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Résumé — L objectif de ce travail est de générer une description symbolique d’arbres bronchiques a partir d’images scanner 3D acquises dans
des conditions de ventilation différentes, afin de pouvoir comparer ces arbres entre eux. La méthode s’applique au résultat binaire d’un algorithme
de segmentation. Son originalité réside dans une utilisation exhaustive de 1’algorithme de Dijkstra et notamment dans une technique originale de
détection de points terminaux qui permet d’extraire le squelette et de détecter les bifurcations en une seule passe pendant le parcours inverse du
graphe a partir de ces points. Les résultats préliminaires montrent que la méthode proposée est tres bien adaptée a 1’application visée.

Abstract — The goal of this work is to generate a symbolic description of the airway trees from 3D CT images acquired at different ventilation
conditions, in order to compare these trees to each other. The method applies to the binary result of a segmentation algorithm. Its originality
resides in a comprehensive use of the Dijkstra’s algorithm, namely in a novel technique used to detect the end-points. This technique enables
us to extract the skeleton and to detect the bifurcations in a single pass during backtracking from these points. Preliminary results show that the

method proposed is well-suited for the intended application.

1 Introduction

The overall goal of this work is to assist physicians at in-
tensive care units by assessing lung aeration in patients with
acute respiratory distress syndrome (ARDS). ARDS is a life-
threatening state of the lungs (40% mortality), which can be
caused by various bacteriological, chemical or mechanical ag-
gressions. Its treatment requires artificial ventilation to support
the respiration process. To appropriately set the ventilation pa-
rameters (pressure and volume), parenchyma aeration is to be
assessed from images acquired at various parameter settings.
This needs accurate voxel counting within the lungs, accor-
ding to standard aeration classes [9]. However, this quantifi-
cation is hampered by the airways, as these voxels’ gray-levels
fall within the "over-inflated" class and thus they artificially in-
crease the corresponding score. Therefore, the airways should
be removed prior to the quantification, but this cannot be done
by simply segmenting out and masking the bronchi in each
image. Indeed, the segmentation results from images acqui-
red at distinct pressure and volume settings differ from each
other and contain more or less branches, due to such pheno-
mena as pressure-dependent airway diameter and length varia-

tions, partial-volume effect, noise, etc. It is therefore necessary
to match the airway trees segmented in each image, in order to
find and remove from each image only the common part of the
airway tree shared by all the segmentation results. This mat-
ching requires a symbolic description of each segmented tree,
so that their topology and geometry can be compared.
Obtaining such a symbolic description from segmented bi-
nary data is the specific objective of the work herein presented.
It usually involves two major steps : (i) skeletonization, and (ii)
bifurcation- and end-point detection, in order to build an orien-
ted graph. Skeletonization has been thoroughly studied since
many years and has classically been based on morphological
erosion with precautions taken to prune spurious branches and
avoid shortening the actual branches [3]. Applied in 3D, this
approach is time consuming. Though mathematical morpho-
logy can be used to detect bifurcations and end-points, a po-
pular solution implemented in the AnalyseSkeleton plugin ' of
Image] is based on the Depth-First Search graph-analysis al-
gorithm. A recent approach [8] has used graph theory at both
steps. The Dijkstra’s algorithm [2] was first applied onto the

l. http://fiji.sc/AnalyzeSkeleton



segmented image to construct the minimum spanning tree. Then
this tree was recursively analyzed to extract the skeleton and
infer its symbolic description. Our method follows a similar
approach, but fully takes advantage of the minimum spanning
tree constructed by the Dijkstra’s algorithm, so as to detect the
end-points, and to build the symbolic description during back-
tracking from these points across the tree.

2 Proposed method

As the input required by our method is a binary segmented
object B representing the airways, we selected an existing algo-
rithm devised for such segmentation [7]. Airways in CT images
are represented by dark regions typically comprised between
—1024 and —600 Hounsfield units, but the actual value of the
upper threshold is to be adapted for each image. The algorithm
starts from a user-provided seed in the trachea and iteratively
performs region growing with a varying threshold, while kee-
ping a voxel count for the region obtained, until “leakage” (i.e.,
a sudden increase in this count) is detected. The segmentation
obtained with the last threshold before this increase is retained.
Any algorithm devised to segment the airways in CT images
can potentially be used instead of the one we selected.

The skeleton S of a tree-like structure with tubular branches
is as subset of the minimum spanning tree, provided that the lat-
ter is constructed using an appropriate cost function, such that
the cost is lowest on the tubes’ centerlines. The skeleton can
be inferred from the minimum spanning tree by connecting the
end-point of each branch to the root of the tree. As the CT scans
we are interested in are quite big (5123 voxels, on average), and
the whole process (lung segmentation and registration in se-
veral images, bronchi segmentation, skeletonization, symbolic
description, graph comparison, common tree removal, and fi-
nal quantification) is to be executed in a short time compatible
with decision making at intensive-care units, fast algorithms
are needed to perform each step. The Dijkstra’s algorithm pro-
duces good (and in some cases exact) results in computing the
minimum spanning trees, is fast, and has namely been used in
[8] for the purpose of tree skeletonization. While the cost func-
tion we use is similar, our methods to detect the end-points and
to analyze connections in order to infer a symbolic description
are novel, and will be detailed in the next sections.

The whole process can be summarized as follows. The Dijks-
tra’s algorithm is used to build the minimum spanning tree M
with an appropriate cost function (Section 2.1). The nodes of
M are placed in a priority queue ordered in such a way that
the node placed on-top is the most likely to be an end-point
(Section 2.2). The queue is progressively emptied in a loop by
removing, at each step, the node placed on-top and by backtra-
cking from this node towards the tree root (Section 2.3). The
nodes of M visited in the backtracking process are marked.
When the backtracking meets an already marked node, this
means that a bifurcation point between the currently tracked
branch and a previously extracted one has been reached.

2.1 Cost function

Various “medialness” functions have been proposed to as-
sign each voxel a value that increases as the voxel is more likely
to be located near a tubular-structure centerline [5]. Similarly to
[8] we have chosen to use the distance to the nearest boundary
of the segmented object B. Actually, the distance map D (x)
(where x denotes a voxel) is estimated by the Danielsson’s al-
gorithm [1], which provides positive values inside B and ne-
gative values outside. The largest values, obtained along the
centerlines, can be considered as estimates of the local radius
of the tubes. The cost function ¢ (x) is defined as follows :

oo ; D(x)<0
C(X):{ D2(x) ; D(x)>0. L
After running the Dijkstra’s algorithm each voxel x is seen as
a node of thus constructed minimum spanning tree M, and has
a corresponding cumulative cost value C' (x), which is the sum
of the costs ¢ (x) of all the nodes belonging to the minimum-
cost path between the root x,.,,; and x.

2.2 End-points detection

To define an “endness” function that takes larger values for
nodes more likely to be end-points, we took advantage of the
geometry of B (Fig. 1 left). Candidate end-points are the tips
of thin bronchi located far away from the root placed in the
trachea. Such points have high accumulated costs C' (x) (dis-
played with hot colors in Figure 1 center) and, as they are thin,
their associated distance D (x) is small. Therefore, our “end-
ness” function combines these two values as follows :

E (x) = C (x) /D?(x) )

The values E (x) are assigned to nodes x during Dijkstra’s al-
gorithm forward propagation, and each node (except the nodes
located on the boundary of B, where D (x) = 0) is inserted
into a priority queue Q (actually a max-heap) according to its
“endness” F (x). Once the forward propagation is finished, the
backtracking starts from the node located on-top of Q, which
is very likely to be the tip of the longest and thinnest branch.
All the nodes visited during the backtracking are marked and
removed from Q, so that in the next pass of the backtracking
loop the node on-top of Q corresponds to the tip of a different
branch. The details are given in the next section.

2.3 Symbolic description

Let pop(Q) be the operation of removing the on-top element
of Q, and p (x) denote the parent of the node x in M. For
the root p (X,00t) = Xroot- Let us also define the following
containers : £ for labels used to mark the visited nodes, £ for
end-point coordinates, ) for bifurcation coordinates, and S for
the skeleton points. Algorithm 1 summarizes our proposal.

Let us note that the nested loop while x # p(x), which
represents backtracking from an end-point to the root, com-
prises two modes : (i) as long as a marked node is not encoun-
tered, new nodes are marked and added to the skeleton S, then



FIGURE 1 — Example (pig A, end-inspiration, highest pressure)
of a segmented airway tree (left), of the corresponding “end-
ness” function represented by the color scale (center), and of
the final skeleton (148 branches detected) with colors corres-
ponding to different labels, i.e., different branches (right).

(i) after encountering an already marked node, the path to-
wards the root is continued through already visited nodes and
their labels are changed (incremented at each bifurcation). In
practice, each time a node x is marked (added to S) or its la-
bel is changed, all the nodes in a ball O (x,7) centered in x
and with radius » = 1.5D (x) are marked with the same label,
so points comprised between the skeleton and the surface of
already visited branches cannot be candidate end-points.

3 Results

The method was assessed on 3D CT images from an on-
going study of an animal model (pig) with ARDS induced.
For each pig, 20 image pairs (end-inspiration/end-expiration)
were acquired at various volume/pressure settings. Three pigs
were randomly drawn, and for each of them 3 different image
pairs were selected, at high, medium, and low pressure, and
at constant volume. Thus 18 images with various ventilation
conditions were used, containing from 393 (pig C) to 469 (pig
A) 512 x 512-voxel slices with voxel size ranging from 0.46 x
0.46 x 0.70 to 0.58 x 0.58 x 1.00 mm?>. All were segmented
using the method described at the beginning of Section 2. Fi-
gures 1 (right) and 2 display examples of final results.

As the existing methods usually perform the skeletonization
and symbolic description in two distinct steps, we separately
evaluated each of these steps. In the absence of ground truth,
skeletons extracted using the popular ITK implementation 2,
also available as Skeletonize3D plugin of Image] 3, of the me-
thod proposed by Lee et al. [4], were used as “reference”. The
skeletons generated by our method were compared to the refe-
rence ones by using the Hausdorff distance. This distance ran-
ged from 3.3 to 8.5 voxels with a median value of 5.7.

To separately assess the symbolic description, we took as re-
ference method the one implemented in the AnalyseSkeleton
plugin of ImageJ, and applied it onto the skeletons resulting
from our method. In thus constructed “reference” trees, the to-
tal number of branches was 2566, ranging from 69 (pig A, end-

2. www.insight-journal.org/browse/publication/181
3. fiji.sc/Skeletonize3D

Algorithm 1 Skeletonization and descriptor extraction.
1: procedure SKELETON_AND_DESCRIPTORS(Q)

2: let £,£,),S be empty containers.
3: bId + 0 > Initialize a branch identifier
4 while Q is not empty do
5: x + pop(Q)
6: if x ¢ L then > Is x already labeled ?
7 L (x) < bldand add x to £ and to S
8 adding_new_points < TRUFE
9: do
10: x < p(x)
11: if adding_new_points = T RU E then
12: if x ¢ S then
13: L (x) < bldand add x to S
14: else
15: addxto Y
16: bld < bId+1
17: adding_new_points < FALSE
18: end if
19: else
20: ifx ¢ YV then L (x) < bId
21: else bId < bId+1
22: end if
23: while x # p (x)
24: end if
25: x  p(x)
26: end while

27: return(L, £, Y, S)
28: end procedure

expiration, low pressure) to 237 (pig B, end-expiration, me-
dium pressure) per dataset, lengths ranging from 0.5 to 86.5 mm.
The symbolic description extracted from each dataset was com-
pared to the reference by use of a tree-matching algorithm [6]
devised to find the common part shared by two anatomical
trees obtained from the same subject in different conditions.
The total number of unmatched branches (method + reference)
ranged from 0 to 9 (4.2%) per dataset, with a median value
of 3 (1.8%). This good agreement was confirmed by visual
inspection. The computational time (PC with Intel core i7, 8
cores, 6GB RAM) was between 90 and 131 seconds. Its major
part was spent on computing the distance map, while the actual
skeletonization + symbolic description ranged from 7 to 30 se-
conds. The average total processing time, 2 minutes, was 11
times shorter than the average skeletonization time alone (22
minutes) of the reference method.

4 Discussion and conclusions

We proposed a fast method to generate skeletons and symbo-
lic description of tree-like binary objects such as airways seg-
mented out of 3D medical images. Our method performs both
tasks simultaneously by fully exploiting the minimum span-
ning tree structure built by the Dijkstra’s algorithm, as well as



FIGURE 2 - Example of results (pig C, end-inspiration, me-
dium pressure, 224 branches detected) : labeled skeleton dis-
played within translucent surface of the segmented airways,
colors corresponding to different branches (/eft), corresponding
graph (center), and the same graph superimposed onto the re-
ference in white (right) ; here 8 branches remained unmatched.

FIGURE 3 — Extracted (red) and reference (light blue) skeletons
superimposed. The points generally coincide, except on some
bifurcations and branch tips.

the associated costs. It was evaluated on representative images
from the intended medical application. In the absence of ground
truth, we used as reference popular methods available online,
which are significantly slower. The assessment of the skeletons
obtained from our method was based of the Hausdorff distance,
which detects the worst case, i.e., the largest distance from the
object’s points to the reference. By visual inspection, the voxels
most distant from the reference were located at the tips of some
branches and near some bifurcations (Fig. 3). Otherwise, the
skeletons were very well aligned with the reference. The sym-
bolic descriptions of these skeletons, generated by the proposed
and reference methods, were very similar. Typically, they dif-
fered by 2 or 3 branches, which represents less than 2% of the
average branch number per dataset.

Overall, the proposed method provided results very close
to well-established ones used here as reference, while being
much faster. We conclude that it can be successfully used for
the intended application. Our method has an additional advan-
tage very useful for this application : the labels assigned to all
voxels of the binary object (not only to the skeleton points) in
the backtracking step, can be directly exploited to reconstruct
and display only a selected subset of branches. In our case,
this subset is the common part between airway trees segmen-
ted from different ventilation conditions. Let us note that the
segmentation method used to generate the input for our me-

thod was just an example, and may need to be replaced by a
more reliable algorithm. Indeed, if leakage is detected too late,
the object segmented may contain a spurious highly irregular
part generating numerous branches in the skeleton. Although
such branches are rather unlikely to be matched with the tree
obtained in different conditions, their extraction and attempts to
match them will lead to useless computational-time increase.
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