), defined over
a given polyhedral partition {X;} iezy Of the parameter space X' C R% , such that
the optimal solution of this reconstructed problem is equivalent' to the given PWA
function f,,q(x). This problem can be briefly stated as follows:
Problem statement: For a given polyhedral partition {X;}, ez, Of the parameter space
X C R%  associated with a continuous PWA function fpwa(x) + X — R, find a
linear/quadratic cost function J(z, z, u) and matrices H,, H,, H,, K such that:
fpwa(x) = Proj ga, arg [ miTI]lT J(x,z,u) st Hpax+Hz+ Hu< K. (4)
zZu
As mentioned before, the convex-lifting based solution to such an inverse optimality
problem is presented next. A definition of invertibility needs to be introduced in order
to establish the working assumption of this convex lifting based method.

Definition 5 A continuous PWA function defined over a polyhedral partition is called
invertible if there exists an appropriate constraint set and a cost function such that
their associated parametric convex programming problem admits the given continu-
ous PWA function as its optimal solution.

4 A constructive convex lifting based approach for inverse parametric
linear/quadratic programming

4.1 Existing results on convex liftings

Many studies dedicated to the existence of convex liftings for the cell complexes in
R?, were investigated in [14—16, 20]. These results were then generalized to the cell
complexes in the general dimensional space R¢ through different studies e.g. in [19].
It is shown therein that there exists a convex lifting for a cell complex in R? if and
only if one of the followings holds:

— it admits a strictly positive d—stress,
— it is an additively weighted Dirichlet-Voronoi diagram,

! The equivalence hereafter means that the boundary between two regions of the parameter space par-
tition corresponding to two different affine functions, is preserved and a subdivision or refinement of the
regions corresponding to the same affine function is admissible.
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— it is an additively weighted Delaunay decomposition,
— it is the section of a (d + 1)-dimensional Dirichlet-Voronoi partition?.

The above results cover the general class of cell complexes in R?. Unfortunately, de-
spite the mathematical completeness of the existing results, the verification of these
conditions are expensive. Furthermore, they do not provide any hint for the con-
struction of a convex lifting. The next subsection presents such a construction in the
general case of cell complexes.

4.2 A construction of convex liftings

In this subsection, the main objective is to present an algorithm for the construction
of a convex lifting for a given cell complex via linear/quadratic programming. This
algorithm exploits the continuity and the convexity of neighboring regions. Note that
we restrict our attention in this article to the polytopic partitions. Construction of
convex liftings for cell complexes of an unbounded polyhedron can be found in [27].

Suppose we want to lift a given cell complex {X;} ez Of apolytope X' C R,
Let X C R be one of its affinely equivalent polyhedra. For each region X, 7 €
ZIn, the hyperplane, containing the lower facet of X whose orthogonal projection
onto R? coincides with X, has the following form:

Hi={[z" 2]  €R™ |z =ATo+a;, A €RL G €RY. (5)

Let (i,7) € Z% be an index pair such that (X;, X;) are neighbors. The continuity
conditions between them are described as follows:

Vo e X;NAX;, i #j, zi(z) = z(2). (6)
Moreover, the convexity conditions between them can be handled as:

Algorithm 1 summarizes the constructive procedure which allows for the computa-
tion of the gains (4, a;), Vi € Iy of a convex lifting. The following theorem serves
as an explanation of this algorithm.

Theorem 1 If the optimization problem (10) is feasible, then the function z(x) =

ATz +a; for © € X; represents a convex lifting for the given cell complex {Xi}iezN .

Proof: If the optimization problem (10) is feasible, then the continuity conditions

on the function z(x) and the convexity conditions of its epigraph are all fulfilled.
Accordingly, for two neighboring regions (X;, X;), it follows that:

Agpx—i—ai :A?x+aj forall x € &; N A&, an
AZT.I‘ +a; > A?x—!—aj +c > Afx +a; forall z € X)\X;.

2 Other related results can be found in Konstantin Rybnikov’s thesis [19], equally in [18,24-26]. Note
that an additively weighted Dirichlet-Voronoi partition is in fact a generalization of a power diagram.
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Algorithm 1 An algorithm for construction of a convex lifting for a given cell com-

plex {X;};c7, of apolytope X' C R4

Input: {Xi}z‘eIN

Output: (A;, a;), Vi € Iy, an affinely equivalent polyhedron X C R9+1,
1: Register all pairs of neighboring regions in {X; }

and a given constant ¢ > 0.

2: For each pair of neighboring regions (X;, X}), (Lz,e?)ve 73
- Add continuity conditions Vv € V(&; N X;):
AlTv+a¢ = AJTv+aj. ®)
- Add convexity conditions Yu € V(X;),u ¢ V(X;):
AZTu-‘,-ai > Afu+aj +c. )
3: Solve the following convex optimization problem by minimizing a chosen cost function e.g.

N
min > (AT A; + a] a;) subjectto (8),(9). 10)
=1

iy Qg
7

4: Construct an affinely equivalent polyhedron

~ T
X = conv { [vT z(v)] ERM™ [ve | V(X), 2(v) = ATv+a; if ve Xi} .
€N

The same inclusion holds for the other pairs of neighboring regions. This leads to the
continuity of z(z) and for each i € Ty :

Alz+a; > AJx+a; forall z € X\X;, Vj #i, j € Iy. (12)

Therefore, function z(z) = ATz +a; forx € X; is a convex lifting defined over the
cell complex {X;};.7 ., as defined in Definition 3. O

Note that the cost function chosen in (10) aims to avoid the unboundedness of op-
timal solution. Other choices of this cost function are possible as long as the bound-
edness of optimal solution is guaranteed. Also, as seen in (9), the strict convexity
condition (7) can be easily transformed into inequality constraints in an optimization
problem by adding a positive constant c on the right-hand side of (9), thus > can be
replaced with > . Theoretically, if the given cell complex is convexly liftable, then
any choice of this positive constant does not have any effect on the feasibility of the
optimization problem (10). Since, (8) and (9) amount to

(@A) v + (aa;) = (@A) v + (aaj) for v € V(XN A))

(@A) u+ (aa;) > (ad))Tu+ (aa;) + ac for u e V(Xi),u ¢ V(X;).
In other words, /() = (aA;)Tz 4 (aas) for z € X; also represents a convex lifting
of cell complex {X;}, ez, Which may be resulted from Algorithm 1 with a given con-
stant acc. Therefore, the optimization problem (10) is still feasible with the constant
ac > 0. Accordingly, the feasibility of the optimization problem (10) can serve as
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Fig. 3: A cell complex in R? and one of its affinely equivalent polyhedra in R3.

another necessary and sufficient condition for the existence of a convex lifting of a
given cell complex. Furthermore, according to Proposition 1, the optimization prob-
lem (10) is infeasible for the polytopic partitions of polytopes whose facet-to-facet
property is not fulfilled.

To illustrate Algorithm 1, a cell complex in R? is presented in Fig.3. One of its
affinely equivalent polyhedra is the shaded polytope with the lower facets multicol-
ored.

4.3 Non-convexly liftable polyhedral partitions

It is already known that the parameter partition, associated with optimal solution
to a parametric quadratic programming problem, may not be a cell complex but a
polyhedral partition. This case usually takes place in linear model predictive control
problems with respect to quadratic cost functions. Therefore, to solve the inverse
optimality problem via convex liftings, it is necessary to treat such singular partitions
in order that their convex liftability is retrieved. It is shown in [21] that any polyhedral
partition can be subdivided into a convexly liftable partition provided its internal
boundaries are still preserved. This result is recalled here for completeness.

Theorem 2 Given a non-convexly liftable polyhedral partition {X;}, ez Of a poly-
hedron X C R% there exists at least one subdivision, preserving the internal bound-
aries of this partition, such that the new cell complex is convexly liftable.

Interested readers can find details about the proof in [21]. According to its proof, the
hyperplane arrangement technique can be of use to carry out this goal. Practically,
hyperplane arrangement is only one way to show the existence of modifications for
the given non-convexly liftable polyhedral partition into a convexly liftable cell com-
plex. In control theory, such a modification can increase the complexity of PWA
control laws in the implementation. Therefore, such a complete refinement may not
be necessary in practical applications. Many different refinement techniques exist.



10 N. A. Nguyen et al.

We refer to [28] for an alternative technique for a class of particular cases in control
theory.

5 Solution to inverse parametric linear/quadratic programming problems

The definition of an inverse parametric linear/quadratic programming problem has
been introduced in Subsection 3.2. The solution to such inverse optimality problems
is built in this paper upon the convex lifting approach. For the moment, some regular-
ity assumptions need to be stated to make the present approach reasonable from the
construction point of view. These assumptions are stated with respect to the notations
in Subsection 3.2.

Assumption 3 The parametric linear/quadratic programming problems are exclu-
sively considered as possible candidates for solutions to the inverse optimality prob-
lem. As a consequence, the cost function has the following form:

x x
J(@,z,u)=[z" 24" Q | 2| +CT | 2|,
u U
with positive semidefinite matrix QT = Q > 0.
Assumption 4 The polytopic partition {X;} ieTy » associated with a given continu-

ous PWA function, is convexly liftable.

Assumption 5 The parameter space X = | J, ezy Vi is a polytope.
Note that Assumption 3 provides a manageable framework for the constructive in-
verse optimality procedures. Larger classes of objective functions can provide more
degrees of freedom, but the linearity of such parametric convex programming prob-
lems is lost. Assumption 5 restricts the inverse optimality problem to bounded fea-
sible region given by a polytope. Since, linear constraints are exclusively of interest.
Also, the construction presented below can be easily extended to polyhedral partitions
of polyhedra, see [27]. Assumption 4 is not restrictive, since the convex liftability of
the given polytopic partition can be enforced by refinement procedures according to
Theorem 2. Note also that in the scope of this paper, we restrict our attention to the
class of continuous PWA functions. It will be shown that due to this continuity prop-
erty, the optimal solution to the recovered optimization problem is unique. Inverse
optimality for the class of discontinuous PWA functions is studied in [29]. In this
case, it is however shown that the uniqueness of optimal solution to the recovered
optimization problem is lost.

The following intermediate result is necessary for the development of a construc-
tive solution of the inverse optimality problem.
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Proposition 2 Let I, C R% be a polytope with the set of vertices V(I's) = {3(1), ., 8@ }.
For any finite set of points {t(l), e ,t(q)} C R defining a full-dimensional poly-
tope in R%, an extension of the family V(I'y) can be obtained in higher dimensional

T .
space R+ for the concatenated vectors [sT tT} defining the set:

s 5@
Vst ¢r)r 1= {L(l):| AR L(q)] }

The polytope I yrjr = conv(V[ST tT]T) satisfies:
‘/[ST tT]T - V(F[bT tT]T)'

Proof: Geometrically, this proposition shows that if s(*) is a vertex of I, C R%,
, (4)

then with any complementary vector t(") € R% leading to an extended vector [j(i)]
€ R% "% this vector represents a vertex of the new polytope I r yryr in R%*4
defined as the convex hull of the extended set of points Vi r ,ryr. By construction
V(T [sT tT]T) C V[ST 47T - Therefore, in order to prove this claim, we will prove that
V(I{yr yryr) C Vigr 4z leads to a contradiction.

In fact, suppose V(I [sT tT]T) C V[ST {7 According to this assumption, there
exists a point in Vi r ,rjr which lies in the interior of the polytope I,z ;) or can
be described by a convex combination of the other points. Without loss of generality,

(q)
s . . . _
let [t( q)} denote this point, then there exists a vector o € Ri ! such that:

5@ N GO R T
L(q)] = L(z‘)} S D=1 (13)

=1 i=1

One can easily see from (13) that s as a vertex of I, is described by a convex
combination of the other vertices of ;. This inclusion is contradictory to the defi-
nition of a vertex of a convex set. In other words, all elements of Vi, ,ryr are the
vertices of [z yzr. O

Remark 1 Note also that this proposition remains valid for the degenerate case where
all points {¢("),...,¢(?} are placed on a hyperplane in R%. However, in this case,
the new polytope lies practically in a strict subspace of R%*9¢_ This particular case
of values (), Vi € 1, is excluded in the previous result as not relevant for the scope
of this paper, even though the mathematical result holds.

Consider a given cell complex {X;},.;  of a polytope X' C R% satisfying As-
sumption 4 and a continuous PWA function f,,q(7) : X — R defined over this
cell complex. For ease of presentation, let ¢(z) denote a convex lifting defined over
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{Xi}iez, - Define also the following sets:

I}z v = conv { [vT E(U)]T |ve U V(Xi)} :

1€LN

Vv[:rTz uT)T = {[UT f(’(}) gwa(u>]T ‘ v € U V(XZ)} ’ (14)

i€IN
H[ITZ uT]T = conv (‘/[ITZ uT]T) .

With respect to the above notation, the solution to an inverse parametric linear/quadratic
programming problem can be stated as follows.

Theorem 6 Given a continuous PWA function fp..q(x) defined over a polytopic par-

tition {Xi}ieIN satisfying Assumptions 4, 5 and the sets defined in (14), the follow-

ings hold true:

1. ‘/—[:ETZ uT]T = V(H[:ETZ 'u,T]T) and H[mT Z]T = Proj [wT Z]TH[;ET 2 uT]T’

2. The given PWA function fp.q(z) is the image via the orthogonal projection onto
R% of the optimal solution to the optimization problem below:

. T T T
[ZHli}fI}TZ s.L. [x zZUu ] EH[ITZHT]T. (15)

Proof: 1. The first claim: Vi, ,»y7 = V(I |,z , ,zr), is directly deduced from
Proposition 2. The second claim follows from the construction of I/, , =) having
all its vertices as non-degenerate extended vectors of the vertices of I/ (27T 27

2. It is known that 17 [T 2T C R%+1 represents an affinely equivalent polyhedron of
the partition {X;} Let F\')

ieTn- T T for ¢« € Z denote the lower facet of H[mT 2T
such that: Proj mF[(;)T . = & and forany z € &;, [2T z*(x)]T € F[(;)T yr satisfies

Z*(z) =minz st [z7 z]T € 11|

]T.

zT 2

Also, there exists, in higher dimensional space Ré=tdutl 3 g —face denoted as
Jal) of Ij,r .,z such that: Proj r Z]TF(;)T = ¢

[T z uT]T z uT)T [m; 2]T ThllS, a

point [xT z uT]T € H[xT 2 uT]” satisfying x € X; has the minimal value of z if and

only if this point locates on F[(;)T 2T It is worth stressing that the face F[(:)T 2 uT)T
is defined as follows:

2 = conv { [vT £(v) gwa(v)]T |ve V(Xi)} :

[T z uT]

From the above argument, it follows that there exist non-negative scalars a(v) € Ry,
for v € V(&) such that:

vEV(X;)

[T 2 @) @) @] = Y o) [T ) fha@)]"

veEV(X;)
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Fig. 4: An illustration of two different optimal solutions.

Since this property holds for all elements of &7, it can be deduced that:

[im = 2 )a(v) [fpi(:()v)] = { fpi(f()x)} , Vo € A

veEV(X;

Clearly, fpwa() is a sub-component of this optimal solution.
To complete the proof, the uniqueness of such an optimal solution needs to be
clarified. Suppose there exist two different optimal solutions to (15):

* #\T T . T ™7T
[zl(x) (u) (:1;)} :arg[zmulTr]sz, s.t. [Jc zZu ] GH[szuT]T7

* *\T T : T ™7T
[25 () (u3)" ()] :arg[zlrnulTr]sz7 st [oh z '] €z, o7,

then it is clear that 2} (z) = 23 (x) = ¢(x). Accordingly, if uj (x) # uj(x) forx € Aj,
there exists a (d,+1)—face denoted as I of I,z , ,ryr (illustrated in Fig.4) to which

zuT
two optimal solutions [z (z) (u’{)T(x)]T and [23(z) (uﬁ)T(x)]T belong such that
F' is perpendicular to the space [mT z]T. This implies that the value of fpuq(v)
is not uniquely defined for vertices v € V(X;). This consequence contradicts the
construction of the constraint set 17, (27T 2 uT]T presented in (14). Therefore, such two
optimal solutions have to be identical, leading to the uniqueness. O
The constructive procedure towards recovering a continuous PWA function defined
over a convexly liftable polytopic partition is summarized through Algorithm 2.
Theorem 6 proves the existence of an optimization problem with respect to a linear
cost function which has as a sub-component of the optimal solution, a given PWA
function defined over a convexly liftable polytopic partition. The following theorem
shows the existence of equivalent optimization problem with respect to a quadratic
cost function.

Theorem 7 Consider a continuous PWA function fp.,,(x) defined over a polytopic

partition {Xi}ieL\r satisfying Assumptions 4, 5 and the sets defined in (14). Function
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Algorithm 2 Linear equivalent optimization problem

Input: A continuous PWA function fpwa(z) defined over a convexly liftable polytopic partition
{Xi}z‘elN of a polytope X C Rz,

Output: H[IT = uT|? and J(z, z, u).

: Construct a convex lifting £(x) for {Xj},c 7 via Algorithm 1.

: Compute H[zT . uT}T as in (14).

: Define J(z, z,u) = z.

: Solve the following parametric linear programming problem:

AW N~

T T
* *\T' _ . . T T
[z (z) (u*) (z)] = arg [zn:;n}T z subject to [z zZu ] € H[xT 2T

*
5: Obtain the given PWA function: Proj ,, LZL*E?)} = fpwa ().

fpwa () is the image via the orthogonal projection onto R of the optimal solution
to the following optimization problem:

min_(z —o(2))? s.t. [xT z UT}T €z, o7, (16)

[z wT]"
where o(x) : X — R denotes any function satisfying: o(z) < {(x).

Proof: Consider an affinely equivalent polyhedron I7, (27 2T defined as in (14). Ac-
cording to its definition, we obtain:

Uz) = mzinz subject to [ﬂcT Z]T € H[:};T 2T

Therefore, for any function o(x) : X — R satisfying o(x) < £(z), the minimization
of (2 —o(x))? amounts to the minimization of z subject to the same set of constraints
I,z , ,yr. According to Theorem 6, the given continuous PWA function fpwa(x)
is a sub-component of the optimal solution to (15) as well as (16). a
Algorithm 3 summarizes the constructive procedure of an equivalent optimization
problem with respect to a quadratic cost function.

Remark 2 Theorem 7 proposes a generic quadratic cost function of [z ™| " If the

. . . . T .
goal is to obtain a quadratic cost function of [mT z UT} , then function o () should

be chosen as an affine function of x.

We will present in the sequel the important properties of the solution to IPL/QP prob-
lems via convex liftings i.e. the invertibility and the complexity of the above construc-
tive inverse optimality procedures.

Theorem 8 (Invertibility) Given a polytopic partition {X; } iezy Of a polytope X C
RY, then any continuous PWA function fy,a () : X — R defined over {Xitiery s
is invertible.

3 One can choose o () to be an affine function composing £(z).
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Algorithm 3 Quadratic equivalent optimization problem

Input: A continuous PWA function fpwa(z) defined over a convexly liftable polytopic partition
{Xi}z‘elN of a polytope X C Rz,
Output: H[IT = uT|? and J(z, z, u).

: Construct a convex lifting £(x) for {Xj},c 7 via Algorithm 1.
: Compute H[zT . uT}T as in (14).

: Choose a function®s(z) : X — R such that o(z) < £(z).

: Define J(x, z,u) = (2 — o(x))2.

: Solve the following parametric quadratic programming problem:

AW N =

{z*(a:) (u*)T(x)]T = arg zniiTnT (z—o(x))? st [zT z uT]T € H[IT 2 uT]T

N
6: Project the optimal solution onto R%= : Proj,, [Z* Eg} = fpwa(z).

Proof: If {X;};c7,, admits an affinely equivalent polyhedron, then Theorems 6 and
7 show a formulation of such an inverse parametric linear/quadratic programming
problem. In case the convex liftability of {X;}, 7 is not fulfilled, according to The-
orem 2, {X;}, 7 can be subdivided into a convexly liftable cell complex such that
the internal boundaries are maintained. fp.,,(z) is replaced with an equivalent PWA
function corresponding to this new convexly liftable cell complex. With these pre-
conditionings, the problem is recast to recover a continuous PWA function defined
over a convexly liftable cell complex. O

The complexity of an inverse parametric linear/quadratic programming problem
based on convex liftings is also stated as follows:

Theorem 9 (Complexity) Any continuous PWA function defined over a polytopic
partition of a polytope can be equivalently obtained by a parametric linear/quadratic
programming problem with at most one auxiliary 1—dimensional variable.

Proof: Let {X;};.7, denote this given polytopic partition of a polytope X". If { X}, .7
is convexly liftable, this 1—dimensional variable describes the convex lifting in the
recovered optimization problem. Theorems 6, 7 show that this PWA function is in-
vertible through the convex lifting based approach.

Otherwise, in case the given partition is not convexly liftable, Theorem 2 shows
that there exists at least one way to subdivide the given non-convexly liftable poly-

topic partition into a convexly liftable cell complex, denoted by {/E} 7 mean-
€1y

while the internal boundaries are maintained. According to this subdivision, the given
PWA function fp.q(2) is also subdivided. This new PWA function, say fpwe(z), is

equivalent to fy.,(x) and defined over a convexly liftable cell complex {Xl} .
€T

Therefore, similar to the first case, a convex lifting of {)?1} 7 represents the

1€ly

1—dimensional auxiliary variable. Also, as proved in Theorems 6, 7, fpu,a(x), asso-
ciated with {é’a} _ , s invertible via the convex lifting based method. g

ZEIN
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6 Applications to linear MPC problems

The classical model predictive control problem aims to minimize a cost function over
a finite prediction horizon N € Ny :

N-1

F(U,ak) = Y li(@hgifior Usin) + VN (@t v, (17)
=0

where x4 € R, Uik € R% are the state variable, control variable, respec-
tively, at time k + ¢, predicted at time k and

T
[T T
U= [uk\k s U N1k

i (Tpoti|k» Ukl k) TEpresents a stage cost Vi € Ty 1 U{0} and Vi (244 n|i) denotes
a terminal cost function.

In case of linear model predictive control, this optimization problem is solved in
the presence of constraints:

HO % + HDwgqy < k9, Vi€ Iy U{0},

(18)
HMN 2y oy < O,
where the matrices H. g(f) ,H qsi) , k™ describe mixed state and input constraints for each
stage of prediction horizon.
In addition, in the linear MPC literature, £; (2j4;|x, Ug+i|x) Vi € In—1 U{0} and
VN (Zx4n|) have one of the following forms:

1. quadratic stage cost and terminal cost £;(Zp ik, Ukti|k) = $Z+i|inxk+i|k +

T _ T
Upp e Bitotii: VN (@i N k) = Ty v e BT o
2. 1/oc-norm stage cost and terminal cost £; (T g 4ijk, Utijk) = HQixkﬂ»me +

HRiuk+i|ka7 VN (Trpgnk) = ||P$k+N\ka,

where P, Q; € R%*% are symmetric and positive semidefinite, R; € R%*% ig
symmetric and positive definite in case of 2-norm, otherwise, in case p = 1/co-
norms, P, Q;, R; are matrices of appropriate dimension.

These linear MPC problems can be formulated in a compact way [9, 30] as para-
metric linear/quadratic programming problems defined already in Subsection 3.1.
Their solution can be written in the following form:

U*(x) = argmUinF(U, zg) s.t. GU < W + Euxy, (19)

where the control input sequence U represents the decision variable and the current
state xj, stands for the parameter. In implementation, the interest of this optimal solu-
tion is restricted to the first part: uy, = Projga, U*(x); it also inherits the piecewise
affine structure. Therefore, a continuous explicit solution to a linear MPC problem
also inherits the properties of an inverse optimality problem shown above. The main
message of this paper is stated in the following theorem.
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Theorem 10 Any continuous PWA control law can be equivalently obtained through
a linear MPC problem with a linear or quadratic cost function and the control hori-
zon at most equal to 2 prediction steps.

Proof: Let u(x) : R% — R denote a continuous optimal control law to a linear
MPC problem, defined over a state space partition {X; }, ez, Of apolytope X' C R,
If {Xi},cz, is not convexly liftable, it can be subdivided into a convexly liftable cell
complex according to Theorem 2. Therefore, one can exclusively focus on the case
{Xi}iez, is convexly liftable.

Now, let IT [T = uT]” denote the set of constraints in the recovered optimization
k k
problem i.e.
. T T T
min_z st |Tp 2z u ell T. 20
- uf)” o 2] € pr 0)

For ease of presentation, let I7 [ 77 be given in the following form:
U

.’L'Z‘Z
H,x, +H.z+ Hyu, < K.

If d,, = 1, then it suffices to use z as the second predicted control law i.e. ug | = 2.
Otherwise, the set of constraints H,xy + H,uy, + H,z < K amounts to the following
constraints:

Hoay, + Hyug + [H. 0] m <K,

where 0 denotes a matrix of appropriate dimension, composed of zeros with the num-
ber of columns equal to d,, — 1. Also, s € R~ denotes auxiliary variable. Again,
apply ['z] for the next predicted control variable i.e. ugyq), = E} . Accordingly,

(20) can be written as follows:

min __[0F, 107 ] [ Uk } st. Hymy, + [H, H, 0] [ Uk

u |<x
k+1|k
[“g ug+1\k] +

Uk4+1|k

known to be a linear MPC problem with respect to a linear cost function.
On the other hand, according to Theorem 7, the recovered optimization problem
with a quadratic cost function can also be written in the following form:

min (z —o(xx))? st [2] 2 uﬂT € H[wT 2 uf]"> 21

where o (1) < ¢(xy), £(z)) denotes the convex lifting for the given cell complex
{Xi}iez, » used to compute H[ T )" Suppose {(z) = AT x), + a; for ), € X;,
T 2 Uy

it suffices to choose o(xy) = Alzy + a; over X'. Accordingly, similar to the case
of linear MPC with a linear cost function, (21) can be easily written in the form of

T
a linear MPC problem with respect to a quadratic function of {uf u;‘f 41 k] . The
proof is complete. a
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fpwa

-5 x 10 5

Fig. 5: A convexly liftable cell complex Fig. 6: The piecewise affine controller to
{Xi}iez,, of the state space X'. Iecover.

7 Illustrative examples

This section considers numerical examples to illustrate the above results.

7.1 {Xi},cz,, 1s a convexly liftable cell complex

This example is induced from a double integrator system:

10.5 0.125
Tht1 =10 1 Tkt 0.5 | “* (22)

Yk = [1 0] Tk

An MPC problem, constructed with the minimization of a quadratic cost function
over a prediction horizon N = 5, is presented as follows, with respect to weighting

10 0},]%:0.5:

matrices () = [0 10

4
_ T T T T
J = Z(‘rkJrilekari\k + U RU+i k) + Tpog5) PTht5 )1
1=0

where P is computed via the Riccati equation.

Constraints on the present control variable and output signal are given by: uy €
[-2, 2] and y;, € [—5, 5]. The terminal constraint is chosen as the maximal output
admissible set as shown in [31]. The feedback control law is depicted in Fig.6; its
associated partition {X;}, 1, 1s showed in Fig.5. A convex lifting for the state space
cell complex {X;}, 7,5 18 shown in Fig.7. Finally, the result of parametric linear pro-
gramming problem constructed via Algorithm 2 is shown in Fig.8. It can be observed
that the results in Fig.8 and Fig.6 are identical.
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Fig. 7: A convex lifting for the cell com- Fig. 8: Recovered PWA control law via
plex of the state space in Fig.5. Algorithm 2

7.2 {Xi};c1,, is a polytopic partition inherited from an arbitrary parametric
quadratic programming problem

To illustrate a case in which the given polytopic partition is not convexly liftable,
consider example 1 presented in [32]:

minzTz stz eP@), §eo,

r1—x3 < —146y, —x1 — 23 -1-6;

To— 23 < —1—f, —22 —w3 < —1+07
PO =zeR} 3 6 <1

4$1 + 25332 T3 < + 61

3 16

O e — e < —1 —

4$1 253?2 T3 > 01

The parameter space partition is shown in Fig.9 to be a polytopic partition but not
a cell complex. Its associated continuous PWA function is presented in Fig.10. It is
clear that this polytopic partition is not convexly liftable. One can also confirm this
observation via the infeasibility of the optimization problem (10). This requires a
subdivision into a convexly liftable cell complex. A subdivision of this partition into
a convexly liftable cell complex can be found in Fig.11. One of its convex liftings
is shown in Fig.12. Further, a continuous PWA function equivalent to the one shown
in Fig.10, is presented in Fig.13, as a sub-component of the optimal solution to the
recovered optimization problem via Algorithm 2.

8 Conclusions

This article presents a method to solve inverse parametric linear/quadratic program-
ming problems. This method relies on convex lifting. It is shown that for any con-
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1 6

Fig. 10: A continuous PWA function as-
Fig. 9: A polytopic partition of the param- sociated with the polytopic partition in
eter space. Fig.9

x2

“15 s

Fig. 11: A subdivision of the polytopic Fig. 12: A convex lifting for the cell com-
partition in Fig.9 into a convex liftable plex in Fig.11.
cell complex.

tinuous PWA function defined over a polytopic partition, an appropriate equivalence
of this function can be obtained by another parametric linear/quadratic programming
problem with a supplementary variable of dimension equal to 1. In view of linear
MPC, it has been shown that any continuous PWA control law can be obtained via
another MPC problem with the prediction horizon equal to 2 prediction steps. The
same statement can be reformulated as: any linear MPC formulation has an equiv-
alent MPC formulation with two steps of the prediction horizon. Several numerical
examples prove the effectiveness of this method.
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