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Nonuniform SINR+Voroni Diagrams are Effectively Uniform

. In this paper, we establish the (perhaps surprising) fact that a nonuniform SINR+Voronoi diagram is topologically almost as nice as a uniform SINR diagram. In particular, it is convex and effectively 4 fat. This holds for every power assignment, every path-loss parameter α and every dimension d ≥ 1. The convexity property also holds for every SINR threshold β > 0, and the effective fatness holds for any β > 1. These fundamental properties provide a theoretical justification to engineering practices basing zonal tessellations on the Voronoi diagram, and helps to explain the soundness and efficacy of such practices. We also consider two algorithmic applications. The first concerns the Power Control with Voronoi Diagram (PCVD) problem, where given n stations embedded in some polygon P, it is required to find the power assignment that optimizes the SINR threshold of the transmission station si for any given reception point p ∈ P in its Voronoi cell Vor(si). The second application is approximate point location; we show that for SINR+Voronoi zones, this task can be solved considerably more efficiently than in the general non-uniform case.

Introduction

Background and motivation

A common method for designing a cellular or wireless network in the plane is by computing the Voronoi diagram of the base-stations, and making each basestation responsible for its own Voronoi cell. This choice is natural, since it ensures that the distance from every point p in the plane to the station responsible for it is minimal. Yet what affects the performance of a wireless network is not just the distance. Rather, reception at a given point in a given time is governed by a complex relationship between the reception point and the set of stations that transmit at that time. This relationship is described schematically by the SINR formula, which also dictates the reception zones around each transmitted station. Hence the areas in the intersection between SINR reception regions and their corresponding Voronoi cells deserve particular attention, and are the focus of the current paper.

We consider the Signal to Interference-plus-Noise Ratio (SINR) model, where given a set of stations S = {s 0 , . . . , s n-1 } in R d concurrently transmitting with power assignment ψ, and background noise N , a receiver at point p ∈ R d successfully receives a message from station s i if and only if SINR(s i , p) ≥ β, where SINR(s i , p) = ψi•dist(si,p) -α j =i ψj •dist(sj ,p) -α +N for constants β ≥ 1 denoting the minimum SINR required for a message to be successfully received, and α denoting the path-loss parameter, and where dist() denotes Euclidean distance.

To model the reception zones we use the convenient representation of an SINR diagram, introduced in [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF], which partitions the plane into n reception zones, one per station, and a complementary zone where no station can be heard. The topology and geometry of SINR diagrams was studied in [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF] in the relatively simple setting of uniform power, where all stations transmit with the same power level. It was shown therein that uniform SINR diagrams are particularly simple: the reception zone of each station is convex, fat and strictly contained inside the corresponding Voronoi cell.

SINR diagrams in the general nonuniform setting (i.e., with arbitrary power assignments) were studied in [START_REF] Kantor | The topology of wireless communication[END_REF]. The topological features of general SINR diagrams turn out to be much more complicated than in the uniform case, even for networks with a small number of stations. In particular, the reception zones are not necessarily fat, convex or even connected, and their boundaries might contain many singular points.

In this paper, we explore the behavior of the reception zones of SINR diagrams when restricted to Voronoi diagrams. The resulting diagram, referred to as an SINR+Voronoi diagram, consists of n reception zones, one per station, obtained by the intersection of the SINR reception zones with their corresponding Voronoi cells. Studying SINR+Voronoi diagrams is motivated by the complexity of general nonuniform SINR zones and, perhaps more importantly, by the abundant usage of hexagonal networks in practice; cellular networks are commonly designed as hexagonal networks, where each node serves as a base-station to which mobile users must connect to make or receive phone calls. A mobile user is normally connected to the nearest base-station, hence the base-stations divide the area among them, such that each base-station serves all users that are located inside its hexagonal grid cell (which is in fact its Voronoi cell). Due to the disk shape of the sensing range of the sensor devices, using a hexagonal tessellation topology is the most efficient way to cover the whole sensing area, and indeed many routing, location management and channel assignment protocols are based on it [START_REF] Chen | Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks[END_REF][START_REF] Kim | Hex-grid based routing protocol in wireless sensor networks[END_REF][START_REF] Nocetti | Addressing and routing in hexagonal networks with applications for tracking mobile users and connection rerouting in cellular networks[END_REF][START_REF] Ping | Topology control with hexagonal tessellation[END_REF][START_REF] Stojmenovic | Honeycomb networks: Topological properties and communication algorithms[END_REF]. It is thus intriguing to ask whether the reception zones of nonuniform SINR diagrams enjoy some desirable properties (e.g., assume a convenient form) when restricted to their corresponding Voronoi cells.

In this paper, it is shown that the diagram obtained from a nonuniform SINR diagram by restricting its reception zones to their respective Voronoi cells (e.g., hexagonal cells in the grid) behaves almost as nice as a uniform SINR diagram: the resulting reception zones are convex, and their fatness measure depends only on parameters typically bounded by a constant, and in particular is independent of the number of stations in the network. For an illustration see the reception zone of station s 0 in Figure 1(a).

These fundamental properties provide a theoretical justification to engineering practices basing regional tessellations on the Voronoi diagram, and help to explain the soundness and efficacy of such practices.

To prove convexity, we extend the proof for the uniform setting of [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF] to the nonuniform setting 5 . Apart from the theoretical interest, this result is of considerable practical significance, as obviously, having a convex reception zone inside each hexagonal cell may ease the development of protocols for various design and communication tasks such as scheduling, topology control and connectivity.

We note that convexity within a Voronoi cell is important also in the mobile setting, where no fixed tessellation can be assumed. For example, in the setting of Vehicular ad-hoc network (VANET) [START_REF] Yousefi | Vehicular adhoc networks (vanets): challenges and perspectives[END_REF], the stations are mobile but each user is still mapped to the closest base-station. Hence, although the hexagonal tessellation is no longer preserved, the convexity within the (dynamic) Voronoi tessellation is still relevant (for an illustration, see Fig. 1(b)-(c)).

As an application for the convexity property, we consider the problem where one wishes to cover the entire area of a given bounded polygon P by using a base-station network embedded in P. One natural way to do that is by assigning each base-station an area of coverage. Usually the base-station needs to cover the area of its Voronoi cell up to where it intersects with P. Assuming the power with which each base-station transmits can be controlled, it is desirable to increase the SINR ratio as much as possible in order to increase the capacity of the cellular network. The problem of determining the transmission energy of each base-station so as to maximize the capacity of the entire network is called the Power Control Voronoi Diagram (PCVD) problem. We show that although PCVD is a non-convex and non-discrete problem, it can be solved in a nearly optimal manner.

Our algorithm is especially useful in the mobile setting where the positions of base-stations change with time. This scenario can happen in sudden-onset disasters and ad-hoc vehicle networks, since in these cases, the network structure is not fixed and it is not clear how to divide the coverage areas between the basestations. Although it is natural to use the Voronoi diagram, it is not clear how to assign the transmission energies in a way that guarantees a full coverage of the area of interest. The solution proposed in this paper for this problem has the advantage that it can adapted to a dynamic setting quite efficiently since it depends upon the Voronoi tessellation that can be maintained efficiently in a dynamic setting [START_REF] Basch | Data structures for mobile data[END_REF][START_REF] Guibas | Voronoi diagrams of moving points in the plane[END_REF]. Exploiting the convexity property in Voronoi cells, we propose a discrete equivalent formulation of the PCVD problem. Specifically, we show that given the convexity guarantee, it is sufficient to insist on achieving the optimal threshold β only on the vertex set of each Voronoi cell (where unbounded Voronoi cells are bounded by using a bounding polygon P that contains the entire coverage area). Computing a power assignment maximizing the coverage within Voronoi cells has been considered also in [START_REF] Xu | Joint voronoi diagram and game theory-based power control scheme for the hetnet small cell networks[END_REF] from a game theoretic point of view; yet no analytic result has been known so far for this problem.

We then turn to consider the fatness property. In [START_REF] Kantor | The topology of wireless communication[END_REF], it was shown that the fatness of nonuniform zone can be bounded by some function of the maximum transmission power ψ max , the ambient noise N , the SINR threshold β, the pathloss exponent α, the distance κ to the closest interfering station and the number of stations in the network. The SINR+Voronoi zones are shown to have a fatness bound that is independent of n. In particular, since the network parameters α, β, κ, N and ψ max are bounded in practice (unlike the number of stations), the SINR+Voronoi zones are effectively fat.

Finally, using [START_REF] Avin | On the power of uniform power: Capacity of wireless networks with bounded resources[END_REF], the convexity and the improved fatness bound imply an approximate point location scheme for SINR+Voronoi zones whose preprocessing time and memory requirements are significantly more efficient than those obtained in [START_REF] Kantor | The topology of wireless communication[END_REF]. For a recent work on batched point location tasks see [START_REF] Aronov | Batched point location in SINR diagrams via algebraic tools[END_REF].

Geometric notions and wireless networks

Geometric notions. We consider the d-dimensional Euclidean space R d (for d ∈ Z ≥1 ). Denote the distance between points p and q by dist(p, q) = qp and the ball of radius r centered at point

p ∈ R d by B d (p, r) = {q ∈ R d | dist(p, q) ≤ r}.
Unless stated otherwise, we assume the 2-dimensional Euclidean plane, and omit d. The basic notions of open, closed, bounded, compact and connected sets of points are defined in the standard manner.

We use the term zone to describe a point set with some "niceness" properties. Unless stated otherwise, a zone refers to the union of an open connected set and some subset of its boundary. It may also refer to a single point or to the finite union of zones.

The point set P is said to be star-shaped with respect to point p ∈ P if the line segment p q is contained in P for every point q ∈ P . In addition, P is said to be convex if it is star-shaped with respect to any point p ∈ P , see [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF].

For a bounded zone Z = ∅ and an internal p ∈ Z, denote the maximal and minimal diameters of Z w.r.t. p by δ(p, Z) = sup{r > 0 | Z ⊇ B (p, r)} and ∆(p, Z) = inf{r > 0 | Z ⊆ B (p, r)}, and define the fatness parameter of Z with respect to p to be ϕ(p, Z) = ∆(p, Z)/δ(p, Z). The zone Z is said to be fat with respect to p if ϕ(p, Z) is bounded by some constant.

Wireless networks and SINR Diagrams. We consider a wireless network A = d, S, ψ, N , β, α , where d ∈ Z ≥1 is the dimension, S = {s 0 , s 1 , . . . , s n-1 } is a set of n ≥ 2 radio stations embedded in the d-dimensional space, ψ is an assignment of a positive real transmitting power ψ i to each station s i , N ≥ 0 is the background noise, β ≥ 0 is a constant reception threshold, and α > 0 is the path-loss parameter. The signal to interference & noise ratio (SINR) of s i at point p is defined as

SINR A (s i , p) = ψ i • dist(s i , p) -α j =i ψ j • dist(s j , p) -α + N . ( 1 
)
Observe that SINR A (s i , p) is always positive since the transmission powers and the distances of the stations from p are always positive and the background noise is non-negative. In certain contexts, it may be more convenient to consider the reciprocal of the SINR function,

SINR -1 A (s i , p) = 1 ψ i j =i ψ j dist(s i , p) dist(s j , p) α + N • dist(s i , p) α . (2) 
When the network A is clear from the context, we may omit it and write simply SINR(s i , p). The fundamental rule of the SINR model is that the transmission of station s i is received correctly at point p / ∈ S if and only if its signal to noise ratio at p is not smaller than the reception threshold of the network, i.e., SINR(s i , p) ≥ β. In this case, we say that s i is heard at p. We refer to the set of points that hear station s i as the reception zone of s i , defined as

H A (s i ) = {p ∈ R d -S | SINR A (s i , p) ≥ β} ∪ {s i } .
(Note that SINR(s i , •) is undefined at points in S and in particular at s i itself, and that H A (s i ) is not is not necessarily connected or restricted to the Voroni cell Vor(s i )). The null zone is the set of points that hear no station s i ∈ S (due to the background noise and interference),

H A (∅) = {p ∈ R d -S | SINR(s i , p) < β, ∀s i ∈ S}. An SINR diagram H(A) = {H A (s i ), 0 ≤ i ≤ n -1} ∪ {H A (∅)} is
a "reception map" partitioning the plane into the stations reception zones and the null zone. The following important technical lemma from [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF] will be useful in our later arguments. 

(A) = d, f (S), ψ, N /σ 2 , β, α , where f (S) = {f (s i ) | s i ∈ S}.
Then f preserves the signal to noise ratio, namely, for every station s i and for all points p / ∈ S, we have

SINR A (s i , p) = SINR f (A) (f (s i ), f (p)).
Avin et al. [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF] discuss the relationships between an SINR diagram on a set of stations S with uniform transmission powers and the corresponding Voronoi diagram on S. Specifically, it is shown that the n reception zones H A (s i ) around each point s i are strictly contained in the corresponding Voronoi cells Vor(s i ) where

Vor(s i ) = {p ∈ R d | dist(s i , p) ≤ dist(s j , p) for any j = i} . (3) 
In contrast, the reception zone of a nonuniform SINR diagram is not necessarily contained within the Voronoi cell of the corresponding station (e.g., a strong station with high transmission energy may be successfully received in points outside its Voronoi cell). Kantor et al. [START_REF] Kantor | The topology of wireless communication[END_REF] showed that nonuniform SINR diagrams are related to a weighted variant of Voronoi diagrams [START_REF] Aurenhammer | An optimal algorithm for constructing the weighted voronoi diagram in the plane[END_REF].

SINR+Voronoi Diagrams. Consider a wireless network A = d, S, ψ, N , β, α . Let Vor(s i ) be the Voronoi cell of station s i (see Eq. ( 3)). Define VH A (s i ) be the reception zone of s i restricted to its Voronoi cell, where

VH A (s i ) = H A (s i ) ∩ Vor(s i ) .
The SINR+Voronoi diagram consists of the n Voronoi-restricted reception zones

VH = VH A (s 0 ), . . . , VH A (s n-1 ) .
Without loss of generality, throughout we fix a station s 0 and show the following (for an illustration see Fig. 2).

Theorem 1. For every wireless network A = d, S, ψ, N ≥ 0, β > 0, α , The Voronoi-restricted reception zone VH A (s 0 ) is convex.

𝑠 0 𝑉ℋ(𝑠 0 ) 𝑉𝑜𝑟(𝑠 0 ) ℋ(𝑠 0 ) 𝑠 1 𝑠 2 
Fig. 2. The reception region of s0 is non-convex but its part restricted to the Voronoi cell of s0 is convex. The green area depicts H(s0). The Voronoi-restricted reception zone VH(s0) is the darker region.

Proof outline

The following technical lemma from [START_REF] Kantor | The minimum principle of SINR: A useful discretization tool for wireless communication[END_REF] plays a key role in our analysis. Denote the origin point by q = (0, 0), let p L = (1, 0), p R = (-1, 0) and define ρ i = dist 2 (s i , q), for every i = 0, ..., n -1.

Lemma 2 ([11]

). Let A be a noise-free network (N = 0) and let q / ∈ S. Then

max{SINR -1 A (s 0 , p L ) , SINR -1 A (s 0 , p R )} ≥ n-1 i=1 ψi ψ0 • ρ0+1 ρi+1 α/2
.

Our proof scheme for Lemma 1 is as follows. For simplicity, consider the two-dimensional case. Using [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF], the proof naturally extends to any dimension d ≥ 2. Consider pairs of reception points p 1 , p 2 ∈ VH A (s 0 ). We classify such pairs into two types. The first type is where s 0 ∈ p 1 p 2 . This type is handled in Lemma 3, where it is shown that VH A (s 0 ) is star-shaped with respect to s 0 .

The complementary type, where s 0 ∈ p 1 p 2 , is handled in two steps. First, in Lemma 4, we consider the simplified case where there is no background noise (i.e., N = 0) and use Lemma 2 to establish the claim. Finally, we consider the general noisy case where N > 0 and establish Theorem 1. Lemma 3. VH A (s 0 ) is star-shaped with respect to s 0 .

Proof. In fact, we prove a slightly stronger assertion. Consider some point p ∈ Vor(s 0 ). We show that SINR(s 0 , q) > SINR(s 0 , p) for all internal points q in the segment s 0 p. By Lemma 1, we may assume without loss of generality that s 0 = (0, 0) and p = (-1, 0). Consider some station s i , i > 0. Note that s i is outside the unit circle around p (since p is in Vor(s 0 )). Therefore, if s i is not located on the positive half of the horizontal axis, then it can be relocated to a new location s i on the positive half of the horizontal axis by rotating it around p so that dist(s i , p) = dist(s i , p) and dist(s i , q) ≤ dist(s i , q) for all points q ∈ s 0 p (see Fig. 3). This process can be repeated with every station s i , i > 0, until all interfering stations s i = s 0 are located on the positive half of the horizontal axis without decreasing the interference at any point q ∈ s 0 p. Therefore it is sufficient to establish the assertion under the assumption that s i = (a i , 0), where a i > 0, for every i > 0. Let q = (-x, 0) for some x ∈ (0, 1]. To show that SINR(s 0 , q) > SINR(s 0 , p), we consider the reciprocal of the SINR function from Eq. ( 2) on s 0 and q, which in the defined setting assumes the form

f (x) = SINR -1 (s 0 , q) = n-1 i=1 ψ i ψ 0 x a i + x α + x α ψ 0 • N ,
and prove that f (x) < f (1) for all x ∈ (0, 1). This follows since the derivative

df (x) dx = αx ψ0 • n i=1 ψi•ai (ai+x) (α+1) + N is positive for x ∈ (0, 1].

Convexity without background noise

We now complete the proof for the noise free case where N = 0.

Lemma 4. For every wireless network

A 0 = d, S, ψ, N = 0, β, α , VH A0 (s i ) is convex for every s i ∈ S.
Proof. By Lemma 3, it remains to show that p 1 p 2 ⊆ VH A0 (s 0 ) for any pair of points p 1 , p 2 ∈ VH A0 (s 0 ) such that s 0 / ∈ p 1 p 2 . Note that by the convexity of a Voronoi cell, p 1 p 2 ⊂ Vor(s i ). Thus, there is no station s i on this segment, concluding that the SINR A0 (s 0 , p) function is continuous on the p 1 p 2 segment. It remains to prove that p 1 p 2 ⊆ H A0 (s 0 ), i.e., that SINR A0 (s 0 , q) ≥ β for any q ∈ p 1 p 2 . We now show that for every q ∈ p 1 p 2 , SINR A0 (s 0 , q) ≥ min{SINR A0 (s 0 , p 1 ), SINR A0 (s 0 , p 2 )}. Specifically, we show that the dual statement holds, namely, that

SINR -1 A0 (s 0 , q) ≤ max SINR -1 A0 (s 0 , p 1 ), SINR -1 A0 (s 0 , p 2 ) . ( 4 
) p s 0 s ′ 3 s ′ 1 s ′ 2 s 2 s 3 s 1
Fig. 3. Relocating stations. All stations are mapped to the positive x-axis, so that the SINR value at point p with respect to the station s0, is preserved.

By Lemma 1 and by the continuity of the SINR A function in the segment p 1 p 2 , it is sufficient to consider the case where p 1 = (-1, 0), p 2 = (1, 0) and q = (0, 0), the middle point between p 1 and p 2 on the segment. By applying Lemma 2, we have

max{SINR -1 A0 (s 0 , p 1 ) , SINR -1 A0 (s 0 , p 2 )} ≥ n-1 i=1 ψ i ψ 0 • ρ 0 + 1 ρ i + 1 α/2 . ( 5 
)
On the other hand, by Eq. ( 2),

SINR -1 A0 (s 0 , q) = n-1 i=1 ψ i ψ 0 • ρ 0 ρ i α/2 . ( 6 
)
As q ∈ Vor(s 0 ), we have that ρ i ≥ ρ 0 and hence ρ 0 /ρ i ≤ (ρ 0 + 1)/(ρ i + 1) for every i ∈ {1, ..., n -1}. This, together with Eq. ( 5) and ( 6), implies Ineq. (4).

Convexity with background noise

We now consider the general case where N ≥ 0.

Proof (Theorem 1). Consider two points p 1 , p 2 ∈ VH A (s 0 ). We need to show that p 1 p 2 ⊆ VH A (s 0 ). By Lemma 1, we may assume without loss of generality that p 1 = (-1, 0) and p 2 = (1, 0). Let d N = max{dist(s 0 , p 1 ), dist(s 0 , p 2 )}. Let A * be a noise-free (n + 1)-station network obtained from A by replacing the background noise with a new station s N located in (0, d N ) with transmission

power ψ N = N • (d 2 N + 1) α/2 . That is, A * = d = 2, S * , ψ * , N = 0, β, α
, where S * = S ∪ {s N } and ψ * = (ψ 0 , ..., ψ n-1 , ψ N ). It is easy to verify that ψ N • dist(s N , p i ) -α = N and ψ N • dist(s N , q) -α ≥ N , for every q ∈ p 1 p 2 . Thus, on the one hand,

SINR A * (s 0 , p i ) = SINR A (s 0 , p i ), for i ∈ {1, 2}, (7) 
and on the other hand, for all points q ∈ p 1 p 2 , SINR A (s 0 , q) ≥ SINR A * (s 0 , q).

We now show that p 1 , p 2 ∈ VH A * (s 0 ). We first claim that p 1 , p 2 ∈ Vor * (s 0 ) where Vor * is the Voronoi diagram of the set S * . Since p 1 , p 2 ∈ VH A (s 0 ), in particular p 1 , p 2 ∈ Vor(s 0 ). This implies that dist(s 0 , p i ) ≤ dist(s j , p i ), for every i ∈ {1, 2} and j ∈ {1, ..., n -1}. In addition, dist(s

N , p i ) > d N ≥ dist(s 0 , p i ), implying that p 1 , p 2 ∈ Vor * (s 0 ) as needed. It remains to show that p 1 , p 2 ∈ H A * (s 0 ). Since p 1 , p 2 ∈ H A (s 0 ), SINR A (s 0 , p i ) ≥ β for i ∈ {1, 2}.
Thus, by Eq. ( 7), SINR A * (s 0 , p i ) ≥ β as well, and p 1 , p 2 ∈ H A * (s 0 ). Finally, since p 1 , p 2 ∈ VH A * (s 0 ) where A * is a noise free network, by Lemma 4 it holds that SINR A * (s 0 , q) ≥ β, for all points q ∈ p 1 p 2 . Thus, by Ineq. ( 8), also SINR A (s 0 , q) ≥ β, for all points q ∈ p 1 p 2 , are required. Theorem 1 follows.

Fatness of SINR+Voronoi Zones

In this section we develop a deeper understanding of the shape of SINR+Voronoi reception zones by analyzing their fatness. Consider a nonuniform power network A = d, S, Ψ , N , β, α with positive background noise N > 0, where S = {s 0 , . . . , s n-1 }, and α ≥ 0 and β > 1 are constants 6 . We focus on s 0 and assume that its location is not shared by any other station (otherwise, H(s 0 ) = {s 0 }). Let κ = min si∈S\{s0} {dist(s 0 , s i )} denote the distance between s 0 and the closest interfering station. The known fatness bounds for uniform and nonuniform reception zones are summarized as follows.

Fact 2 Let A be an n-station network. (a) If A is uniform, then ϕ(s 0 , H Au (s 0 )) = O(1). (b) If A is nonuniform, then ϕ(s 0 , H Anu (s 0 )) = O(ψ max /κ • n/N ) for α = 2.
We now show that in the SINR+Voronoi setting, the fatness of VH A (s 0 ) with respect to s 0 , can be bounded as a function of ψ max , κ, α, β and N , namely, it is independent of the number of stations n.

Theorem 3. ϕ(s 0 , VH(s 0 )) ≤ α √ β + 1 α √ β -1 • max 1 , 3 κ • α ψ 0 N • β • max{1, α β -1} .
In certain cases, tighter bounds can be obtained. In particular, we say that an SINR+Voronoi zone VH A (s 0 ) is well-bounded if the minimal enclosing ball of VH A (s 0 ) is fully contained in the Voronoi cell Vor(s 0 ). Then we have:

Lemma 5. If VH A (s 0 ) is a well-bounded zone, then ϕ(s 0 , VH A (s 0 )) = O(1).
The proof of Thm. 3 is provided in the full version. Its overall structure is similar to that of Thm. 4.2 in [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF], but requires delicate adaptations for the nonuniform setting. The radius ∆(s 0 , VH A (s 0 )) is easily bounded by considering the extreme case where s 0 is the solitary transmitting stations. Our main efforts went into bounding the small radius δ(s 0 , VH A (s 0 )) by a function independent of n. The proof consists of three main steps. First, we bound the fatness of SINR+Voronoi zones in a setting of two stations in a one-dimensional space. Then, we consider a special type of nonuniform power networks called positive collinear networks. Finally, the general case is reduced to the case of positive collinear networks.

Applications

In this section, we present two applications for the properties established in the previous sections. In Subsec. 4.1, we present an application for the convexity property and describe a new variant of the power control problem. In Subsec. 4.2, we exploit the convexity and the improved bound on the fatness of SINR+Voronoi zones to obtain an improved approximate point location scheme for SINR+Voronoi diagram.

The Power Control Voronoi Diagram (PCVD) Problem

In the standard power control problem for wireless networks, one is given a set of n communication links L = { 0 , . . . , n-1 }, where each link i represents a communication request from station s i to receiver r i . The question is then to find an optimal power assignment for the stations, so as to make the reception threshold β as high as possible and ease the decoding process. As it turns out, this problem can be solved elegantly using the Perron-Frobenius (PF) Theorem [START_REF] Zander | Performance of optimum transmitter power control in cellular radiosystems[END_REF]. Essentially, since every station is required to satisfy a fixed number of receivers (in the standard formulation, there is actually one receiver per station), the system can be represented in a matrix form that has some useful properties. We now consider a new variant of the problem in which every station has to satisfy a continuous zone rather than a fixed number of points. The motivation for this formulation is that it allows one to attain an optimal complete coverage of the reception map. We now define the problem formally.

In the Power Control for Voronoi Diagram (PCVD) problem, one is given a network of n stations S = {s 0 , . . . , s n-1 } embedded in some d-dimensional bounded polygon 7 P and the task is to find an optimal power assignment for the stations, so as to make the reception threshold β as high as possible while still SINR A (s i , p) ≥ β for every s i and every point p ∈ Vor(s i ) ∩ P.

Note that without the convexity property within VH A (s i ) zones, established in the previous section, it is unclear how to formulate this problem by using a finite set of inequalities. This is because each Voronoi cell consists of infinitely many reception points, each of which must satisfy an SINR constraint. Due to the convexity property, we can provide the following succinct representation of the problem. For every station s i ∈ S, let V i be the vertex set 8 of the bounded polytope Vor(s i ) ∩ P. Let m = n-1 i=0 |V i |. The optimization task consists of m inequalities and n + 1 variables (n variables corresponding to the power assignment and β). This yields the following formulation. maximize β subject to:

SINR(s i , p) ≥ β for every s i ∈ S and p ∈ V i .

We first claim that this is a correct formulation for the Power Control for Voronoi Diagram problem. Let β * be the optimum solution of Program [START_REF] Kantor | The topology of wireless communication[END_REF]. By the feasibility of this solution, SINR(s i , p) ≥ β * for every p ∈ V i . Since the reception zone is convex within its Voronoi cell, we get that SINR(s i , p) ≥ β * for every p ∈ Vor(s i ) (in particular, in the optimum β, the reception zone contains the Voronoi cell of the station).

To solve Program (9), note that for any fixed β, the inequalities are linear in the n transmission power variables and hence the resulting set of m linear inequalities is solvable in polynomial time. A nearly optimum power assignment can then be found by searching for the best β via binary search up to some desired approximation.

The Closest Station Point Location Problem

In the Closest Station Point Location Problem, one is given a nonuniform power network A with n transmitting stations, S = {s 0 , . . . , s n-1 }. Given a query point p ∈ R 2 , it is required to answer whether s p is heard at p, where s p is the closest station to p (i.e., p ∈ Vor(s p )).

Since nonuniform SINR zones are non-convex and non-fat, the preprocessing time and memory required in the approximate point location scheme of [START_REF] Kantor | The topology of wireless communication[END_REF] are polynomial but costly. In this section we show that one can solve approximate point location tasks for nonuniform networks with effectively the same bounds as obtained for uniform networks (where ψ max and N are bounded by constants), as long as the query point p belongs to the Voronoi cell of the station that should be heard at p. Hence Lemma 5.1 of [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF] yields the following. A (s i ) is bounded and its area is at most an -fraction of the area of VH A (s i ).

Furthermore, given a query point p, it is possible to extract from DS, in time O(log n), the zone in VH to which p belongs. Hence the closest station point location query can be answered with approximation ratio and query time O(log(ψ max • n/(N • κ))), where κ = min i,j dist(s i , s j ).

For comparison, the general point location scheme of [START_REF] Kantor | The topology of wireless communication[END_REF] requires O(n 10 ψ 4 max / 2 ) preprocessing time and O(n 8 ψ 4 max / 2 ) memory bits.

Conclusion

The Voronoi diagram of the base stations is a natural model for wireless networks in the plane. In this paper we show that restricting nonuniform reception zones to their corresponding Voronoi regions yields zones that are (almost) as nice as uniform reception zones. The increasing demand for mobile and high performance networks has created a need to dynamically determine the power with which each base station should transmit in order to optimize the network capacity. A common approach is to assign each base station its own Voronoi cell. When the network is dynamic, the Voronoi cell is no longer fixed and one can no longer compute in advance the parameters required for optimal network performance. We consider the resulting fundamental Power Control for Voronoi Diagram (PCVD) problem. The convexity property guaranteed for SINR reception zones within Voronoi regions enables us to discretize the PCVD problem while maintaining optimality. In addition, we showed that point location queries for SINR+Voronoi zones can be answered with almost the same bounds as for the uniform case. We believe that this approach may pave the way for designing additional algorithms for dynamic mobile networks

Fig. 1 .

 1 Fig. 1. The overlay of an SINR diagram of a nonuniform wireless network on the corresponding Voronoi diagram. (a) Hexagonal Voronoi cells; the intersection between the reception region of station s0 and the Voronoi cell around it is highlighted in bold. (b) Slight random perturbation to a hexagonal network. (c) Random positions.

Lemma 1 .

 1 [START_REF] Avin | SINR diagrams: Convexity and its applications in wireless networks[END_REF] Let f : R d → R d be a mapping consisting of rotation, translation, and scaling by a factor of σ > 0. Consider some network A = d, S, ψ, N , β, α and let f

Theorem 4 .

 4 For every n-station nonuniform power network with SINR+Voronoi reception zones VHA (s 1 ), . . . , VH A (s n ) , it is possible to construct, in preprocessing time O((ψ max /(κ • N )) 3/α • n 2 • -1 ), a data structure DS requiring memory of size O((ψ max /(κ • N )) 3/α • n • -1 )that imposes a (2n + 1)-wise partition VH = VH + A (s 1 ), . . . , VH + A (s n ), VH ? A (s 1 ), . . . , VH ? A (s n ), VH - A of the Euclidean plane, such that for every i ∈ {0, . . . , n -1}, (a) VH + A (s i ) ⊆ VH A (s i ), (b) VH A (s i ) ∩ VH - A = ∅, (c) VH ?

Note that in the uniform setting too, convexity is guaranteed only inside the Voronoi cell, but since the entire reception zone is restricted to the Voronoi cell, this implies that the entire zone is convex. In contrast, in the nonuniform setting, the reception zone of a station with a high transmission energy might exceed its Voronoi cell.

Note that the convexity proof presented in Section 2 holds for any β ≥ 0.
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