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Effectively Uniform ?

Erez Kantor1, Zvi Lotker2, Merav Parter3, and David Peleg3

1 CSAIL, Massachusetts Institute of Technology, MA 01239, USA
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Abstract. This paper concerns the behavior of an SINR diagram of
wireless systems, composed of a set S of n stations embedded in Rd,
when restricted to the corresponding Voronoi diagram imposed on S. The
diagram obtained by restricting the SINR zones to their corresponding
Voronoi cells is referred to hereafter as an SINR+Voronoi diagram.
While uniform SINR diagrams (where all stations transmit with the same
power) are simple and nicely structured (e.g., the station reception zones
are convex and “fat”) [3], nonuniform SINR diagrams might be com-
plex (e.g., the reception zones might be fractured and their boundaries
might contain many singular points) [9]. In this paper, we establish the
(perhaps surprising) fact that a nonuniform SINR+Voronoi diagram is
topologically almost as nice as a uniform SINR diagram. In particular,
it is convex and effectively4 fat. This holds for every power assignment,
every path-loss parameter α and every dimension d ≥ 1. The convexity
property also holds for every SINR threshold β > 0, and the effective
fatness holds for any β > 1. These fundamental properties provide a the-
oretical justification to engineering practices basing zonal tessellations
on the Voronoi diagram, and helps to explain the soundness and efficacy
of such practices.
We also consider two algorithmic applications. The first concerns the
Power Control with Voronoi Diagram (PCVD) problem, where given n
stations embedded in some polygon P, it is required to find the power
assignment that optimizes the SINR threshold of the transmission sta-
tion si for any given reception point p ∈ P in its Voronoi cell Vor(si).
The second application is approximate point location; we show that for
SINR+Voronoi zones, this task can be solved considerably more effi-
ciently than in the general non-uniform case.
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4 in the sense that its fatness measure does not depend on the number of stations n
but only on parameters typically bounded by a constant.



1 Introduction

1.1 Background and motivation

A common method for designing a cellular or wireless network in the plane is
by computing the Voronoi diagram of the base-stations, and making each base-
station responsible for its own Voronoi cell. This choice is natural, since it ensures
that the distance from every point p in the plane to the station responsible for
it is minimal. Yet what affects the performance of a wireless network is not
just the distance. Rather, reception at a given point in a given time is governed
by a complex relationship between the reception point and the set of stations
that transmit at that time. This relationship is described schematically by the
SINR formula, which also dictates the reception zones around each transmitted
station. Hence the areas in the intersection between SINR reception regions and
their corresponding Voronoi cells deserve particular attention, and are the focus
of the current paper.

We consider the Signal to Interference-plus-Noise Ratio (SINR) model, where
given a set of stations S = {s0, . . . , sn−1} in Rd concurrently transmitting with
power assignment ψ, and background noise N , a receiver at point p ∈ Rd suc-
cessfully receives a message from station si if and only if SINR(si, p) ≥ β, where

SINR(si, p) = ψi·dist(si,p)−α∑
j 6=i ψj ·dist(sj ,p)−α+N for constants β ≥ 1 denoting the minimum

SINR required for a message to be successfully received, and α denoting the
path-loss parameter, and where dist() denotes Euclidean distance.

To model the reception zones we use the convenient representation of an
SINR diagram, introduced in [3], which partitions the plane into n reception
zones, one per station, and a complementary zone where no station can be heard.
The topology and geometry of SINR diagrams was studied in [3] in the relatively
simple setting of uniform power, where all stations transmit with the same power
level. It was shown therein that uniform SINR diagrams are particularly simple:
the reception zone of each station is convex, fat and strictly contained inside the
corresponding Voronoi cell.

SINR diagrams in the general nonuniform setting (i.e., with arbitrary power
assignments) were studied in [9]. The topological features of general SINR di-
agrams turn out to be much more complicated than in the uniform case, even
for networks with a small number of stations. In particular, the reception zones
are not necessarily fat, convex or even connected, and their boundaries might
contain many singular points.

In this paper, we explore the behavior of the reception zones of SINR dia-
grams when restricted to Voronoi diagrams. The resulting diagram, referred to
as an SINR+Voronoi diagram, consists of n reception zones, one per station, ob-
tained by the intersection of the SINR reception zones with their corresponding
Voronoi cells. Studying SINR+Voronoi diagrams is motivated by the complex-
ity of general nonuniform SINR zones and, perhaps more importantly, by the
abundant usage of hexagonal networks in practice; cellular networks are com-
monly designed as hexagonal networks, where each node serves as a base-station
to which mobile users must connect to make or receive phone calls. A mobile



user is normally connected to the nearest base-station, hence the base-stations
divide the area among them, such that each base-station serves all users that are
located inside its hexagonal grid cell (which is in fact its Voronoi cell). Due to
the disk shape of the sensing range of the sensor devices, using a hexagonal tes-
sellation topology is the most efficient way to cover the whole sensing area, and
indeed many routing, location management and channel assignment protocols
are based on it [6, 12–15]. It is thus intriguing to ask whether the reception zones
of nonuniform SINR diagrams enjoy some desirable properties (e.g., assume a
convenient form) when restricted to their corresponding Voronoi cells.

In this paper, it is shown that the diagram obtained from a nonuniform SINR
diagram by restricting its reception zones to their respective Voronoi cells (e.g.,
hexagonal cells in the grid) behaves almost as nice as a uniform SINR diagram:
the resulting reception zones are convex, and their fatness measure depends only
on parameters typically bounded by a constant, and in particular is independent
of the number of stations in the network. For an illustration see the reception
zone of station s0 in Figure 1(a).

These fundamental properties provide a theoretical justification to engineer-
ing practices basing regional tessellations on the Voronoi diagram, and help to
explain the soundness and efficacy of such practices.

To prove convexity, we extend the proof for the uniform setting of [3] to the
nonuniform setting5. Apart from the theoretical interest, this result is of consid-
erable practical significance, as obviously, having a convex reception zone inside
each hexagonal cell may ease the development of protocols for various design
and communication tasks such as scheduling, topology control and connectivity.

We note that convexity within a Voronoi cell is important also in the mobile
setting, where no fixed tessellation can be assumed. For example, in the setting
of Vehicular ad-hoc network (VANET) [17], the stations are mobile but each
user is still mapped to the closest base-station. Hence, although the hexagonal
tessellation is no longer preserved, the convexity within the (dynamic) Voronoi
tessellation is still relevant (for an illustration, see Fig. 1(b)-(c)).

As an application for the convexity property, we consider the problem where
one wishes to cover the entire area of a given bounded polygon P by using a
base-station network embedded in P. One natural way to do that is by assigning
each base-station an area of coverage. Usually the base-station needs to cover
the area of its Voronoi cell up to where it intersects with P. Assuming the
power with which each base-station transmits can be controlled, it is desirable
to increase the SINR ratio as much as possible in order to increase the capacity
of the cellular network. The problem of determining the transmission energy of
each base-station so as to maximize the capacity of the entire network is called
the Power Control Voronoi Diagram (PCVD) problem. We show that although

5 Note that in the uniform setting too, convexity is guaranteed only inside the Voronoi
cell, but since the entire reception zone is restricted to the Voronoi cell, this implies
that the entire zone is convex. In contrast, in the nonuniform setting, the reception
zone of a station with a high transmission energy might exceed its Voronoi cell.
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Fig. 1. The overlay of an SINR diagram of a nonuniform wireless network on the cor-
responding Voronoi diagram. (a) Hexagonal Voronoi cells; the intersection between the
reception region of station s0 and the Voronoi cell around it is highlighted in bold. (b)
Slight random perturbation to a hexagonal network. (c) Random positions.

PCVD is a non-convex and non-discrete problem, it can be solved in a nearly
optimal manner.

Our algorithm is especially useful in the mobile setting where the positions
of base-stations change with time. This scenario can happen in sudden-onset
disasters and ad-hoc vehicle networks, since in these cases, the network structure
is not fixed and it is not clear how to divide the coverage areas between the base-
stations. Although it is natural to use the Voronoi diagram, it is not clear how
to assign the transmission energies in a way that guarantees a full coverage of
the area of interest. The solution proposed in this paper for this problem has
the advantage that it can adapted to a dynamic setting quite efficiently since
it depends upon the Voronoi tessellation that can be maintained efficiently in
a dynamic setting [5, 8]. Exploiting the convexity property in Voronoi cells, we
propose a discrete equivalent formulation of the PCVD problem. Specifically, we
show that given the convexity guarantee, it is sufficient to insist on achieving the
optimal threshold β only on the vertex set of each Voronoi cell (where unbounded
Voronoi cells are bounded by using a bounding polygon P that contains the entire
coverage area). Computing a power assignment maximizing the coverage within
Voronoi cells has been considered also in [16] from a game theoretic point of
view; yet no analytic result has been known so far for this problem.

We then turn to consider the fatness property. In [9], it was shown that the
fatness of nonuniform zone can be bounded by some function of the maximum
transmission power ψmax, the ambient noise N , the SINR threshold β, the path-
loss exponent α, the distance κ to the closest interfering station and the number



of stations in the network. The SINR+Voronoi zones are shown to have a fatness
bound that is independent of n. In particular, since the network parameters
α, β, κ,N and ψmax are bounded in practice (unlike the number of stations), the
SINR+Voronoi zones are effectively fat.

Finally, using [4], the convexity and the improved fatness bound imply an
approximate point location scheme for SINR+Voronoi zones whose preprocess-
ing time and memory requirements are significantly more efficient than those
obtained in [9]. For a recent work on batched point location tasks see [1].

1.2 Geometric notions and wireless networks

Geometric notions. We consider the d-dimensional Euclidean space Rd (for d ∈
Z≥1). Denote the distance between points p and q by dist(p, q) = ‖q−p‖ and the
ball of radius r centered at point p ∈ Rd by Bd(p, r) = {q ∈ Rd | dist(p, q) ≤ r}.
Unless stated otherwise, we assume the 2-dimensional Euclidean plane, and omit
d. The basic notions of open, closed, bounded, compact and connected sets of
points are defined in the standard manner.

We use the term zone to describe a point set with some “niceness” properties.
Unless stated otherwise, a zone refers to the union of an open connected set and
some subset of its boundary. It may also refer to a single point or to the finite
union of zones.

The point set P is said to be star-shaped with respect to point p ∈ P if the
line segment p q is contained in P for every point q ∈ P . In addition, P is said
to be convex if it is star-shaped with respect to any point p ∈ P , see [7].

For a bounded zone Z 6= ∅ and an internal p ∈ Z, denote the maximal and
minimal diameters of Z w.r.t. p by δ(p, Z) = sup{r > 0 | Z ⊇ B(p, r)} and
∆(p, Z) = inf{r > 0 | Z ⊆ B(p, r)}, and define the fatness parameter of Z with
respect to p to be ϕ(p, Z) = ∆(p, Z)/δ(p, Z). The zone Z is said to be fat with
respect to p if ϕ(p, Z) is bounded by some constant.

Wireless networks and SINR Diagrams. We consider a wireless network A =
〈d, S, ψ,N , β, α〉, where d ∈ Z≥1 is the dimension, S = {s0, s1, . . . , sn−1} is a set
of n ≥ 2 radio stations embedded in the d-dimensional space, ψ is an assignment
of a positive real transmitting power ψi to each station si, N ≥ 0 is the back-
ground noise, β ≥ 0 is a constant reception threshold, and α > 0 is the path-loss
parameter. The signal to interference & noise ratio (SINR) of si at point p is
defined as

SINRA(si, p) =
ψi · dist(si, p)

−α∑
j 6=i ψj · dist(sj , p)−α + N

. (1)

Observe that SINRA(si, p) is always positive since the transmission powers and
the distances of the stations from p are always positive and the background noise
is non-negative. In certain contexts, it may be more convenient to consider the
reciprocal of the SINR function,

SINR−1A (si, p) =
1

ψi

(∑
j 6=i

ψj

(
dist(si, p)

dist(sj , p)

)α
+ N · dist(si, p)

α
)
. (2)



When the network A is clear from the context, we may omit it and write simply
SINR(si, p). The fundamental rule of the SINR model is that the transmission
of station si is received correctly at point p /∈ S if and only if its signal to
noise ratio at p is not smaller than the reception threshold of the network, i.e.,
SINR(si, p) ≥ β. In this case, we say that si is heard at p. We refer to the set of
points that hear station si as the reception zone of si, defined as

HA(si) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si} .

(Note that SINR(si, ·) is undefined at points in S and in particular at si itself,
and that HA(si) is not is not necessarily connected or restricted to the Voroni
cell Vor(si)). The null zone is the set of points that hear no station si ∈ S (due
to the background noise and interference), HA(∅) = {p ∈ Rd−S | SINR(si, p) <
β, ∀si ∈ S}. An SINR diagram H(A) = {HA(si), 0 ≤ i ≤ n− 1} ∪ {HA(∅)} is
a “reception map” partitioning the plane into the stations reception zones and
the null zone. The following important technical lemma from [3] will be useful
in our later arguments.

Lemma 1. [3] Let f : Rd → Rd be a mapping consisting of rotation, translation,
and scaling by a factor of σ > 0. Consider some network A = 〈d, S, ψ,N , β, α〉
and let f(A) = 〈d, f(S), ψ,N /σ2, β, α〉, where f(S) = {f(si) | si ∈ S}. Then f
preserves the signal to noise ratio, namely, for every station si and for all points
p /∈ S, we have SINRA(si, p) = SINRf(A)(f(si), f(p)).

Avin et al. [3] discuss the relationships between an SINR diagram on a set of
stations S with uniform transmission powers and the corresponding Voronoi
diagram on S. Specifically, it is shown that the n reception zones HA(si) around
each point si are strictly contained in the corresponding Voronoi cells Vor(si)
where

Vor(si) = {p ∈ Rd | dist(si, p) ≤ dist(sj , p) for any j 6= i} . (3)

In contrast, the reception zone of a nonuniform SINR diagram is not necessarily
contained within the Voronoi cell of the corresponding station (e.g., a strong
station with high transmission energy may be successfully received in points
outside its Voronoi cell). Kantor et al. [9] showed that nonuniform SINR diagrams
are related to a weighted variant of Voronoi diagrams [2].

SINR+Voronoi Diagrams. Consider a wireless network A = 〈d, S, ψ̄,N , β, α〉.
Let Vor(si) be the Voronoi cell of station si (see Eq. (3)). Define VHA(si) be
the reception zone of si restricted to its Voronoi cell, where

VHA(si) = HA(si) ∩Vor(si) .

The SINR+Voronoi diagram consists of the n Voronoi-restricted reception zones

VH = 〈VHA(s0), . . . ,VHA(sn−1)〉.



2 Convexity of SINR+Voronoi Zones

Without loss of generality, throughout we fix a station s0 and show the following
(for an illustration see Fig. 2).

Theorem 1. For every wireless network A = 〈d, S, ψ,N ≥ 0, β > 0, α〉, The
Voronoi-restricted reception zone VHA(s0) is convex.

𝑠0 

𝑉ℋ(𝑠0) 

𝑉𝑜𝑟(𝑠0) 
ℋ(𝑠0) 

𝑠1 

𝑠2 

Fig. 2. The reception region of s0 is non-convex but its part restricted to the Voronoi
cell of s0 is convex. The green area depicts H(s0). The Voronoi-restricted reception zone
VH(s0) is the darker region.

2.1 Proof outline

The following technical lemma from [11] plays a key role in our analysis. Denote
the origin point by q = (0, 0), let pL = (1, 0), pR = (−1, 0) and define ρi =
dist2(si, q), for every i = 0, ..., n− 1.

Lemma 2 ([11]). Let A be a noise-free network (N = 0) and let q /∈ S. Then

max{SINR−1A (s0, pL) , SINR−1A (s0, pR)} ≥ ∑n−1
i=1

ψi
ψ0
·
(
ρ0+1
ρi+1

)α/2
.

Our proof scheme for Lemma 1 is as follows. For simplicity, consider the
two-dimensional case. Using [3], the proof naturally extends to any dimension
d ≥ 2. Consider pairs of reception points p1, p2 ∈ VHA(s0). We classify such
pairs into two types. The first type is where s0 ∈ p1 p2. This type is handled
in Lemma 3, where it is shown that VHA(s0) is star-shaped with respect to s0.



The complementary type, where s0 6∈ p1 p2, is handled in two steps. First, in
Lemma 4, we consider the simplified case where there is no background noise
(i.e., N = 0) and use Lemma 2 to establish the claim. Finally, we consider the
general noisy case where N > 0 and establish Theorem 1.

Lemma 3. VHA(s0) is star-shaped with respect to s0.

Proof. In fact, we prove a slightly stronger assertion. Consider some point p ∈
Vor(s0). We show that SINR(s0, q) > SINR(s0, p) for all internal points q in
the segment s0 p. By Lemma 1, we may assume without loss of generality that
s0 = (0, 0) and p = (−1, 0). Consider some station si, i > 0. Note that si is
outside the unit circle around p (since p is in Vor(s0)). Therefore, if si is not
located on the positive half of the horizontal axis, then it can be relocated to a
new location s ′i on the positive half of the horizontal axis by rotating it around
p so that dist(s ′i, p) = dist(si, p) and dist(s ′i, q) ≤ dist(si, q) for all points q ∈ s0 p
(see Fig. 3). This process can be repeated with every station si, i > 0, until
all interfering stations si 6= s0 are located on the positive half of the horizontal
axis without decreasing the interference at any point q ∈ s0 p. Therefore it is
sufficient to establish the assertion under the assumption that si = (ai, 0), where
ai > 0, for every i > 0. Let q = (−x, 0) for some x ∈ (0, 1]. To show that
SINR(s0, q) > SINR(s0, p), we consider the reciprocal of the SINR function from
Eq. (2) on s0 and q, which in the defined setting assumes the form

f(x) = SINR−1(s0, q) =

n−1∑
i=1

[
ψi
ψ0

(
x

ai + x

)α]
+
xα

ψ0
·N ,

and prove that f(x) < f(1) for all x ∈ (0, 1). This follows since the derivative
df(x)
dx = αx

ψ0
·
(∑n

i=1
ψi·ai

(ai+x)(α+1) + N
)

is positive for x ∈ (0, 1].

2.2 Convexity without background noise

We now complete the proof for the noise free case where N = 0.

Lemma 4. For every wireless network A0 = 〈d, S, ψ̄,N = 0, β, α〉, VHA0
(si) is

convex for every si ∈ S.

Proof. By Lemma 3, it remains to show that p1 p2 ⊆ VHA0(s0) for any pair of
points p1, p2 ∈ VHA0(s0) such that s0 /∈ p1 p2. Note that by the convexity of
a Voronoi cell, p1 p2 ⊂ Vor(si). Thus, there is no station si on this segment,
concluding that the SINRA0

(s0, p) function is continuous on the p1 p2 segment.
It remains to prove that p1 p2 ⊆ HA0

(s0), i.e., that SINRA0
(s0, q) ≥ β for any

q ∈ p1 p2. We now show that for every q ∈ p1 p2,

SINRA0
(s0, q) ≥ min{SINRA0

(s0, p1),SINRA0
(s0, p2)}.

Specifically, we show that the dual statement holds, namely, that

SINR−1A0
(s0, q) ≤ max

{
SINR−1A0

(s0, p1),SINR−1A0
(s0, p2)

}
. (4)
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Fig. 3. Relocating stations. All stations are mapped to the positive x-axis, so that the
SINR value at point p with respect to the station s0, is preserved.

By Lemma 1 and by the continuity of the SINRA function in the segment
p1 p2, it is sufficient to consider the case where p1 = (−1, 0), p2 = (1, 0) and
q = (0, 0), the middle point between p1 and p2 on the segment. By applying
Lemma 2, we have

max{SINR−1A0
(s0, p1) , SINR−1A0

(s0, p2)} ≥
n−1∑
i=1

ψi
ψ0
·
(
ρ0 + 1

ρi + 1

)α/2
. (5)

On the other hand, by Eq. (2),

SINR−1A0
(s0, q) =

n−1∑
i=1

ψi
ψ0
·
(
ρ0
ρi

)α/2
. (6)

As q ∈ Vor(s0), we have that ρi ≥ ρ0 and hence ρ0/ρi ≤ (ρ0 + 1)/(ρi + 1) for
every i ∈ {1, ..., n − 1}. This, together with Eq. (5) and (6), implies Ineq. (4).

2.3 Convexity with background noise

We now consider the general case where N ≥ 0.

Proof (Theorem 1). Consider two points p1, p2 ∈ VHA(s0). We need to show
that p1 p2 ⊆ VHA(s0). By Lemma 1, we may assume without loss of generality
that p1 = (−1, 0) and p2 = (1, 0). Let dN = max{dist(s0, p1),dist(s0, p2)}.

Let A∗ be a noise-free (n+ 1)-station network obtained from A by replacing
the background noise with a new station sN located in (0, dN ) with transmission



power ψN = N · (d2N + 1)α/2. That is, A∗ = 〈d = 2, S∗, ψ̄∗,N = 0, β, α〉, where
S∗ = S ∪ {sN} and ψ̄∗ = (ψ0, ..., ψn−1, ψN ). It is easy to verify that ψN ·
dist(sN , pi)

−α = N and ψN · dist(sN , q)
−α ≥ N , for every q ∈ p1 p2. Thus, on

the one hand,

SINRA∗(s0, pi) = SINRA(s0, pi), for i ∈ {1, 2}, (7)

and on the other hand, for all points q ∈ p1 p2,

SINRA(s0, q) ≥ SINRA∗(s0, q). (8)

We now show that p1, p2 ∈ VHA∗(s0). We first claim that p1, p2 ∈ Vor∗(s0)
where Vor∗ is the Voronoi diagram of the set S∗. Since p1, p2 ∈ VHA(s0),
in particular p1, p2 ∈ Vor(s0). This implies that dist(s0, pi) ≤ dist(sj , pi),
for every i ∈ {1, 2} and j ∈ {1, ..., n − 1}. In addition, dist(sN , pi) > dN ≥
dist(s0, pi), implying that p1, p2 ∈ Vor∗(s0) as needed. It remains to show that
p1, p2 ∈ HA∗(s0). Since p1, p2 ∈ HA(s0), SINRA(s0, pi) ≥ β for i ∈ {1, 2}.
Thus, by Eq. (7), SINRA∗(s0, pi) ≥ β as well, and p1, p2 ∈ HA∗(s0). Finally,
since p1, p2 ∈ VHA∗(s0) where A∗ is a noise free network, by Lemma 4 it
holds that SINRA∗(s0, q) ≥ β, for all points q ∈ p1 p2. Thus, by Ineq. (8),
also SINRA(s0, q) ≥ β, for all points q ∈ p1 p2, are required. Theorem 1 follows.

3 Fatness of SINR+Voronoi Zones

In this section we develop a deeper understanding of the shape of SINR+Voronoi
reception zones by analyzing their fatness. Consider a nonuniform power net-
work A = 〈d, S, Ψ̄ ,N , β, α〉 with positive background noise N > 0, where S =
{s0, . . . , sn−1}, and α ≥ 0 and β > 1 are constants6.

We focus on s0 and assume that its location is not shared by any other
station (otherwise, H(s0) = {s0}). Let κ = minsi∈S\{s0}{dist(s0, si)} denote
the distance between s0 and the closest interfering station. The known fatness
bounds for uniform and nonuniform reception zones are summarized as follows.

Fact 2 Let A be an n-station network.
(a) If A is uniform, then ϕ(s0,HAu(s0)) = O(1).
(b) If A is nonuniform, then ϕ(s0,HAnu(s0)) = O(ψmax/κ ·

√
n/N ) for α = 2.

We now show that in the SINR+Voronoi setting, the fatness of VHA(s0) with
respect to s0, can be bounded as a function of ψmax, κ, α, β and N , namely, it
is independent of the number of stations n.

Theorem 3.

ϕ(s0,VH(s0)) ≤
α
√
β + 1

α
√
β − 1

·max

{
1 ,

3

κ
· α
√

ψ0

N · β ·max{1, α
√
β − 1}

}
.

6 Note that the convexity proof presented in Section 2 holds for any β ≥ 0.



In certain cases, tighter bounds can be obtained. In particular, we say that an
SINR+Voronoi zone VHA(s0) is well-bounded if the minimal enclosing ball of
VHA(s0) is fully contained in the Voronoi cell Vor(s0). Then we have:

Lemma 5. If VHA(s0) is a well-bounded zone, then ϕ(s0,VHA(s0)) = O(1).

The proof of Thm. 3 is provided in the full version. Its overall structure is similar
to that of Thm. 4.2 in [3], but requires delicate adaptations for the nonuniform
setting. The radius ∆(s0,VHA(s0)) is easily bounded by considering the extreme
case where s0 is the solitary transmitting stations. Our main efforts went into
bounding the small radius δ(s0,VHA(s0)) by a function independent of n. The
proof consists of three main steps. First, we bound the fatness of SINR+Voronoi
zones in a setting of two stations in a one-dimensional space. Then, we consider
a special type of nonuniform power networks called positive collinear networks.
Finally, the general case is reduced to the case of positive collinear networks.

4 Applications

In this section, we present two applications for the properties established in
the previous sections. In Subsec. 4.1, we present an application for the con-
vexity property and describe a new variant of the power control problem. In
Subsec. 4.2, we exploit the convexity and the improved bound on the fatness of
SINR+Voronoi zones to obtain an improved approximate point location scheme
for SINR+Voronoi diagram.

4.1 The Power Control Voronoi Diagram (PCVD) Problem

In the standard power control problem for wireless networks, one is given a set
of n communication links L = {`0, . . . , `n−1}, where each link `i represents a
communication request from station si to receiver ri. The question is then to
find an optimal power assignment for the stations, so as to make the reception
threshold β as high as possible and ease the decoding process. As it turns out, this
problem can be solved elegantly using the Perron–Frobenius (PF) Theorem [18].
Essentially, since every station is required to satisfy a fixed number of receivers
(in the standard formulation, there is actually one receiver per station), the
system can be represented in a matrix form that has some useful properties.

We now consider a new variant of the problem in which every station has to
satisfy a continuous zone rather than a fixed number of points. The motivation
for this formulation is that it allows one to attain an optimal complete coverage
of the reception map. We now define the problem formally.

In the Power Control for Voronoi Diagram (PCVD) problem, one is given
a network of n stations S = {s0, . . . , sn−1} embedded in some d-dimensional
bounded polygon7 P and the task is to find an optimal power assignment for
the stations, so as to make the reception threshold β as high as possible while
still SINRA(si, p) ≥ β for every si and every point p ∈ Vor(si) ∩ P.

7 the role of P is to guarantee that all Voronoi cells restricted to P are bounded.



Note that without the convexity property within VHA(si) zones, established
in the previous section, it is unclear how to formulate this problem by using a
finite set of inequalities. This is because each Voronoi cell consists of infinitely
many reception points, each of which must satisfy an SINR constraint. Due to
the convexity property, we can provide the following succinct representation of
the problem. For every station si ∈ S, let Vi be the vertex set8 of the bounded
polytope Vor(si)∩P. Let m =

∑n−1
i=0 |Vi|. The optimization task consists of m

inequalities and n+ 1 variables (n variables corresponding to the power assign-
ment and β). This yields the following formulation.

maximize β subject to: (9)

SINR(si, p) ≥ β for every si ∈ S and p ∈ Vi .

We first claim that this is a correct formulation for the Power Control for Voronoi
Diagram problem. Let β∗ be the optimum solution of Program (9). By the
feasibility of this solution, SINR(si, p) ≥ β∗ for every p ∈ Vi. Since the reception
zone is convex within its Voronoi cell, we get that SINR(si, p) ≥ β∗ for every
p ∈ Vor(si) (in particular, in the optimum β, the reception zone contains the
Voronoi cell of the station).

To solve Program (9), note that for any fixed β, the inequalities are linear
in the n transmission power variables and hence the resulting set of m linear
inequalities is solvable in polynomial time. A nearly optimum power assignment
can then be found by searching for the best β via binary search up to some
desired approximation.

4.2 The Closest Station Point Location Problem

In the Closest Station Point Location Problem, one is given a nonuniform power
network A with n transmitting stations, S = {s0, . . . , sn−1}. Given a query point
p ∈ R2, it is required to answer whether sp is heard at p, where sp is the closest
station to p (i.e., p ∈ Vor(sp)).

Since nonuniform SINR zones are non-convex and non-fat, the preprocessing
time and memory required in the approximate point location scheme of [10] are
polynomial but costly. In this section we show that one can solve approximate
point location tasks for nonuniform networks with effectively the same bounds as
obtained for uniform networks (where ψmax and N are bounded by constants),
as long as the query point p belongs to the Voronoi cell of the station that should
be heard at p. Hence Lemma 5.1 of [3] yields the following.

Theorem 4. For every n-station nonuniform power network with SINR+Voronoi
reception zones 〈VHA(s1), . . . ,VHA(sn)〉, it is possible to construct, in prepro-
cessing time O((ψmax/(κ ·N ))3/α · n2 · ε−1), a data structure DS requiring mem-
ory of size O((ψmax/(κ ·N ))3/α · n · ε−1) that imposes a (2n+ 1)-wise partition

ṼH = 〈VH+
A(s1), . . . ,VH+

A(sn),VH?
A(s1), . . . ,VH?

A(sn),VH−A〉 of the Euclidean
plane, such that for every i ∈ {0, . . . , n− 1},
8 Note that the Vi sets are not disjoint and hence vertices are counted multiple times



(a) VH+
A(si) ⊆ VHA(si),

(b) VHA(si) ∩ VH−A = ∅,
(c) VH?

A(si) is bounded and its area is at most an ε-fraction of the area of
VHA(si).

Furthermore, given a query point p, it is possible to extract from DS, in time
O(log n), the zone in ṼH to which p belongs. Hence the closest station point loca-
tion query can be answered with approximation ratio ε and query time O(log(ψmax·
n/(N · κ))), where κ = mini,j dist(si, sj).

For comparison, the general point location scheme of [10] requires O(n10ψ4
max/ε

2)
preprocessing time and O(n8ψ4

max/ε
2) memory bits.

5 Conclusion

The Voronoi diagram of the base stations is a natural model for wireless net-
works in the plane. In this paper we show that restricting nonuniform reception
zones to their corresponding Voronoi regions yields zones that are (almost) as
nice as uniform reception zones. The increasing demand for mobile and high
performance networks has created a need to dynamically determine the power
with which each base station should transmit in order to optimize the network
capacity. A common approach is to assign each base station its own Voronoi
cell. When the network is dynamic, the Voronoi cell is no longer fixed and one
can no longer compute in advance the parameters required for optimal network
performance. We consider the resulting fundamental Power Control for Voronoi
Diagram (PCVD) problem. The convexity property guaranteed for SINR recep-
tion zones within Voronoi regions enables us to discretize the PCVD problem
while maintaining optimality. In addition, we showed that point location queries
for SINR+Voronoi zones can be answered with almost the same bounds as for
the uniform case. We believe that this approach may pave the way for designing
additional algorithms for dynamic mobile networks
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