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Abstract. We generalize the technique of smoothed analysis to dis-
tributed algorithms in dynamic networks. Whereas standard smoothed
analysis studies the impact of small random perturbations of input val-
ues on algorithm performance metrics, dynamic graph smoothed analysis
studies the impact of random perturbations of the underlying changing
network graph topologies. Similar to the original application of smoothed
analysis, our goal is to study whether known strong lower bounds in dy-
namic network models are robust or fragile: do they withstand small (ran-
dom) perturbations, or do such deviations push the graphs far enough
from a precise pathological instance to enable much better performance?
Fragile lower bounds are likely not relevant for real-world deployment,
while robust lower bounds represent a true difficulty caused by dynamic
behavior. We apply this technique to three standard dynamic network
problems with known strong worst-case lower bounds: random walks,
flooding, and aggregation. We prove that these bounds provide a spec-
trum of robustness when subjected to smoothing—some are extremely
fragile (random walks), some are moderately fragile / robust (flooding),
and some are extremely robust (aggregation).

1 Introduction

Dynamic network models describe networks with topologies that change over
time (c.f., [10]). They are used to capture the unpredictable link behavior that
characterize challenging networking scenarios; e.g., connecting and coordinat-
ing moving vehicles, nearby smartphones, or nodes in a widespread and fragile
overlay. Because fine-grained descriptions of link behavior in such networks are
hard to specify, most analyses of dynamic networks rely instead on a worst-case
selection of graph changes. This property is crucial to the usefulness of these
analyses, as it helps ensure the results persist in real deployment.

A problem with this worst case perspective is that it often leads to extremely
strong lower bounds. These strong results motivate a key question: Is this bound
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robust in the sense that it captures a fundamental difficulty introduced by dy-
namism, or is the bound fragile in the sense that the poor performance it describes
depends on an exact sequence of adversarial changes? Fragile lower bounds leave
open the possibility of algorithms that might still perform well in practice. By
separating fragile from robust results, we can expand the algorithmic tools avail-
able to those seeking useful guarantees in these challenging environments.

In the study of traditional algorithms, an important technique for explaining
why algorithms work well in practice, despite disappointing worst case perfor-
mance, is smoothed analysis [16, 17]. This approach studies the expected perfor-
mance of an algorithm when the inputs are slightly perturbed. If a strong lower
bound dissipates after a small amount of smoothing, it is considered fragile—as
it depends on a carefully constructed degenerate case. Note that this is different
from an “average-case” analysis, which looks at instances drawn from some dis-
tribution. In a smoothed analysis, you still begin with an adversarially chosen
input, but then slightly perturb this choice. Of course, as the perturbation grows
larger, the input converges to something entirely random. (Indeed, in the origi-
nal smoothed analysis papers [16, 17], the technique is described as interpolating
between worst and average case analysis.)

In this paper, we take the natural step of adapting smoothed analysis to the
study of distributed algorithms in dynamic networks. Whereas in the traditional
setting smoothing typically perturbs numerical input values, in our setting we
define smoothing to perturb the network graph through the random addition and
deletion of edges. We claim that a lower bound for a dynamic network model
that improves with just a small amount of graph smoothing of this type is fragile,
as it depends on the topology evolving in an exact manner. On the other hand,
a lower bound that persists even after substantial smoothing is robust, as this
reveals a large number of similar graphs for which the bound holds.

Results. We begin by providing a general definition of a dynamic network model
that captures many of the existing models already studied in the distributed
algorithms literature. At the core of a dynamic network model is a dynamic graph
that describes the evolving network topology. We provide a natural definition of
smoothing for a dynamic graph that is parameterized with a smoothing factor
k ∈ {0, 1, ...,

(
n
2

)
}. In more detail, to k-smooth a dynamic graph H is to replace

each static graph G in H with a smoothed graph G′ sampled uniformly from the
space of graphs that are: (1) within edit distance5 k of G, and (2) are allowed by
the relevant dynamic network model. (E.g., if the model requires the graph to
be connected in every round, smoothing cannot generate a disconnected graph.)

We next argue that these definitions allow for useful discernment between
different dynamic network lower bounds. To this end, we use as case studies
three well known problems with strong lower bounds in dynamic network mod-
els: flooding, random walks, and aggregation. For each problem, we explore the
robustness/fragility of the existing bound by studying how it improves under
increasing amounts of smoothing. Our results are summarized in Table 1. We

5 Edit distance, in this paper, is the number of edge additions/deletions needed to
transform one graph to another, assuming they share the same node set.
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Graph
k-Smoothed
Algorithm

k-Smoothed
Lower Bound

0-Smoothed
Lower Bound

Flooding Connected O(n2/3 logn/k1/3) Ω(n2/3/k1/3) Ω(n)

Hitting Time Connected O(n3/k) Ω(n5/2/(
√
k logn) Ω(2n)

Aggregation Paired O(n)-competitive Ω(n)-competitive Ω(n)-competitive

Table 1. A summary of our main results. The columns labelled “k-smoothed” assume
k > 0. Different results assume different upper bounds on k.

emphasize the surprising variety in outcomes: these results capture a wide spec-
trum of possible responses to smoothing, from quite fragile to quite robust.

For the minimal amount of smoothing (k = 1), for example, the Ω(2n) lower
bound for the hitting time of a random walk in connected dynamic networks
(established in [2]) decreases by an exponential factor to O(n3); the Ω(n) lower
bound for flooding time in these same networks (well-known in folklore) de-
creases by a polynomial factor to O(n2/3 log n); and the Ω(n) lower bound on
the achievable competitive ratio for token aggregation in pairing dynamic graphs
(established in [4]) decreases by only a constant factor.

As we increase the smoothing factor k, our upper bound on random walk
hitting time decreases as O(n3/k), while our flooding upper bound reduces more
slowly as O(n2/3 log n/k1/3), and our aggregation bound remains in Ω(n) for k
values as large as Θ(n/ log2 n). In all three cases we also prove tight or near tight
lower bounds for all studied values of k.

Among other insights, these results indicate that the exponential hitting
time lower bound for dynamic walks is extremely fragile, while the impossibility
of obtaining a good competitive ratio for dynamic aggregation is quite robust.
Flooding provides an interesting intermediate case. While it is clear that an Ω(n)
bound is fragile, the claim that flooding can take a polynomial amount of time
(say, in the range n1/3 to n2/3) seems well-supported.

Full Version. Due to space constraints, we omit proofs from this extended
abstract. Full details for our results can be found in the full version [6].

Next Steps. The definitions and results that follow represent a first (but far from
final) step toward the goal of adapting smoothed analysis to dynamic networks.
There are many additional interesting dynamic network bounds that could be
subjected to a smoothed analysis. Moreover, there are many other reasonable
definitions of smoothing beyond the ones herein. While our definition is natu-
ral and our results suggestive, for other problems or models other definitions
might be more appropriate. Rather than claiming that our approach here is the
“right” way to study the fragility of dynamic network lower bounds, we instead
claim that smoothed analysis generally speaking (in all its various possible for-
mulations) is an important and promising tool when trying to understand the
fundamental limits of distributed behavior in dynamic network settings.
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Related Work. Smoothed analysis was introduced by Spielman and Teng [16,
17], who used the technique to explain why the simplex algorithm works well
in practice despite strong worst-case lower bounds. It has been widely applied
to traditional algorithm problems (see [18] for a good introduction and survey).
Recent interest in studying distributed algorithms in dynamic networks was
sparked by Kuhn et al. [11]. Many different problems and dynamic network
models have since been proposed; e.g., [12, 9, 7, 3, 1, 5, 14, 8] (see [10] for a
survey). The dynamic random walk lower bound we study was first proposed by
Avin et al. [2], while the dynamic aggregation lower bound we study was first
proposed by Cornejo et al. [4]. We note other techniques have been proposed
for exploring the fragility of dynamic network lower bounds. In recent work, for
example, Denysyuk et al. [5] thwart the exponential random walk lower bound
due to [2] by requiring the dynamic graph to include a certain number of static
graphs from a well-defined set, while work by Ghaffari et al. [8] studies the impact
of adversary strength, and Newport [14] studies the impact of graph properties,
on lower bounds in the dynamic radio network model.

2 Dynamic Graphs, Networks, and Types

There is no single dynamic network model. There are, instead, many different
models that share the same basic behavior: nodes executing synchronous algo-
rithms are connected by a network graph that can change from round to round.
Details on how the graphs can change and how communication behaves given a
graph differ between model types.

In this section we provide a general definition for a dynamic network models
that captures many existing models in the relevant literature. This approach
allows us in the next section to define smoothing with sufficient generality that
it can apply to these existing models. We note that in this paper we constrain
our attention to oblivious graph behavior (i.e., the changing graph is fixed at
the beginning of the execution), but that the definitions that follow generalize in
a straightforward manner to capture adaptive models (i.e., the changing graph
can adapt to behavior of the algorithm).

Dynamic Graphs and Networks. Fix some node set V , where n = |V |. A
dynamic graph H, defined with respect to V , is a sequence G1, G2, ..., where each
Gi = (V,Ei) is a graph defined over nodes V . If this is not an infinite sequence,
then the length of H is |H|, the number of graphs in the sequence. A dynamic
network, defined with respect to V , is a pair, (H, C), where H is a dynamic
graph, and C is a communication rules function that maps transmission patterns
to receive patterns. That is, the function takes as input a static graph and an
assignment of messages to nodes, and returns an assignment of received messages
to nodes. For example, in the classical radio network model C would specify that
nodes receive a message only if exactly one of their neighbors transmits, while
in the LOCAL model C would specify that all nodes receive all messages sent
by their neighbors. Finally, an algorithm maps process definitions to nodes in V .

4



Given a dynamic network (H, C) and an algorithm A, an execution of A in
(H, C) proceeds as follows: for each round r, nodes use their process definition ac-
cording to A to determine their transmission behavior, and the resulting receive
behavior is determined by applying C to H[r] and this transmission pattern.

Dynamic Network Types. When we think of a dynamic network model suitable
for running executions of distributed algorithms, what we really mean is a com-
bination of a description of how communication works, and a set of the different
dynamic graphs we might encounter. We formalize this notion with the concept
of the dynamic network type, which we define as a pair (G, C), where G is a set
of dynamic graphs and C is a communication rules function. For each H ∈ G,
we say dynamic network type (G, C) contains the dynamic network (H, C).

When proving an upper bound result, we will typically show that the result
holds when our algorithm is executed in any dynamic network contained within
a given type. When proving a lower bound result, we will typically show that
there exists a dynamic network contained within the relevant type for which
the result holds. In this paper, we will define and analyze two existing dynamic
network types: (1-interval) connected networks [11, 12, 9, 7], in which the graph
in each round is connected and C describes reliable broadcast to neighbors in the
graph, and pairing networks [4], in which the graph in each round is a matching
and C describes reliable message passing with each node’s neighbor (if any).

3 Smoothing Dynamic Graphs

We now define a version of smoothed analysis that is relevant to dynamic graphs.
To begin, we define the edit distance between two static graphs G = (V,E) and
G′ = (V,E′) to be the minimum number of edge additions and removals needed
to transform G to G′. With this in mind, for a given G and k ∈ {0, 1, ...,

(
n
2

)
},

we define the set:

editdist(G, k) = {G′ | the edit distance between G and G′ is no more than k}.

Finally, for a given set of dynamic graphs G, we define the set:

allowed(G) = {G | ∃H ∈ G such that G ∈ H}.

In other words, allowed describes all graphs that show up in the dynamic graphs
contained in the set G. Our notion of smoothing is always defined with respect
to a dynamic graph set G. Formally:

Definition 1. Fix a set of dynamic graphs G, a dynamic graph H ∈ G, and
smoothing factor k ∈ {0, 1, ...,

(
n
2

)
}. To k-smooth a static graph G ∈ H (with

respect to G) is to replace G with a graph G′ sampled uniformly from the set
editdist(G, k) ∩ allowed(G). To k-smooth the entire dynamic graph H (with re-
spect to G), is to replace H with the dynamic graph H′ that results when we
k-smooth each of its static graphs.
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We will also sometimes say that G′ (resp. H′) is a k-smoothed version of G (resp.
H), or simply a k-smoothed G (resp. H). We often omit the dynamic graph set G
when it is clear in context. (Typically, G will be the set contained in a dynamic
network type under consideration.)

Discussion. Our notion of k-smoothing transforms a graph by randomly adding
or deleting k edges. A key piece of our definition is that smoothing a graph with
respect to a dynamic graph set cannot produce a graph not found in any members
of that set. This restriction is particularly important for proving lower bounds
on smoothed graphs, as we want to make sure that the lower bound results does
not rely on a dynamic graph that could not otherwise appear. For example, if
studying a process in a dynamic graph that is always connected, we do not want
smoothing to disconnect the graph—an event that might trivialize some bounds.

4 Connected and Pairing Dynamic Network Types

We now define two dynamic network types: the connected network type [11, 12,
9, 7], and the pairing network type [4]. We study random walks (Section 6) and
flooding (Section 5) in the context of the connected network type, whereas we
study token aggregation (Section 7) in the context of the pairing type.

4.1 Connected Network

The connected network type [11, 12, 9, 7] is defined as (Gconn, Cconn), where Gconn
contains every dynamic graph (defined with respect to our fixed node set V ) in
which every individual graph is connected, and where Cconn describes reliable
broadcast (i.e., a message sent by u in rounds r in an execution in graph H is
received by every neighbor of u in H[r]).

Properties of Smoothed Connected Networks. For our upper bounds, we show
that if certain edges are added to the graph through smoothing, then the al-
gorithm makes enough progress on the smoothed graph. For our lower bounds,
we show that if certain edges are not added to the graph, then the algorithm
does not make much progress. The following lemmas bound the probabilities
that these edges are added. The proofs roughly amount to showing that sam-
pling uniformly from editdist(G, k)∩allowed(Gconn) is similar to sampling from
editdist(G, k).

The first two lemmas are applicable when upper-bounding the performance
of an algorithm on a smoothed dynamic graph. The first lemma states that the k-
smoothed version of graph G is fairly likely to include at least one edge from the
set S of helpful edges. The second lemma, conversely, says that certain critical
edges that already exist in G are very unlikely to be removed in the smoothed
version.

Lemma 2. There exists constant c1 > 0 such that the following holds. Consider
any graph G ∈ allowed(Gconn). Consider also any nonempty set S of potential
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edges and smoothing value k ≤ n/16 with k |S| ≤ n2/2. Then with probability at
least c1k |S| /n2, the k-smoothed graph G′ of G contains at least one edge from S.

Lemma 3. There exists constant c2 > 0 such that the following holds. Consider
any graph G = (V,E) ∈ allowed(Gconn). Consider also any nonempty set S ⊆ E
of edges in the graph and smoothing value k ≤ n/16. Then with probability at
most c2k |S| /n2, the k-smoothed graph G′ removes an edge from S.

Our next lemma is applicable when lower-bounding an algorithm’s perfor-
mance on a dynamic graph. It says essentially that Lemma 2 is tight—it is not
too likely to add any of the helpful edges from S.

Lemma 4. There exists constant c3 > 0 such that the following holds. Consider
any graph G = (V,E) ∈ allowed(Gconn). Consider also any set S of edges and
smoothing value k ≤ n/16 such that S ∩ E = ∅. Then with probability at most
c3k |S| /n2, the k-smoothed graph G′ of G contains an edge from S.

4.2 Pairing Network

The second type we study is the pairing network type [4]. This type is defined as
(Gpair, Cpair), where Gpair contains every dynamic graph (defined with respect
to our fixed node set V ) in which every individual graph is a (not necessarily
complete) matching, and Cpair reliable communicates messages between pairs
of nodes connected in the given round. This network type is motivated by the
current peer-to-peer network technologies implemented in smart devices. These
low-level protocols usually depend on discovering nearby nodes and initiating
one-on-one local interaction.

Properties of Smoothed Pairing Networks. In the following, when discussing a
matching G, we partition nodes into one of two types: a node is matched if it is
connected to another node by an edge in G, and it is otherwise unmatched. The
following property concerns the probability that smoothing affects (i.e., adds
or deletes at least one adjacent edge) a given node u from a set S of nodes of
the same type. It notes that as the set S containing u grows, the upper bound
on the probability that u is affected decreases. The key insight behind this not
necessarily intuitive statement is that this probability must be the same for all
nodes in S (due to their symmetry in the graph). Therefore, a given probability
will generate more expected changes as S grows, and therefore, to keep the
expected changes below the k threshold, this bound on this probability must
decrease as S grows.

Lemma 5. Consider any graph G = (V,E) ∈ allowed(Gpair) and constant δ >
1. Let S ⊆ V be a set of nodes in G such that: (1) all nodes in S are of the same
type (matched or unmatched), and (2) |S| ≥ n/δ. Consider any node u ∈ S
and smoothing factor k < n/(2 · δ). Let G′ be the result of k-smoothing G. The
probability that u’s adjacency list is different in G′ as compared to G is no more
than (2 · δ · k)/n.
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5 Flooding

Here we consider the performance of a basic flooding process in a connected
dynamic network. In more detail, we assume a single source node starts with
a message. In every round, every node that knows the message broadcasts the
message to its neighbors. (Flooding can be trivially implemented in a connected
network type due to reliable communication.) We consider the flooding process
complete in the first round that every node has the message. Without smoothing,
this problem clearly takes Ω(n) rounds in large diameter static graphs, so a
natural alternative is to state bounds in terms of diameter. Unfortunately, there
exist dynamic graphs (e.g., the spooling graph defined below) where the graph
in each round is constant diameter, but flooding still requires Ω(n) rounds.

We show that this Ω(n) lower bound is somewhat fragile by proving a poly-
nomial improvement with any smoothing. Specifically, we show an upper bound
of O(n2/3 log(n)/k1/3) rounds, with high probability, with k-smoothing. We also
exhibit a nearly matching lower bound by showing that the dynamic spooling
graph requires Ω(n2/3/k1/3) rounds with constant probability.

5.1 Lower Bound

We build our lower bound around the dynamic spooling graph, defined as follows.
Label the nodes from 1 to n, where node 1 is the source. The spooling graph is
a dynamic graph where in each round r, the network is the min {r, n− 1}-spool
graph. We define the i-spool graph, for i ∈ [n − 1] to be the graph consisting
of: a star on nodes {1, . . . , i} centered at i called the left spool, a star on nodes
{i+ 1, . . . , n} centered on i + 1 called the right spool, and an edge between the
two centers i and i+ 1. We call i+ 1 the head node.

With node 1 as the source node, it is straightforward to see that, in the
absence of smoothing, flooding requires n−1 rounds to complete on the spooling
network. (Every node in the left spool has the message but every node in the
right spool does not. In each round, the head node receives the message then
moves to the left spool.) We generalize this lower bound to smoothing. The main
idea is that in order for every node to receive the message early, one of the early
heads must be adjacent to a smoothed edge.

Theorem 6. Consider the flooding process on a k-smoothed n-vertex spooling
graph, with k ≤

√
n and sufficiently large n. With probability at least 1/2, the

flooding process does not complete before the Ω(n2/3/k1/3)-th round.

5.2 An O(n2/3 log n/k1/3) Upper Bound for General Networks

Next, we show that flooding in every k-smoothed network will complete in
O(n2/3 log n/k1/3) time, with high probability. When this result is combined
with the Ω(n2/3/k1/3) lower bound from above, this shows this analysis to be
essentially tight for this problem under smoothing.
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Support Sequences. The core idea is to show that every node in every network
is supported by a structure in the dynamic graph such that if the message can
be delivered to anywhere in this structure in time, it will subsequently propagate
to the target. In the spooling network, this structure for a given target node u
consists simply of the nodes that will become the head in the rounds leading up
to the relevant complexity deadline. The support sequence object defined below
generalizes a similar notion to all graphs. It provides, in some sense, a fat target
for the smoothed edges to hit in their quest to accelerate flooding.

Definition 7. Fix two integers t and `, 1 ≤ ` < t, a dynamic graph H =
G1, . . . , Gt with Gi = (V,Ei) for all i, and a node u ∈ V . A (t, `)-support
sequence for u in G is a sequence S0, S1, S2, ..., S`, such that the following prop-
erties hold: (1) For every i ∈ [0, `]: Si ⊆ V . (2) S0 = {u}. (3) For every i ∈ [1, `]:
Si−1 ⊂ Si and Si \ Si−1 = {v}, for some v ∈ V such that v is adjacent to at
least one node of Si−1 in Gt−i.

Notice that the support structure is defined “backwards” with S0 containing the
target node u, and each subsequent step going one round back in time. We prove
that every connected dynamic graph has such a support structure, because the
graph is connected in every round.

Lemma 8. Fix some dynamic graph H ∈ Gconn on vertex set V , some node
u ∈ V , and some rounds t and `, where 1 ≤ ` < t. There exists a (t, `)-support
sequence for u in H.

The following key lemma shows that over every period ofΘ(n2/3/k1/3) rounds
of k-smoothed flooding, every node has a constant probability of receiving the
message. Applying this lemma over Θ(log n) consecutive time intervals with a
Chernoff bound, we get our main theorem.

Lemma 9. There exists constant α ≥ 3 such that the following holds. Fix a
dynamic graph H ∈ Gconn on vertex set V , any node u ∈ V , and a consecutive
interval of αn2/3/k1/3 rounds. For smoothing value k ≤ n/16, node u receives
the flooded message in the k-smoothed version of H with probability at least 1/2.

Theorem 10. For any dynamic graph H ∈ Gconn and smoothing value k ≤
n/16, flooding completes in O(n2/3 log n/k1/3) rounds on the k-smoothed version
of H with high probability.

6 Random Walks

As discussed in Section 1, random walks in dynamic graphs exhibit fundamen-
tally different behavior from random walks in static graphs. Most notably, in dy-
namic graphs there can be pairs of nodes whose hitting time is exponential [2],
even though in static (connected) graphs it is well-known that the maximum
hitting time is at most O(n3) [13]. This is true even under obvious technical re-
strictions necessary to prevent infinite hitting times, such as requiring the graph
to be connected at all times and to have self-loops at all nodes.
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We show that this lower bound is extremely fragile. A straightforward ar-
gument shows that a small perturbation (1-smoothing) is enough to guarantee
that in any dynamic graph, all hitting times are at most O(n3). Larger per-
turbations (k-smoothing) lead to O(n3/k) hitting times. We also prove a lower
bound of Ω(n5/2/

√
k), using an example which is in fact a static graph (made

dynamic by simply repeating it). In some sense, it is not surprising that the lower
bound on random walks is fragile, as there exist algorithms for accomplishing the
same goals (e.g., identifying a random sample) in dynamic graphs in polynomial
time [2, 15].

6.1 Preliminaries

We begin with some technical preliminaries. In a static graph, a random walk
starting at u ∈ V is a walk on G where the next node is chosen uniformly at
random from the set of neighbors on the current node (possibly including the
current node itself if there is a self-loop). The hitting time H(u, v) for u, v ∈ V
is the expected number of steps taken by a random walk starting at u until it
hits v for the first time. Random walks are defined similarly in a dynamic graph
H = G1, G2, . . . : at first the random walk starts at u, and if at the beginning
of time step t it is at a node vt then in step t it moves to a neighbor of vt in
Gt chosen uniformly at random. Hitting times are defined in the same way as in
the static case.

The definition of the hitting time in a smoothed dynamic graph is intuitive
but slightly subtle. Given a dynamic graph H and vertices u, v, the hitting time
from u to v under k-smoothing, denoted by Hk(u, v), is the expected number of
steps taken by a random walk starting at u until first reaching v in the (random)
k-smoothed version H′ of H (either with respect to Gconn or with respect to the
set Gall of all dynamic graphs). Note that this expectation is now taken over two
independent sources of randomness: the randomness of the random walk, and
also the randomness of the smoothing (as defined in Section 3).

6.2 Upper Bounds

We first prove that even a tiny amount amount of smoothing is sufficient to
guarantee polynomial hitting times even though without smoothing there is an
exponential lower bound. Intuitively, this is because if we add a random edge at
every time point, there is always some inverse polynomial probability of directly
jumping to the target node. We also show that more smoothing decreases this
bound linearly.

Theorem 11. In any dynamic graph H, for all vertices u, v and value k ≤ n/16,
the hitting time Hk(u, v) under k-smoothing (with respect to Gall) is at most
O(n3/k). This is also true for smoothing with respect to Gconn if H ∈ Gconn.

A particularly interesting example is the dynamic star, which was used by
Avin et al. [2] to prove an exponential lower bound. The dynamic star consists of
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n vertices {0, 1, . . . , n−1}, where the center of the start at time t is t mod (n−1)
(note that node n− 1 is never the center). Every node also has a self loop. Avin
et al. [2] proved that the hitting time from node n− 2 to node n− 1 is at least
2n−2. It turns out that this lower bound is particularly fragile – not only does
Theorem 11 imply that the hitting time is polynomial, it is actually a factor of
n better than the global upper bound due to the small degrees at the leaves.

Theorem 12. Hk(u, v) is at most O(n2/k) in the dynamic star for all k ≤ n/16
and for all vertices u, v (where smoothing is with respect to Gconn).

6.3 Lower Bounds

Since the dynamic star was the worst example for random walks in dynamic
graphs without smoothing, Theorem 12 naturally leads to the question of whether
the bound of O(n2/k) holds for all dynamic graphs in Gconn, or whether the
weaker bound of O(n3/k) from Theorem 11 is tight. We show that under smooth-
ing, the dynamic star is in fact not the worst case: a lower bound of Ω(n5/2/

√
k)

holds for the lollipop graph. The lollipop is a famous example of graph in which
the hitting time is large: there are nodes u and v such that H(u, v) = Θ(n3)
(see, e.g., [13]). Here we will use it to prove a lower bound on the hitting time
of dynamic graphs under smoothing:

Theorem 13. There is a dynamic graph H ∈ Gconn and nodes u, v such that
Hk(u, v) ≥ Ω(n5/2/(

√
k lnn)) for all k ≤ n/16 (where smoothing is with respect

to Gconn).

In the lollipop graph Ln = (V,E) the vertex set is partitioned into two pieces
V1 and V2 with |V1| = |V2| = n/2. The nodes in V1 form a clique (i.e. there is
an edge between every two nodes in V1), while the nodes in V2 form a path (i.e.,
there is a bijection π : [n/2] → V2 such that there is an edge between π(i) and
π(i+ 1) for all i ∈ [(n/2)− 1]). There is also a single special node v∗ ∈ V1 which
has an edge to the beginning of the V2 path, i.e., there is also an edge {v∗, π(1)}.
The dynamic graph H in Theorem 13 is the dynamic lollipop: Gi = Ln for all
i ≥ 1. The starting point of the random walk u is an arbitrary node in V1, and
the target node v = π(n/2) is the last node on the path.

The intuition for the 1-smoothing case is relatively straightforward: if the
random walk is on the path then every Θ(n) rounds it will follow one of the
randomly added smoothed edges, which will (with probability 1/2) lead it back
to the clique. So in order to hit v, it has to spend less than n time in the path.
A standard analysis of the one-dimensional random walk then implies that it
will only move O(

√
n) positions from where it started, so it needs to start in the

final O(
√
n) nodes of the path. In each round, it will only see an edge from its

current location to this final set of nodes with probability O(1/n3/2), and will
follow it with probability only O(1/n) (since it will likely be in the clique). Hence
the total hitting time is Ω(n5/2). This idea can be formalized and extended to
k-smoothing.
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If we do not insist on the dynamic graph being connected at all times, then
in fact Theorem 11 is tight via a very simple example: a clique with a single
disconnected node.

Theorem 14. There is a dynamic graph H and vertices u, v such that Hk(u, v) ≥
Ω(n3/k) for all k ≤ n where smoothing is with respect to Gall.

7 Aggregation

Here we consider the aggregation problem in the pairing dynamic network type.
Notice, in our study of flooding and random walks we were analyzing the be-
havior of a specific, well-known distributed process. In this section, by contrast,
we consider the behavior of arbitrary algorithms. In particular, we will show
the pessimistic lower bound for the aggregation problem for 0-smoothed pairing
graphs from [4], holds (within constant factors), even for relatively large amounts
of smoothing. This problem, therefore, provides an example of where smoothing
does not help much.

The Aggregation Problem. The aggregation problem, first defined in [4], assumes
each node u ∈ V begins with a unique token σ[u]. The execution proceeds for a
fixed length determined by the length of the dynamic graph. At the end of the
execution, each node u uploads a set (potentially empty) γ[u] containing tokens.
An aggregation algorithm must avoid both losses and duplications (as would
be required if these tokens were actually aggregated in an accurate manner).
Formally:

Definition 15. An algorithm A is an aggregation algorithm if and only if at
the end of every execution of A the following two properties hold:
(1) No Loss:

⋃
u∈V γ[u] =

⋃
u∈V {σ[u]}. (2) No Duplication: ∀u, v ∈ V, u 6= v :

γ[u] ∩ γ[v] = ∅.
To evaluate the performance of an aggregation algorithm we introduce the

notion of aggregation factor. At at the end of an execution, the aggregation
factor of an algorithm is the number of nodes that upload at least one token
(i.e., |{u ∈ V : γ[u] 6= ∅}|). Because some networks (e.g., a static cliques) are
more suitable for small aggregation factors than others (e.g., no edges in any
round) we evaluate the competitive ratio of an algorithm’s aggregation factor as
compared to the offline optimal performance for the given network.

The worst possible performance, therefore, is n, which implies that the algo-
rithm uploaded from n times as many nodes as the offline optimal (note that n
is the maximum possible value for an aggregation factor). This is only possible
when the algorithm achieves no aggregation and yet an offline algorithm could
have aggregated all tokens to a single node. The best possible performance is
a competitive ratio of 1, which occurs when the algorithm matches the offline
optimal performance.

Results Summary. In [4], the authors prove that no aggregation algorithm can
guarantee better than a Ω(n) competitive ratio with a constant probability or
better. In more detail:

12



Theorem 16 (Adapted from [4]). For every aggregation algorithm A, there
exists a pairing graph H such that with probability at least 1/2: A’s aggregation
factor is Ω(n) times worse than the offline optimal aggregation factor in H.

Our goal in the remainder of this section is to prove that this strong lower
bound persists even after a significant amount of smoothing (i.e., k = O(n/ log2 n)).
We formalize this result below (note that the cited probability is with respect
to the random bits of both the algorithm and the smoothing process):

Theorem 17. For every aggregation algorithm A and smoothing factor k ≤
n/(32 · log2 n), there exists a pairing graph H such that with probability at least
1/2: A’s aggregation factor is Ω(n) times worse than the offline optimal aggre-
gation factor in a k-smoothed version of H (with respect to Gpair).

7.1 Lower Bound

Here we prove that for any smoothing factor k ≤ (cn)/ log2 n (for some positive
constant fraction c we fix in the analysis), k-smoothing does not help aggregation
by more than a constant factor as compared to 0-smoothing. To do so, we begin
by describing a probabilistic process for generating a hard pairing graph. We
will later show that the graph produced by this process is likely to be hard for
a given randomized algorithm. To prove our main theorem, we will conclude by
applying the probabilistic method to show this result implies the existence of a
hard graph for each algorithm.

The α-Stable Pairing Graph Process. We define a specific process for generating
a pairing graph (i.e., a graph in allowed(Gpair)). The process is parameterized by
some constant integer α ≥ 1. In the following, assume the network size n = 2`
for some integer ` ≥ 1 that is also a power of 2.6 For the purposes of this
construction, we label the 2` nodes in the network as a1, b1, a2, b2, ..., a`, b`. For
the first α rounds, our process generates graphs with the edge set: {(ai, bi) :
1 ≤ i ≤ `}. After these rounds, the process generates ` bits, q1, q2, ..., q`, with
uniform randomness. It then defines a set S of selected nodes by adding to S the
node ai for every i such that qi = 0, and adding bi for every i such that qi = 1.
That is, for each of our (ai, bi) pairs, the process randomly flips a coin to select
a single element from the pair to add to S.

For all graphs that follow, the nodes not in S will be isolated in the graph
(i.e., not be matched). We turn our attention to how the process adds edges
between the nodes that are in S. To do so, it divides the graphs that follow into
phases, each consisting of α consecutive rounds of the same graph. In the first
phase, this graph is the one that results when the process pairs up the nodes
in S by adding an edge between each such pair (these are the only edges). In
the second phase, the process defines a set S2 that contains exactly one node

6 We can deal with odd n and/or ` not a power of 2 by suffering only a constant
factor cost to our final performance. For simplicity of presentation, we maintain
these assumptions for now.
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from each of the pairs from the first phase. It then pairs up the nodes in S2

with edges as before. It also pairs up all nodes in S \S2 arbitrarily. Every graph
in the second phase includes only these edges. In the third phase, the process
defines a set S3 containing exactly one node from each of the S2 pairs from the
previous pairs. It then once again pairs up the remaining nodes in S arbitrarily.
The process repeats this procedure until phase t = log2 |S| at which point only
a single node is in St, and we are done.

The total length of this dynamic graph is α(log2 (|S|)+1). It is easy to verify
that it satisfies the definition of the pairing dynamic network type.

Performance of the Offline Optimal Aggregation Algorithm. We now show that
the even with lots of smoothing, a graph generated by the stable pairing graph
process, parameterized with a sufficiently large α, yields a good optimal solution
(i.e., an aggregation factor of 1).

Lemma 18. For any k ≤ n/32, and any pairing graph H that might be gener-
ated by the (log n)-stable pairing graph process, with high probability in n: the
offline optimal aggregation algorithm achieves an aggregation factor of 1 in a
k-smoothed version of H.

Performance of an Arbitrary Distributed Aggregation Algorithm. We now fix
an arbitrary distributed aggregation algorithm and demonstrate that it cannot
guarantee (with good probability) to achieve a non-trivial competitive ratio in
all pairing graphs. In particular, we will show it has a constant probability of
performing poorly in a graph generated by our above process.

Lemma 19. Fix an online aggregation algorithm A and smoothing factor k ≤
n/(32 · log2 n). Consider a k-smoothed version of a graph H generated by the
(log n)-stable pairing graph process. With probability greater than 1/2 (over the
smoothing, adversary, and algorithm’s independent random choices): A has an
aggregation factor in Ω(n) when executed in this graph.

A final union bound combines the results from Lemmas 18 and 19 to get
our final corollary. Applying the probabilistic method to the corollary yields the
main theorem—Theorem 17.

Corollary 20. Fix an aggregation algorithm A and smoothing factor k ≤ n/(32·
log2 n). There is a method for probabilistically constructing a pairing graph H,
such that with probability greater than 1/2 (over the smoothing, adversary, and
algorithm’s independent random choices): A’s aggregation factor in a k-smoothed
version of H is Ω(n) times larger than the offline optimal factor for this graph.
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