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Tight Bounds for MIS in Multichannel Radio Networks

Sebastian Daum and Fabian Kuhn

Department of Computer Science, University of Freiburg, Germany
{sdaum,kuhn}@cs.uni-freiburg.de

Abstract. In [8] an algorithm has been presented that computes a maximal in-
dependent set (MIS) within O(log2 n/F + lognpolyloglog n) rounds in an n-
node multichannel radio network with F communication channels. The paper
uses a multichannel variant of the standard graph-based radio network model
without collision detection and it assumes that the network graph is a polynomi-
ally bounded independence graph (BIG), a natural combinatorial generalization
of well-known geographic families. The upper bound of [8] is known to be opti-
mal up to the polyloglog n factor.
In this paper, we adapt this algorithm and its analysis to improve the result of [8]
in two ways. Mainly, we get rid of the polyloglog n factor in the running time and
we thus obtain an asymptotically optimal multichannel radio network MIS algo-
rithm. In addition, our new analysis allows to generalize the class of graphs from
those with polynomially bounded local independence to graphs where the local
independence is bounded by an arbitrary function of the neighborhood radius.

1 Introduction

In recent years there has been an increased interest in algorithms for shared spectrum
networks [27]. Nowadays, most modern wireless communication networks feature a
multitude of communication frequencies [1, 2, 5]1—and we can certainly expect this
trend to continue.

In the light of this development, in the present paper, we settle the question of deter-
mining the optimal asymptotic time complexity of computing a maximal independent
set (MIS) in the multichannel variant of the classic radio network model first introduced
in [4,7]. The task of constructing an MIS is one of the best studied problems in the area
of large-scale wireless networks. On the one hand this is due to the fact that MIS (to-
gether with coloring problems) is one of the key problems to study the problem of
symmetry breaking in large, decentralized systems. On the other hand an MIS provides
a simple local clustering of the graph, which can be used as a building block for com-
puting more enhanced organization structures in these networks such as, e.g., a commu-
nication backbone based on a connected dominating set [6, 19, 30]. This is specifically
relevant in the context of wireless mobile ad hoc networks or sensor networks, in which
devices cannot rely on already existing infrastructure to organize themselves—devices
need to compute a meaningful structure by themselves to coordinate their interactions.

1 For example, the IEEE 802.11 WLAN standard provides a channel spectrum of up to 200
(partially overlapping) channels and Bluetooth specifies 79 usable channels.



Related Work. In [3,22] Alon et al. and Luby presented a simple and efficient random-
ized parallel algorithm to compute and MIS of a general graph. It is straightforward to
a standard distributed message passing model and as a consequence, the algorithm soon
became an archetype for many distributed MIS algorithms also in other—usually more
limiting—settings. The model we assume here is an extension to the radio network
model, for which an MIS algorithm with runtime O(log2 n) has been presented in [23]
for the class of unit disk graphs (UDGs). This algorithm has been proven to be asymp-
totically optimal [11] even for more basic version of the problem known as the wake-up
problem in single-hop radio networks. While the UDG restriction is well-known and
popular, a more general variant known as growth-bounded graphs or bounded indepen-
dence graphs that contains UDGs has also become the focus of quite some research,
e.g., [21, 25, 26]. In particular, in [26] it is shown that an MIS and many related struc-
tures can be compute in (asymptotically optimal) O(log∗ n) rounds in such graphs.

Much of the early algorithmic research on multichannel radio networks has focused
on networks with faults assuming a malicious adversary that can jam up to t of the F
available channels [10, 14–18, 20, 28, 29]. In addition, for fault-free networks, in [24] a
series of lower bound proofs have been provided, which show thatΩ(log2 n/F+log n)
rounds are needed to solve any problem which requires communication. In [10] a new
technique (called heralding) to deal with congestion in multichannel radio networks has
been established to solve leader election in single-hop networks in time asymptotically
matching the lower bound of [24]. This technique has been extended in [12] and [8]
to solve the problems of computing an approximate minimum dominating set and an
MIS, respectively. Our research here is based on this work and in particular on the MIS
algorithm of [8].
Contributions. In radio network models, in almost all cases a restriction to the un-
derlying graph model is being assumed. One of the most general ones are so-called
α-bounded independence graphs, where α(r) is a function that limits the size of a
maximum independent set in any r-neighborhood of the given graph. The MIS algo-
rithm from [8] solves the MIS problem in time O(log2 n/F + log n(log log n)d) in
such graphs for which α is bounded by polynomial of degree d. Here we get rid of the
polyloglog factor and thus show how to close the gap to the lower bound from [24]. At
the same time, we remove any restriction on the function α. We do so by adjusting the
algorithm from [8]—and though the change in the algorithm is relatively small, it leads
to a significantly more involved analysis.

2 Preliminaries

Algorithm and analysis of this paper are based on [8] and on the complete version [9]
of [8]. In the paper, we try to be as self-contained as possible. However, due to lack of
space, proofs are omitted and we focus on motivating and explaining the algorithms and
the main ideas of the analysis. For a full, detailed version of the paper, we refer to [13].
Radio Network Model. We model the network as an n-node graph G = (V,E). We
assume that n or a polynomial upper bound on n is known by all nodes. Nodes start
out dormant and are awakened/activated by an adversary. While nodes do not have ac-
cess to a global clock, communication is assumed to happen in synchronous time slots



(rounds). The network comprises F communication channels. In each round each node
can choose to operate on one channel, either by listening or broadcasting. A node that
broadcasts does not receive any message in that round, and its signal reaches all neigh-
bors that operate on the same channel. A node v listeing on some channel can decode
an incoming message iff in the given round, exactly one of its neighbors broadcasts on
the same channel. If two or more neighbors broadcast, their signals collide at v and v
receives nothing, unable to detect this collision. A node can only operate on one channel
in each round and therefore it does not learn anything about events on other channels.
Notation. In our algorithm all nodes move between a finite set of states: W – waiting,
D – decay, A – active, H′ – herald candidate, H – herald, L′ – leader candidate, L
– leader, M – MIS node, E – eliminated/dominated. We overload this notation to also
indicate the set of nodes being in a certain state, e.g., A := {v ∈ V : v is in state A}.
Since nodes change their states, in case of ambiguity, we write Ar for the set of active
nodes in round r. State changes always happen between rounds. We define Vhf := A ∪
H′ ∪ L′ ∪H ∪ L as the nodes in the so-called herald filter.

We use N(v) to denote the neighbors of v in G, while we use Nk(v) to denote the
set of nodes in distance at most k from v, including v itself. We also often write NS(u)
orNk

S (u) to abbreviateN(u)∩S orNk(u)∩S respectively, for some state S. For S ⊆ V
we let N(S) :=

⋃
v∈S N(v). We call a node v alone or lonely, if NVhf∪M(u) = ∅.

We say that an eventA happens with high probability (w.h.p.), with decent probabil-
ity, or with constant probability (w.c.p.), if it happens with probability at least 1− n−c,
1 − log−c n, or Ω(1), respectively, where c is a constant that can be chosen arbitrarily
large. By x� y we denote that x > cy for a sufficiently large c > 1.
Bounded Independence. In addition to the communication characteristics of the net-
work, we require the network graph to be a bounded independence graph (BIG) [21,25].
A graph G is called an α-bounded independence graph with independence function
α : N → N, if for every node v. no independent set S of the subgraph of G induced
by Nd(v) exceeds cardinality α(d). Note that in particular, α does not depend on n
and thus for every fixed d, α(d) is a constant. In [8], α is required to be a polynomial,
whereas in this paper, we put no restrictions on α. It can easily be verified that one can
always upper bound the largest independent set of the subgraph induced by Nd(v) by
α(2)d and thus any independence function is always upper bounded by some exponen-
tial function. For simplicity we define a constant α := α(2) and we assume that all
nodes know the value of α.
Number of Channels. We assume that F = ω(1) as otherwise single channel algo-
rithms achieve the same asymptotic time bounds. For F = ω(log n) we only actually
use Θ(log n) channels since more channels do not lead to an additional asymptotic ad-
vantage. For ease of exposition we assume F = Ω(log log n) and refer to [9] for an
explanation of how to adapt the algorithm for the case F = o(log log n).
Maximal Independent Set. We say an algorithm computes an MIS in time T , if the
following properties hold w.h.p. for each round r and node v (waking up in round rv):
(P1) v declares itself as either dominating (∈ M) or dominated (∈ E) before round

rv + T and this decision is permanent.
(P2) If v is dominated in round r, then N(v) ∩Mr 6= ∅.
(P3) If v is dominating in round r, then N(v) ∩Mr = ∅.



3 Algorithm Description

Detailed pseudo-code can be found in [13]. Here we only present pseudo-code for the
core structure of our MIS algorithm (Algorithm 1).

Algorithm 1 HeraldMIS—core structure
Input: σ⊕, σ	,∆max, π`, α, n, nD = Θ(F), nA = Θ(log logn), nR = Θ(α(2)),

τW = Θ(logn), τD = Θ(logn/F), τlonely = Θ(log2 n/F + logn), τrbg = Θ(logn)
States: W—waiting, D—decay, M—MIS node, E—eliminated

A—active, L/L′—leader (candidate), H/H′—herald (candidate)
Channels: R1, . . . ,RnR—report,D1, . . . ,DnD—decay,

A1, . . . ,AnA—herald,H—handshake, G—red-blue game

1: count← 0; state← W; γ ←⊥; lonely←⊥; γmin ← log−24 n
2: while state 6= E do
3: count← count + 1
4: lonely← lonely + 1
5: γ ← min {γ · σ⊕, 1/2}
6: uniformly at random pick q ∈ [0, 1), j ∈ {1, . . . , nD} and k ∈ {1, . . . , nR}
7: switch state do
8: case W or D: run DFILTER . stage 1—decay filter
9: case A: run HERALDPROTOCOL . stage 2—herald filter
10: case H′ or L′: run HANDSHAKE
11: case H or L: run REDBLUEGAME
12: case M: run DOMINATOR . stage 3—MIS node
13: if lonely = τlonely then
14: state← M
15: endWhile

Theorem 1. Algorithm HERALDMIS solves MIS within O(log2 n/F + log n) rounds.

We first give a short summary of how the algorithm works including a summary
of results or [9]. The algorithm is divided into three stages, the decay filter (states W
and D), the herald filter (states A, L′, H′, L and H), and decided nodes (states M and
E). Nodes move forward within those stages—possibly omitting the herald filter—but
never backwards. The decay filter is a powerful tool (which we use as a black box) that
provides that over the full runtime of the algorithm the degree of the graph induced by
nodes in the herald filter is bounded by O(log3 n). In short, nodes first only listen for
a while (W), then they start broadcasting on one out of Θ(F) random channels with
probability 1/n (D), doubling this probability every O(log n/F) rounds. A node that
broadcasts moves to the herald filter and a node that receives a message restarts in W.
The decay filter is the same as in [9] and for a detailed description and analysis we refer
to [9]. Eliminated nodes (E) know that they have a neighbor in the MIS and stop their
protocol. MIS nodes (M) try to inform their neighborhood (eliminating them), but they
also actively disrupt protocols in the herald filter, causing them to fail. Apart from this,
there is no influence between nodes being in different stages.

The focus of this paper is almost exclusively on the herald filter. It helps for under-
standing the complex algorithm to only think of the graph that is induced by nodes in
the herald filter and to recall that its maximum degree is polylogarithmic in n.

The herald filter is divided into three blocks, active state/herald protocol (A), hand-
shake protocol (L′ and H′) and red-blue protocol (L and H). In the first block nodes try



to make contact with surrounding nodes. If this does indeed happen, both nodes engage
in a handshake, which is only successful, if none of the two nodes neighbors any MIS
node or a node in the third block. If the handshake succeeds, both nodes start a series of
coin flipping games, with the purpose of ensuring that no two nodes that have become
leaders (L) simultaneously, can join the MIS. The blocks that differ from the algorithm
description in [9] are the active state and the red-blue protocol, where the changes in
the latter are made to compensate the changes in the more complicated active state.

There are two ways for a node v to join the MIS—either by waiting for a long time
without hearing from any nearby node, or by successfully communicating with a node u
during the active state, teaming up with it (as a leader-herald pair) and together passing
through the handshake and the red-blue protocol. The farther a pair of nodes advances
in these blocks, the closer its leader is to become an MIS node. We now recap and
describe the behavior of a node v in the herald filter, i.e., v ∈ Vhf, pointing out where
changes to the original algorithm occur.
Loneliness. v maintains a counter lonely. Whenever v hears from another node, it
resets lonely to zero. If lonely ever exceeds τlonely = Θ

(
log2 n/F + log n

)
, then v

assumes that it is alone/lonely in the herald filter (i.e., NVhf∪M(v) = ∅) and joins the
MIS—w.h.p., this action is safe, i.e., should v not be alone, then the neighbors of v are
far from becoming MIS nodes themselves and v has enough time to eliminate them.2

Activity. Also, v maintains an activity value γ(v) ∈
[
γmin, 1/2

]
, where γmin, the initial

value, is in Ω(1/ polylog n). The activity γ(v) solely governs the behavior of v in
A, however all nodes in Vhf maintain this value. Nodes outside Vhf have zero activity.
By default, In each round, γ(v) increases by a (small) constant factor σ⊕ > 1 such
that after Θ(log log n) rounds it reaches the maximum possible value 1/2. However,
whenever v receives a message from a neighboring leader or herald, then v reduces
γ(v) by a (large) constant factor σ	 � σ⊕. This is a change to the original algorithm,
where γ(v) could only increase. The reason for this change is the following. Leaders are
nodes that likely become MIS nodes, and if they do then they eliminate their neighbors
anyway. For safety reasons a leader l needs to wait for Θ(log n) rounds before it may
join the MIS. During that time, if l’s neighbors keep high activity values, progress
might be hindered in a δ′ = O(log log n) neighborhood of l, which is why in [9] an
α(δ′) = O(polyloglog n) speed loss had to be accepted and also why the algorithm of
[9] only works for polynomially bounded interference graphs. By also reducing activity
values, progress can be guaranteed even in a close neighborhood of a leader-herald
pair and nodes can join the MIS in a much more pipelined fashion. At the same time,
’unjustified’ activity value reductions only cause ’minor damage’ that can be mitigated.
Herald Protocol. A node v in the active state (A) participates in the herald protocol
with probability γ(v) ∈ [γmin, 1/2], otherwise it tries to learn of nearby leaders, heralds
or MIS nodes, by listening to one of constantly many report channels R1, ...,RnR ,
nR ≥ 3α2. If v participates in the herald protocol, then it chooses a channel Ai from
A1, ...,AnA with probability 2−i. It then listens on Ai with probability π` ≤ 1/10 or
broadcasts its ID otherwise.3 If v listens, but receives nothing, nothing happens and v

2 In [9] there existed some component called loneliness support block, operating on its own set
of channels S1, ...,SnS ; this block and its channels have been removed.

3 We want to note that π` is a constant parameter that we can choose arbitrarily.



stays in A. Should v receive the message of another node u on Ai, then in the next
round it engages with u in the handshake protocol as a herald candidate (H′), in the
hope of moving forward to the red-blue protocol together with u. Should v choose to
broadcast, then it deterministically pursues the handshake as a leader candidate (L′),
hoping that some other node u has heard its message and joins in for the handshake.
Handshake and Red-Blue Protocol. For a detailed description and analysis we refer
to [13] and [9]. In short, a node h ∈ H′ that received a message in the herald protocol
sends for two rounds on the handshake channel H, then listens twice, and sends again
for two rounds. A node l ∈ L′ that was sending before acts reversely, i.e., it listens,
sends and listens. Only if a node receives all expected messages it moves forward to
the red-blue protocol, otherwise it returns to A. The handshake can only possibly be
completed if a pair of exactly one broadcaster and one receiver participates.

The red-blue protocol is a repetition of τrbg/8 = Θ(log n) red-blue games of 8
rounds each. In odd rounds, both nodes l and h of the leader-herald pair send a blocking
signal onH, preventing nearby handshakes to succeed. At the beginning of each game,
the leader l randomly picks blue or red. If it picks red, it will sends a message on channel
G in round 2 and it listens on G in round 4, for blue it acts symmetrically. In round 6,
l sends the index k′ of the meeting channel for the next red-blue game on a previously
decided meeting channel Rk.4 In round 8 it listens on Rk′ . The herald h on the other
hand sends a message in both rounds 2 and 4. It listens in round 6 to update the meeting
channel and in round 8 it sends a message onRk′ .

By design of the handshake and the blocking signals of odd rounds in the red-blue
protocol, a leader l can neighbor a leader or herald of a different pair only if that other
node moved to the red-blue protocol simultaneously or with a 2-round shift. If l does
have such a neighbor, at some point it will not hear its herald in round 2/4, when it
listens. l then aborts the red-blue protocol, notifies h in round 6 and returns to A. The
messages sent by l/h in round 6/8 also have the purpose of letting nearby listening
active nodes reduce their activity values. An isolated pair on the other hand cannot be
knocked out anymore5 and after τrbg = Θ(log n) rounds the pair can assume that w.h.p.
there is no other conflicting pair nearby and the leader joins the MIS.

The handshake did not change and the red-blue protocol has been extended by 2
rounds—round 8 now gives heralds also the possibility to reach their neighbors.
Summary of Changes. Compared to the algorithm in [9], the following three things
have changed. The loneliness support block of the algorithm in [9] is not executed
anymore, except for maintaining the counter lonely. Also, the threshold τlonely has been
lowered to Θ

(
log2 n/F + log n

)
to reflect the new runtime of the algorithm. The main

change is that nodes reduce their activity γ if they hear from a nearby leader or herald.
The change in the red-blue game is an addition of 2 rounds: the seventh round is just a
copy of rounds 1, 3 and 5; the eighth round gives the herald of the pair a possibility to
notify nearby active nodes in order to reduce their activity values—so far only leaders
and MIS nodes were able to reach out to their neighbors.

Note that while the algorithm itself has barely changed, the analysis needed to be
extended significantly in order to achieve the optimal runtime.

4 The very first meeting channel is fixed by l during the handshake.
5 except by an MIS node, but that already implies progress



4 Analysis

4.1 Approach

To prove that Algorithm 1 indeed solves MIS in the given time bounds, we take the
following approach. In [9] it was proven that the graph, induced by nodes that passed
through the decay filter, has maximum degree ∆max = O(log3 n). A node u in the
herald filter (u ∈ Vhf) enters the MIS either if it assumes to be alone, or if it manages to
create and maintain a leader-herald bond with a neighboring node for τrbg = Θ(log n)
rounds. Once u ∈ Vhf, it either enters the MIS due to assumed loneliness; or if u has a
neighbor in Vhf, then within radius δ := δα = Θ(log log n) soon a leader-herald pair is
created that maintains its bond for τrbg rounds.6 So far this is the same as in [9]. There,
however, a stagnation of up to τrbg rounds might follow before the next isolated leader-
herald pair or MIS node gets created in Nδ(u). Considering that up to α(δ) nodes in
Nδ(u) can enter the MIS before u or one of its neighbors enters itself, the runtime of
the herald filter is O(τrbgα(δ)), or O(log npolyloglog n) if α is polynomial.

In the present paper, by decreasing activity levels of nodes neighboring leader-
herald pairs, the stagnation that can be caused by leaders on their way to join the MIS
does not last for longer thanO(log log n) rounds in expectation. This allows the creation
of isolated leader-herald pairs in Nδ(u) in a pipelined manner, reducing the expected
runtime of the herald filter to O(α(δ) log log n) = O(αδ log log n). Unlike in [9], here
we also can choose δ as an arbitrarily small value inΘ(log log n) without increasing the
runtime by more than constant factors. Choosing δ < log log n/ logα and a Chernoff
argument bounds the runtime of the herald filter by O(log n) with high probability.

In more detail, let u be a node that enters the herald filter in round tu. For the sake
of contradiction assume that u is not decided by time tu + τruntime. If u stays lonely,
it enters the MIS eventually in τlonely � τruntime rounds. Note that for u to move from
being non-lonely to lonely, some node in N2(u) must have entered the MIS shortly
before that and eliminated all neighbors that u had in Vhf. This can happen at most α2

times and thus the time u spends lonely is at most α2τlonely � τruntime. Hence, assume
that u is not lonely, i.e., has a neighbor u′, and that no node in N2(u) joins the MIS.
We show that then most of the time both u and u′ have a high activity value γ.

The following argumentation motivates this. For a node u to decrease γ(u), it must
neighbor a pair. Let us call isolated pairs (in which the leader does not neighbor another
leader or herald) good pairs and the others bad pairs. Conditioning on the event of
a pair being created, there is a constant probability that it is a good pair. This can be
considered progress, as it guarantees one of two things: Within O(log n) rounds either
the leader of the good pair itself enters the MIS or a neighbor of this pair does. In the
opposite case of bad pairs being created, in expectation these remain bad pairs only for
a constant number of rounds. Moreover, w.h.p., there are no more than O(log n) rounds
in total in which bad pairs exist inN3(u) after tu, also causing at mostO(log n) rounds
of u and u′ having an activity value below 1/2. Adjusting parameters we get that for
some τprogress = O(τlonely) and an arbitrarily small constant ε, for (1− ε)τprogress rounds
in [tu, tu + τprogress] the activity values of both u and u′ are 1/2.

6 “Soon” indeed means in O(1) rounds in expectation, as long as F = Ω(log log n).



Furthermore, all pairs, good and bad, inform their neighbors. By the definition of
good pairs, the leaders of these form an independent set. With our choice of δ thus
at most O(

√
log n) good pairs exist in Nδ(u). We argue that the activity values of

nodes neighboring a pair that participated in the red-blue protocol for Ω(log log n)
rounds (which almost surely holds for good pairs), are below γlow := Θ(1/ polylog n)

with some decent probability (i.e., 1− logΩ(1) n). The total number of nodes in Nδ(u)
becoming part of a good pair in [tu, tu + τprogress] is O(

√
log n) and hence the total

amount of nodes neighboring good pairs in that time isO(
√

log n∆max). A union bound
and a Chernoff bound provide that the total amount of rounds in which any node v in
Nδ(u) neighboring a good pair has an γ(v) > γlow is less than ετprogress.

Together with the previous claim we get that in (1− 2ε)τprogress rounds in [tu, tu +
τprogress] both conditions are true: γ(u) = γ(u′) = 1/2 and all good pairs in Nδ(u)
“silenced” their neighbors—i.e., all their neighbors have activity below γlow. Let us call
a round with this property promising for u. Without going into detail, we can show that
now within distance δ there exists a node w with the property of being so-called η-fat,
i.e., w’s neighborhood is at least roughly as active as that of any of its neighbors’. Fat-
ness implies that w.c.p. two nodes l and h in N1(w) become a good leader-herald pair.
As said before, such a pair reduces the activity values of its neighbors rather quickly,
which causes the property of η-fatness to move away from w to another node in Nδ(u)
and we can repeat the argument. If a bad pair is created, then η-fatness might shortly
fade, but is restored quickly, so we can almost omit this case. Again using Chernoff tail
bounds, we show that at some point u itself becomes η-fat and now the creation of an
MIS node in N2(u) is inevitably.

We summarize again. Once an MIS node or good pair arises in constant distance
from u, we are done. In an Ω(log2 n/F + log n) interval, u is mostly in a promising
state. W.c.p. everyO(1) rounds a node inNδ(u) becomes part of a good pair or joins the
MIS. In expectation, within Θ(log log n) rounds MIS nodes eliminate their neighbors
and good pairs silence theirs. After any of those events happen, we measure the time
until u is in a promising state again. Using Chernoff over O(

√
log n) such random

variables results in needing at most O(log n) time, thus, by then u must be covered.

4.2 Guarantees from the Decay Filter

Due to lack of space we refer to [9] and [13] for a more detailed description of what the
decay filter accomplishes.7 But we informally state the two main results. For each node
v the decay filter guarantees that over the runtime ofΘ(log2 n/F+log n) rounds, (1) v
or one of its neighbors enters the herald filter, but (2) no more than ∆max = O(log3 n)
nodes in N1(v) do.

From now on we only look at the graph G′ induced by V ′ := Vhf ∪ M, induced
by non-eliminated nodes that made it past the decay filter. All notations are tied to this
subgraph, though we omit this in our notations, i.e.,N(u) means the neighborhood of u
in G′. Instead, if we need to consider nodes from the states W and D, then we explicitly
say so and show this e.g. by writing NG(u).

7 The underlying algorithm has been first used and analyzed in [11], in a slightly more restrictive
graph model and in [8] it was shown that it also works in BIGs.



4.3 Definitions for the Herald Filter

Practically all parameters (including the above mentioned ∆max) depend in one way or
another on the bound on independence, i.e., on α, but in most cases those dependencies
are captured in the hidden constants of those asymptotic bounds.

For our analysis of a node u that enters the herald filter, we observe a specific
δ = Θ(log log n) neighborhood Nδ(u) of u. We set

δ := δα :=
log log n

2 logα
= Θ(log log n), (1)

i.e., αδ = (2logα)
log logn
2 logα =

√
log n. The choice of δ guarantees that any independent

set in a δ-neighborhood is of size at most
√

log n.
Our main goal is to show quick progress inNδ(u). Progress is clearly achieved if an

MIS node arises, but due to the way a node can become an MIS node, we also consider
the creation of an isolated leader-herald pair progress (more precisely, the leader of the
pair needs to be isolated from other nodes in L or H), as the leader will eventually join
the MIS (or be knocked out permanently by a newly created MIS node).

Definition 1. (Good Pair, Bad Pair) Consider a leader-herald pair (l, h) in round r.
We say (l, h) is a good pair in round r if none of the neighbors of l (other than h) is (1)
in state L or (2) in state H or (3) is a herald candidate in round 5 or 6 of its respective
handshake. Otherwise we say that (l, h) is a bad pair.

Note that the definition of a good/bad pair is independent of possibly neighboring
MIS nodes. MIS nodes existing already for 4 rounds prevent the creation of leader-
herald pairs in their neighborhood completely. If on the other hand a new MIS node
appears next to a leader-herald pair (which is w.h.p. only possible through the loneliness
route), then we have progress in a close neighborhood. Also, note that only the leader
of the pair must be ’isolated’. There are two reasons for this: (1) only leaders join the
MIS (2) by protocol design the herald of a pair can only receive messages from MIS
nodes or its own leader—not by other leaders (not even in round 6) nor other heralds.
This is due to the fact that any neighboring heralds act completely synchronously and a
leader neighboring a non-paired herald is ahead by precisely 2 rounds.8 Note also that
bad pairs can become good, but not vice versa. This is because all leaders and heralds
prevent the creation of further leaders/heralds in their neighborhood.

Definition 2. (Activity Mass) For a node u we define Γ (u) :=
∑
v∈N1(u) γ(v). We

call this the activity sum or activity mass of node u. Furthermore we let Γ ◦(u) :=
Γ (u) − γ(u) =

∑
v∈N(u) γ(v). In some cases we are only interested in the activity

mass of active nodes and then we have ΓA(u) :=
∑
v∈N1

A (u) γ(v) and Γ ◦A(u) is defined
analogously. Also

γmin := log−24 n = Θ(1/ polylog n), (2)
γlow :=

√
γmin = log−12 n. (3)

8 Cf. Lemma 8.10 in [9] and the actions of heralds/leaders in rounds 6/8 of a red-blue game.



Definition 3. (Fatness) We call a node u η̂-fat for some value η̂ ∈ (0, 1), if it holds that
Γ (u) ≥ η̂ ·maxv∈N(u){Γ (v)}.

In simple words, in terms of activity mass, u is (at least) in the same ’league’ as its
neighboring nodes. Using this we choose a specific fatness parameter η < 1:

η = ηα := α−8 ≤ α−2 log∆max
log logn (4)

The choice of η assures that a chain of activity sums (Γ (vi))i≥1 of nodes vi on a path
v1, v2, v3, . . . with Γ (vi) ≥ η−1Γ (vi−1) and Γ (v1) ≥ 2 has length at most δ, because

(η−1)δ = (α−8)−
log logn
2 logα ≥ (2logα)2 log∆max

log logn
log logn
2 logα = ∆max

γ(u)≤1/2
> max

u∈Vhf
Γ (u). (5)

The algorithm needs to know a few more parameters. σ⊕ and σ	 govern the changes
in a node’s activity level. The former is a small constant, greater than, but close to 1.
In most rounds a node u increases γ(u) by σ⊕. σ	 is a much larger factor used for
decreasing activity, large enough to undo many previous increments, but still in O(1).

σ⊕ := 26/(1000m̄) > 1 (6)
σ	 := σ20m̄

⊕ = 212/100 > 1 (7)

m̄ is a large enough constant that depends on nR, but assuming that nR ≥ 3α2, m̄ ≥
216nR suffices. Since γmin = log−24 n, 167m̄ log log n = Θ(log log n) consecutive
increments raise a node’s activity value to 1/2. Analogously, Θ(log log n) decrements
decrease it to its minimal value γmin.

Also two time thresholds τrbg = Θ(log n) and τlonely = Θ(log2 n/F + log n) are
needed by the algorithm. τrbg is the number of rounds a node spends in the red-blue
protocol, and it is a multiple of 8. If a node u ∈ Vhf does not receive a single message
for τlonely consecutive rounds, while being in the herald filter, a u deduces that it is
alone or all its neighbors got eliminated, and joins the MIS. In our analysis we use
further time thresholds τnotification = Θ(log n), τprogress = Θ(log2 n/F + log n) and
τruntime = Θ(log2 n/F + log n), for which the following inequality chain holds:

τruntime � τlonely � τprogress � τrbg � τnotification

τnotification is the maximum time needed for an MIS node to notify, w.h.p., all its neigh-
bors. If a node u is not lonely, then, w.h.p., significant progress is achieved in less than
τprogress rounds; more precisely, an MIS node is created in NO(1)(u). W.h.p., τruntime is
the maximum time a node spends in the herald filter before it gets decided.

4.4 Candidate Election—Nodes in States A (and L′)

In this section we want to establish a few facts about how nodes can transit from state
A to state L′ or H′, respectively. Note that nodes can switch between states A and
L′ without communication, but to get towards any of the three states H′, L and H,
communication is mandatory.

For some node u, constant k, round r and an index i ∈ {1, . . . , nA} we can show
that with probability 1 − Ω(αkπ`) no node in Nk

A(u) receives anything on any herald



election channel Ai. If we condition on certain events tied to index i, like knowing (by
peeking at random bits of some nodes) that some nodes do not operate onAi, do operate
on Ai, do operate and broadcast or listen on Ai, then the statement does still hold true
for all other channels. I.e., regardless of conditioning on aforementioned events, with
probability 1 − Ω(π`) no node in Nk

A(u) receives anything on any channel Aj 6= Ai.
Thus, by choosing π` small, we can decrease the chances of herald creation.

For lack of space we refer to [13] for a proper lemma statement.
Under certain conditions the creation of herald candidates can be lower bounded.

However, for our algorithm to work, we not only need to prove that they are created, but
that this happens in solitude, i.e., in a close neighborhood no other herald candidates
are created. The next lemma—an adaption of Lemma 8.8 from [9]—ensures this.

Lemma 1. Let t be a round in which for a node u ∈ A the following holds:
– there is no herald candidate in N2(u),
– all nodes v ∈ N2(u) that neighbor a herald or leader, have γ(v) ≤ γlow,
– all nodes in N2(u) neighboring MIS nodes are eliminated,
– Γ (u) ≥ 1,

If in addition it holds that either
(a) Γ (u) < 5α, u is 1

5α -fat and γ(u) = 1
2 , or

(b) Γ (u) ≥ 5α and u is η-fat,
then by the end of round t′ ∈ [t, t+ 7], with probability Ω(π`) either a node in N2(u)
joins the MIS or a good pair (l, h) ∈ (L ∩N1(u))× (H ∩N1(u)) is created.

Let us start with an intuition of this Lemma. The basic intention is to show that if u is
η-fat, then w.c.p. in constant many rounds a good leader-herald pair with both endpoints
in N1(u) arises—for this u itself does not have to have a high γ value, i.e., u does not
need to be a likely part of the pair. The lemma lists many requirements. We show that
shortly after a node v moves to the herald filter, in distance δ = O(log log n) most of the
time there exists a node u that satisfies these conditions. We also show that if an isolated
pair is created inN1(u), those requirements are again satisfiedO(polyloglog n) rounds
later (in expectation) by another node u′ in this δ-neighborhood of v.

We want to point out that in the neighborhood of a fat node u with Γ (u) at least
one, w.c.p. “good things” happen (i.e., the creation of MIS nodes or good leader-herald
pairs) within constant many rounds, even if there are herald candidates nearby or even
if some nodes neighboring bad leaders/heralds have high γ values. In other words, the
first two requirements could be omitted. Instead we use other results to show that from
those relaxed conditions one can get to the tighter ones listed here w.c.p. in constant
many rounds. We argue in Subsection 4.5, that every time an isolated pair is created,
the algorithm achieves progress, as it guarantees the creation of an MIS node nearby—
even if this event is delayed by O(log n) rounds.

Therefore, Lemma 1 “promises” progress in the proximity of a fat node. However,
we have no such statement for areas without fat nodes. Indeed an excessive creation of
bad pairs in such areas can even cause problems for our argumentation. The next result,
which is a key result within the whole analysis, implies that if a pair is created at all,
then w.c.p. this pair is good. This allows us to proof later in Lemma 4 that nodes in the
herald filter are practically always very active in the candidate election process—unless
they already neighbor an MIS node or a good pair.



Lemma 2. Let r be a round in which node u is in state A and NA(u) 6= ∅. Let Bu be
the event that at the end of round r, u moves to state H′ due to receiving a message
from some node v ∈ NA(u) on some channel Aλ̄. Further, let Du ⊆ Bu be the event
that Bu holds and in addition no other node v′ ∈ N3(v) \ {u} receives any message
on channel Aλ̄ in round r. It holds that

P(Bu) =

{
O
(
π`

γ(u)
Γ◦A (u)

)
Γ ◦A(u) > 2

O (π`γ(u)Γ ◦A(u)) Γ ◦A(u) ≤ 2
, (8)

P(Du) =

{
Ω
(
π`

γ(u)
Γ◦A (u)

)
Γ ◦A(u) > 2

Ω (π`γ(u)Γ ◦A(u)) Γ ◦A(u) ≤ 2
. (9)

A simple corollary is—using the remarks in the beginning of Subsection 4.4—that if u
gets a message from v and there are no leaders or heralds nearby, then w.c.p. u and v
form a good leader-herald pair after 6 rounds.

4.5 Handshake & Red-Blue Protocol—States L′, H′, L, H

We next very shortly recap and summarize the effects of the so-called Handshake and
Red-Blue Game, but for detailed information please see [9, 13].

Foremost, the handshake cannot be passed by two nodes l and h, if l also reached
another herald h′. But the handshake also guarantees, that if two leader-herald pairs
neighbor each other during the red-blue protocol, i.e., one node from one pair neighbors
a node of another pair, then both pairs conducted the handshake at the same time (or
with an offset of 2 rounds).

The red-blue protocol grants that if a good pair (l, h) is executing the protocol, then
a new MIS node arises nearby within τrbg = Θ(log n) rounds (usually the leader l). On
the other hand, any bad pair remains bad for only O(1) rounds in expectation (note that
good pairs can never turn bad).

4.6 Joining the MIS—Nodes in States M and E

Property 1 (P). The set M is an independent set at all times.

This intuitive assumption is needed for some of the upcoming statements; it is
clearly true at the beginning of the algorithm, when M = ∅. Lemma 7 shows that if
(P) is violated, then w.h.p. a contradiction occurs. The next lemma makes sure that
nodes in N(M) soon learn of their coverage.

Lemma 3. Assume (P) holds. Let v be a node that enters state M at time t. Let w be
a node in NG(v) that is awake at time t′ ≥ t and, if w ∈ L ∪ H, that it is at most
in round 9

10τrbg of its corresponding red-blue protocol. Then by time t′ + τnotification =
t′ +O(log n), w.h.p., w is in state E.9

9 Note that this lemma also considers nodes w from the decay filter.



4.7 Progress and Runtime

Lemma 8.13 of [9] shows that once a good leader-herald pair (l, h) is created, its leader
(or another node in N2(l)) joins the MIS within O(log n) rounds. Also, within close
proximity of fat nodes (which exist in any δ-neighborhood of nodes in Vhf) w.c.p. such
solitary pairs are created everyO(1) rounds. In the algorithm of [9] it might happen that
after a good pair (l, h) is created Nδ(u), the only fat node in Nδ(u) is close to (l, h). A
good pair blocks the creation of other pairs around, so progress might be stalled until l
joins the MIS, eliminating its neighbors (and therefore their activity) and finally, forcing
the local condition of fatness to move to a different area of the graph.

Here we changed the algorithm to take care of this potential stagnancy issue. We
want the attribute of fatness to move away from a good pair long before the leader
joins the MIS. More precisely, a node not neighboring good pairs should become fat
within o(log n) rounds. For this we require good pairs to reduce the activity levels of
their neighborhoods. However, a leader-herald pair does not know whether it forms a
good pair or a bad one before the τrbg = Θ(log n) red-blue games are over. The idea
to deal with this difficulty is the following. Good pairs manage in expectation within
O(log log n) rounds to reduce their neighborhood’s activity far enough such that most
of the time those nodes can be considered inactive. Bad pairs, however, last for only a
constant number of rounds in expectation, and are created rarely enough10 for affected
nodes to recover their lost activity quickly. In other words, the longer a node is a leader,
the more likely it is indeed a good one.

Careful analysis allows to transform these observations into high probability results.
In the following γ(u, t) denotes the activity level of node u in round t. Also, let ε be a
constant smaller than one—about 0.1 is sufficiently small for the proofs.

Lemma 4. Let t be a time at which a node u /∈ N1(M) is in the herald filter. Then,
w.h.p., one of following holds:
(a) Within τprogress = O(log2 n/F + log n) rounds, u ∈ N1(M), or
(b) | {t′ ∈ [t+ 1, t+ τprogress] : γ(u, t′) = 1/2} | ≥ (1− ε)τprogress.

Next we upper bound the number of rounds in which any neighbors of good pairs
within distance δ from u manage to exceed the activity threshold γlow.

Definition 4. For a node u and a round r let I(u, r) be the event that
– all nodes x ∈ Nδ(u), which neighbor an MIS node, are in state E, and
– all nodes x ∈ Nδ(u), which neighbor a good herald h or good leader l, h, l ∈

(H ∪ L) \ N(M), have γ(x) ≤ γlow =
√
γmin = log−12 n and are neither bad

leaders nor bad heralds.

Lemma 5. Assume that (P) holds. Further, let r̄ be a round in which node u is in the
herald filter and set J := [r̄ + 1, r̄ + τprogress]. Then, w.h.p., one of the following holds:

– Within τprogress = O(log n) rounds, there is an MIS node in N1(u), or
– | {r ∈ J : I(u, r)holds} | ≥ (1− ε)τprogress.

10 controlled by reducing the parameter π`



Lemma 6. Assume that (P) holds. Let tu be a round in which a node u /∈ N1(M) has a
neighbor u′ /∈ N1(M) in the herald filter. Then, w.h.p., within τprogress = O(log2 n/F+
log n) rounds a node in N1({u, u′}) joins the MIS.

Lemma 7. W.h.p., property (P) is not violated throughout the runtime of the algorithm.

Now we have everything at hand to prove Theorem 1.

Proof Sketch (of Theorem 1). As stated earlier, the runtime of the decay filter is within
O
(

log2 n/F + log n
)
, i.e., for every node u in the decay filter, by that time one node

v ∈ N1
G(u) enters the herald filter. We also know that over the course of O(log2 n)

rounds the maximum degree of the graph G′ induced by all nodes in the herald filter is
at most O(log3 n).

Let thus u be a node that enters the herald filter. If it stays lonely for τlonely =
Θ
(

log2 n/F+log n
)

rounds, then u joins the MIS and we are done. Hence assume that
u does hear from a neighboring node u′ in the herald filter before τlonely rounds have
passed. We can now apply Lemma 6 to get an MIS node v created within τprogress =
O
(

log2 n/F + log n
)

rounds. It either neighbors u, in which case within τnotification =
O(log n) rounds u is decided w.h.p., or it neighbors u′, which is also then eliminated
in τnotification rounds. That way u can become lonely again. However, since an MIS node
has been created in N2(u), this can happen at most α2 times. Thus, at most τruntime =
2α2τlonely rounds after u entered the herald filter, u is decided.

References

1. 802.11, I.: Wireless LAN MAC and Physical Layer Specifications (March 2012)
2. Alliance, Z.: Zigbee specification. ZigBee Document 053474r06 1 (2005)
3. Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel Algorithm for the

Maximal Independent Set Problem. Journal of Algorithms (1986)
4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the Time-Complexity of Broadcast in Multi-Hop

Radio Networks: An Exponential Gap Between Determinism and Randomization. Journal of
Computer and System Sciences 45(1), 104–126 (1992)

5. Bluetooth Consortium: Bluetooth Specification Version 4.2 (December 2014)
6. Censor-Hillel, K., Gilbert, S., Kuhn, F., Lynch, N., Newport, C.: Structuring Unreliable Radio

Networks. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC). pp. 79–88 (2011)
7. Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks–Problem Analysis and Proto-

col Design. IEEE Transactions on Communications 33(12), 1240–1246 (1985)
8. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal Independent Sets in

Multichannel Radio Networks. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC)
(2013)

9. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal Independent Sets in
Multichannel Radio Networks. Tech. Rep. 275, U. of Freiburg, Dept. of Computer Sc. (2013)

10. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum Networks.
In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC) (2012)

11. Daum, S., Kuhn, F., Newport, C.: Efficient Symmetry Breaking in Multi-Channel Radio Net-
works. In: Aguilera, M.K. (ed.) DISC, LNCS, vol. 7611, pp. 238–252. Springer, Heidelberg
(2012)



12. Daum, S., Kuhn, F., Newport, C.: Efficient Symmetry Breaking in Multi-Channel Radio
Networks. Tech. Rep. 271, U. of Freiburg, Dept. of Computer Science (2012)

13. Daum, S., Kuhn, F.: Tight Bounds for MIS in Multichannel Radio Networks. CoRR
abs/1508.04390 (2015), http://arxiv.org/abs/1508.04390

14. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The wireless synchronization
problem. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC). pp. 190–199 (2009)

15. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging Channel Diversity to Gain
Efficiency and Robustness for Wireless Broadcast. In: Peleg, D. (ed.) DISC, LNCS, vol.
6950, pp. 252–267. Springer, Heidelberg (2011)

16. Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C., Kuhn, F., Lynch, N.:
Reliable Distributed Computations on Unreliable Radio Channels. In: Proc. MobiHoc S3

Workshop (2009)
17. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel Radio Net-

work: An Oblivious Approach to Coping with Malicious Interference. In: Pelc, A. (ed.)
DISC, LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)

18. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication Over Radio Chan-
nels. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC) (2008)

19. Ephremides, A., Wieselthier, J.E., Baker, D.J.: A Design Concept for Reliable Mobile Radio
Networks with Frequency Hopping Signaling. Proc. of the IEEE 75(56–73) (1987)

20. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient Information
Exchange. In: Proc. IEEE Conf. on Computer Communications (INFOCOM) (2009)

21. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast Deterministic Distributed Max-
imal Independent Set Computation on Growth-Bounded Graphs. In: Fraigniaud, P. (ed.)
DISC, LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg (2005)

22. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing 15(4), 1036–1053 (1986)

23. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: Proc.
ACM Symp. on Principles of Distr. Comp. (PODC). pp. 148–157 (2005)

24. Newport, C.: Radio Network Lower Bounds Made Easy. In: Kuhn, F. (ed.) DISC, LNCS,
vol. 8784, pp. 258–272. Springer, Heidelberg (2014)

25. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. Workshop
on Parallel and Distributed Real-Time Systmes (WPDRTS). pp. 1–11 (2006)

26. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set Algorithm
for Growth-Bounded Graphs. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC).
pp. 35–44 (2008)

27. Sherman, M., Mody, A., Martinez, R., Rodriguez, C., Reddy, R.: IEEE Standards Supporting
Cognitive Radio and Networks, Dynamic Spectrum Access, and Coexistence. IEEE Commu-
nications Magazine 46(7), 72–79 (2008)
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