
HAL Id: hal-01207157
https://hal.science/hal-01207157v1

Submitted on 30 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compressing Communication in Distributed Protocols
Yael Tauman Kalai, Ilan Komargodski

To cite this version:
Yael Tauman Kalai, Ilan Komargodski. Compressing Communication in Distributed Protocols. DISC
2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �hal-01207157�

https://hal.science/hal-01207157v1
https://hal.archives-ouvertes.fr

Compressing Communication in Distributed
Protocols

Yael Tauman Kalai1 and Ilan Komargodski2?

1 Microsoft Research.
yael@microsoft.com

2 Weizmann Institute of Science, Rehovot 76100, Israel.
ilan.komargodski@weizmann.ac.il

Abstract. We show how to compress communication in distributed pro-
tocols in which parties do not have private inputs. More specifically, we
present a generic method for converting any protocol in which parties
do not have private inputs, into another protocol where each message is
“short” while preserving the same number of rounds, the same communi-
cation pattern, the same output distribution, and the same resilience to
error. Assuming that the output lies in some universe of size M , in our
resulting protocol each message consists of only polylog(M,n, d) many
bits, where n is the number of parties and d is the number of rounds.
Our transformation works in the full information model, in the presence
of either static or adaptive Byzantine faults.

In particular, our result implies that for any such poly(n)-round dis-
tributed protocol which generates outputs in a universe of size poly(n),
long messages are not needed, and messages of length polylog(n) suffice.
In other words, in this regime, any distributed task that can be solved
in the LOCAL model, can also be solved in the CONGEST model with
the same round complexity and security guarantees.

As a corollary, we conclude that for any poly(n)-round collective coin-
flipping protocol, leader election protocol, or selection protocols, mes-
sages of length polylog(n) suffice (in the presence of either static or adap-
tive Byzantine faults).

1 Introduction

In classical algorithmic design the goal is to design efficient algorithms,
where the common complexity measures are time and space. In dis-
tributed algorithms, where a set of parties tries to perform a predefined
task, there are more parameters of interest, such as round complexity,
message complexity, fault-tolerance, and more.

? Part of this work done while an intern at MSR New England. Supported in part by
a grant from the I-CORE Program of the Planning and Budgeting Committee, the
Israel Science Foundation, BSF and the Israeli Ministry of Science and Technology.

These measures have been studied in the literature under two main
models: LOCAL and CONGEST [11]. The LOCAL model is aimed at
studying “localized” executions of distributed protocols, and thus, mes-
sages of unlimited size are allowed. The CONGEST model is geared to-
wards understanding the effect of congestion in the network, and thus,
messages of poly-logarithmic size (in the number of parties) are allowed.3

Most of the work in distributed computing assumes one of the models
above and focuses on optimizing resources such as round complexity, mes-
sage complexity and fault-tolerance. We initiate the study of the following
question:

Is there a generic way to transform protocols in the LOCAL model to
protocols in the CONGEST model, without negatively affecting the

round complexity, fault-tolerance and other resources?

We give a positive answer to this question for protocols in which par-
ties do not have private inputs, without incurring any cost to the round
complexity or the resilience to errors. More details follow.

Our model. In this work, our focus is on the synchronous, full informa-
tion model. Namely, we consider a distributed model in which n parties
are trying to perform a predefined task. Each party is equipped with a
source of private randomness and a unique ID. We assume the existence
of a global counter which synchronizes parties in between rounds, but the
parties are asynchronous within each round. The goal is to fulfill the task
even in the presence of Byzantine faults. In the full information model no
restrictions are made on the computational power of the faulty parties or
the information available to them. Namely, the faulty parties may be in-
finitely powerful, and we do not assume the existence of private channels
connecting pairs of honest parties.

We model faulty parties by a computationally unbounded adversary
who controls a subset of parties and whose aim is to bias the output
of the protocol. We assume that the adversary has access to the entire
transcript of the protocol, and once a party is corrupted, the adversary
gains complete control over the party and can send any messages on its
behalf, and the messages can depend on the entire transcript so far. In
addition, we allow our adversary to be “rushing”, i.e., it can schedule

3 We note that often the term CONGEST is a short-hand writing for CONGEST (B),
where B is a bandwidth constraint. In many cases, the convention is to set B to
be bounded by O(logn), where n is the number of parties. Here, we take a more
liberal interpretation, which allows for messages of size bounded by polylog(n) (see
e.g., [14]).

the delivery of the messages within each round. We consider two classes
of adversaries: static and adaptive. A static adversary is an adversary
that chooses which parties to corrupt ahead of time, before the protocol
begins. An adaptive adversary, on the other hand, is allowed to choose
which parties to corrupt adaptively in the course of the protocol as a
function of the messages seen so far.

The focus of this work, is on protocols in which parties do not have
private inputs. Many classical distributed tasks fall in this category, in-
cluding collective coin-flipping, leader election, selection and more.

A concrete motivation: adaptively-secure coin-flipping. An impor-
tant distributed task that was extensively studied in the full information
model, is that of collective coin-flipping. In this problem, a set of n parties
use private randomness and are required to generate a common random
bit. The goal of the parties is to jointly output a somewhat uniform bit
even in the case that some of the parties are faulty and controlled by a
static (resp. adaptive) adversary whose goal is to bias the output of the
protocol in some direction.

This problem was first formulated and studied by Ben-Or and Linial
[1]. In the case of static adversaries, collective coin-flipping is well studied
and almost matching upper and lower bounds are known [2, 13], whereas
the case of adaptive adversaries has received much less attention. Ben-Or
and Linial [1] showed that the majority protocol (in which each party
sends a uniformly random bit and the output of the protocol is the ma-
jority of the bits sent) is resilient to Θ(

√
n) adaptive corruptions. Fur-

thermore, they conjectured that this protocol is optimal, that is, they
conjectured that any coin-flipping protocol is resilient to at most O(

√
n)

adaptive corruptions. Shortly afterwards, Lichtenstein, Linial and Saks
[8] proved the conjecture for protocols in which each party is allowed to
send only one bit. Very recently, Goldwasser, Kalai and Park [4] proved
a different special-case of the aforementioned conjecture: any symmetric
(many-bit) one-round collective coin-flipping protocol4 is resilient to at
most Õ(

√
n) adaptive corruptions. Despite all this effort, proving a gen-

eral lower bound, or constructing a collective coin-flipping protocol that
is resilient to at least ω(

√
n) adaptive corruptions, remains an intriguing

open problem.
The result of [8] suggests that when seeking for a collective coin-

flipping protocol that is resilient to at least ω(
√
n) adaptive corruptions,

4 A symmetric protocol Π is one that is oblivious to the order of its inputs: namely,
for any permutation π : [n] → [n] of the parties, it holds that Π(r1, . . . , rn) =
Π(rπ(1), . . . , rπ(n)).

to focus on protocols that consist of many communication rounds, or pro-
tocols in which parties send long messages. Our main result (Theorem 1)
is that long messages are not needed in adaptively secure coin-flipping
protocols with poly(n) rounds, and messages of length polylog(n) suffice.
This is true more generally for leader election protocols, and for selec-
tion protocols where the output comes from a universe of size at most
quasi-polynomial in n.

1.1 Our Results

Our main result is that “long” messages are not needed for distributed
tasks in which parties do not have private inputs. More specifically, we
show how to convert any n-party d-round protocol, where parties do not
have private inputs, and whose output comes from a universe of size M ,
into a d-round protocol, with the same communication pattern, the same
output distribution, the same security guarantees, and where each mes-
sage is of length polylog(M,n, d). Note that for many well studied dis-
tributed tasks, such as coin-flipping, leader election, and more, the out-
put is from a universe of size at most poly(n), in which case our result
says that if we consider poly(n)-round protocols, then messages of length
polylog(n) suffice.

Our results in more detail. Formally, we say that a protocol Π, in
which parties do not have private inputs, is (t, δ, s)-statically (resp., adap-
tively) secure if for any adversary A that statically (resp., adaptively) cor-
rupts at most t = t(n) parties, and any subset S of the output universe
such that |S| = s, it holds that∣∣∣Pr [Output of A(Π) ∈ S]− Pr [Output of Π ∈ S]

∣∣∣ ≤ δ,
where “Output of A(Π)” means the output of the protocol when executed
in the presence of the adversary A, “Output of Π” means the output of
the protocol when executed honestly, and the probabilities are taken over
the internal randomness of the parties. In addition, we say that a protocol
Π simulates a protocol Π ′ if the outcomes of the protocols are statistically
close (when executed honestly) and their communication patterns are the
same.

Our main result is a generic communication compression theorem
which, roughly speaking, states that (t, δ, s)-statically (resp., adaptively)
secure protocols in the above model do not need “long” messages. Namely,
we show that any secure protocol which sends arbitrary long messages

can be simulated by a protocol which is almost as secure and sends short
messages.

Theorem 1 (Main theorem – informal). Any (t, δ, s)-statically (resp.,
adaptively) secure d-round protocol that outputs m bits (or more generally,
has an output universe of size 2m), can be simulated by a d-round (t, δ′, s)-
statically (resp., adaptively) secure protocol, where δ′ = δ + negl(n), and
in which parties send random messages of length at most m ·polylog(n, d).

Our results can also be seen as a transformation of protocols (in which
parties do not have private inputs) in the LOCAL model to protocols in
the CONGEST model, as discussed above. Our main theorem (Theo-
rem 1) implies that any task, whose output consists of at most polylog(n)
bits, and in which parties do not have private inputs, that can be solved
in the LOCAL model with d ≤ poly(n) rounds, can also be solved in the
CONGEST model with d rounds.

Corollary 1. Any n-party (t, δ, s)-statically (resp., adaptively) secure
poly(n)-round protocol that outputs polylog(n) bits in the LOCAL model,
can be simulated by a (t, δ′, s)-statically (resp., adaptively) secure protocol
in the CONGEST model, where δ′ = δ + negl(n).

We emphasize that our results holds for any underlying communi-
cation pattern including the broadcast channel or the message-passing
model with any underlying communication graph.

Finally, we note that the transformation in Theorem 1 preserves the
computational efficiency of the honest parties, but the resulting protocol is
non-uniform, even if the protocol we started with is uniform. We elaborate
on this in Section 1.3.

1.2 Related Work

The resource of communication is central in several fields of computer
science. The field of communication complexity is devoted to the study of
which problems can be solved with as little communication as possible.
We refer to the book of Kushilevitz and Nisan [6] for an introduction
to the field. In cryptography, minimizing communication has been the
focus of several works in several contexts, including private information
retrieval [7], random access memory machines [9], and more.

Interestingly, in the setting of distributed computing most of the work
focuses on optimizing other resources such as round complexity, fault-
tolerance, and the quality of the outcome. Very few works focus on op-
timizing the maximal message length being sent during the protocols.

Moreover, most of the work in the literature focuses on static adversaries,
and very few papers study distributed protocols with respect to adaptive
adversaries. Our results hold in both settings.

Finally, we mention that separations between the LOCAL and CONG-
EST models are known for general tasks. For example, for network graphs
of diameter D = Ω(log n), computing the minimum spanning tree (MST)
in the LOCAL model requires Θ(D) rounds, whereas in the CONGEST
model every distributed MST algorithm has round complexity Ω(D +√
n/ log2 n) [12].

1.3 Overview of Our Techniques

In this section we provide a high-level overview of our main ideas and
techniques. First, we observe that one can assume, without loss of gen-
erality, that any protocol in which parties do not have private inputs,
can be transformed into a public-coin protocol, in which honest parties’
messages consist only of random bits. This fact is a folklore, and for the
sake of completeness we include a proof sketch of it in Section 4.

Our main result is a generic transformation that converts any public-
coin protocol, in which parties send arbitrarily long messages, into a pro-
tocol in which parties send messages of length m · polylog(n · d), where
m is the number of bits the protocol outputs, n is the number of par-
ties participating in the protocol, and d is the number of communication
rounds. The resulting protocol simulates the original protocol, has the
same round complexity and satisfies the same security guarantees. Next,
we elaborate on how this transformation works.

Suppose for simplicity that in our underlying protocol each message
sent is of length L = L(n) (and thus the messages come from a universe of
size 2L), and think of L as being very large. We convert any such protocol
into a new protocol where each message consists of only ` bits, where think
of ` as being significantly smaller than L. This is done by a priori choosing
2` messages within the 2L-size universe, and restricting the parties to
send messages from this restricted universe. Thus, now each message is of
length `, which is supposedly significantly smaller than L. We note that
a similar approach was taken in [10] in the context of transforming public
randomness into private randomness in communication complexity, in [3]
to reduce the number of random bits needed for property testers, and
most recently in [4] to prove a lower bound for coin-flipping protocols in
the setting of strong adaptive adversaries.

A priori, it may seem that such an approach is doomed to fail, since
by restricting the honest parties to send messages from a small universe

within the large 2L-size universe, we give the adversary a significant
amount of information about future messages (especially in the multi-
round case). Intuitively, the reason security is not compromised is that
there are many possible restrictions, and it suffices to prove that a few
(or only one) of these restrictions is secure. In other words, very loosely
speaking, since we believe that most of the bits sent by honest parties are
not “sensitive”, we believe that it is safe to post some information about
each message ahead of time.

For the sake of simplicity, in this overview we focus on static ad-
versaries, and to simplify matters even further, we assume the adversary
always corrupts the first t parties. This simplified setting already captures
the high-level intuition behind our security proof in Section 3.

Let us first consider one-round protocols. Note that for one-round
protocols restricting the message space of honest parties does not affect
security at all since we consider rushing adversaries, who may choose
which messages to send based on the content of the messages sent by
all honest parties in that round. Thus, reducing the length of messages is
trivial in this case, assuming the set of parties that the adversary corrupts
is predetermined. We mention that even in this extremely simplified set-
ting, we need ` to be linear in m for correctness (“simulation”), i.e., in
order to ensure that the output is distributed correctly.

Next, consider a multi-round protocol Π. We denote by H the re-
stricted message space, i.e., H is a subset of the message universe of
size 2`, and denote by ΠH the protocol Π, where the messages are re-
stricted to the set H. Suppose that for any set H there exists an adversary
AH that biases the outcome of ΠH , say towards 0.5 We show that in this
case there exists an adversary A in the underlying protocol that biases
the outcome towards 0. Loosely speaking, at each step the adversary A
will simulate one of the adversaries AH . More specifically, at any point
in the underlying protocol, the adversary will randomly choose a set H
such that the transcript so far is consistent with a run of protocol ΠH

with the adversary AH , and will simulate the adversary AH . The main
difficulty is to show that with high probability there exists such H (i.e.,
the remaining set of consistent H’s is non-empty). This follows from a
counting argument and basic probability analysis.

In our actual construction, we have a distinct set H of size 2` corre-
sponding to each message of the protocol. Thus, if the underlying pro-

5 Of course, it may be that for different sets H, the adversary AH biases the outcome
to a different value. For simplicity we assume here that all the adversaries bias the
outcome towards a fixed message, which we denote by 0.

tocol Π has d rounds, and all the parties send a message in each round,
then the resulting (short-message) protocol is associated with d · n sets
H1, . . . ,Hd·n each of size 2`, where the message of the jth party in the
ith round is restricted to be in the set Hi,j . We denote all these sets by a

matrix H ∈
(
{0, 1}L

)d·n×2`
, where the row (i, j) of H corresponds to the

set of messages that the jth party can send during the ith round.

Note that there are 2L·2
`·d·n such matrices. Each time an honest party

sends a uniformly random message in Π it reduces the set of consistent
matrices by approximately a 2L-factor (with high probability). Any time
the adversary A sends a message, it also reduces the set of consistent
matrices H, since his message is consistent only with some of the adver-
saries AH , but again a probabilistic argument can be used to claim that
it does not reduce the set of matrices by too much, and hence, with high
probability there always exist matrices H that are consistent with the
transcript so far.

We briefly mention that the analysis in the case of adaptive corrup-
tions follows the same outline presented above. One complication is that
the mere decision of whether to corrupt or not reduces the set of consis-
tent matrices H. Nevertheless, we argue that many consistent matrices
remain.

We emphasize that the above is an over-simplification of our ideas,
and the actual proof is more complex. We refer to Section 3 for more
details.

2 Preliminaries

In this section we present the notation and basic definitions that are used
in this work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For
a distribution X we denote by x← X the process of sampling a value x
from the distribution X. Similarly, for a set X we denote by x← X the
process of sampling a value x from the uniform distribution overX. Unless
explicitly stated, we assume that the underlying probability distribution
in our equations is the uniform distribution over the appropriate set.
We let UL denote the uniform distribution over {0, 1}L. We use log x to
denote a logarithm in base 2.

A function negl : N → R is said to be negligible if for every constant
c > 0 there exists an integer Nc such that negl(n) < n−c for all n > Nc.

The statistical distance between two random variables X and Y over
a finite domain Ω is defined as

SD(X,Y) ,
1

2

∑
ω∈Ω
|Pr[X = ω]− Pr[Y = ω]| . (1)

The Model

The communication model and distributed tasks. We consider the
synchronous model where a set of n parties P1, . . . ,Pn run protocols. Each
protocol consists of rounds in which parties send messages. We assume
the existence of a global counter which synchronizes parties in between
rounds (but they are asynchronous within a round).

The focus of this work is on tasks where parties do not have any
private inputs. Examples of such tasks are coin-flipping protocols, leader
election protocols, Byzantine agreement protocols, etc.

Throughout this paper, we restrict ourselves to public-coin protocols.

Definition 1 (Public-coin protocols). A protocol is public-coin if all
honest parties’ messages consist only of uniform random bits.

Jumping ahead, we consider adversaries in the full information model. In
Section 4 we argue that the restriction to public-coin protocols is with-
out loss of generality since in the full information model any protocol
(in which parties do not have private inputs) can be converted into a
public-coin one, without increasing the round complexity and without
degrading security (though this transformation may significantly increase
the communication complexity).

The adversarial model. We consider the full information model where
it is assumed the adversary is all powerful, and may see the entire tran-
script of the protocol. The most common adversarial model considered
in the literature is the Byzantine model, where a bound t = t(n) ≤ n
is specified, and the adversary is allowed to corrupt up to t parties. The
adversary can see the entire transcript, has full control over all the cor-
rupted parties, and can send any messages on their behalf. Moreover, the
adversary has control over the order of the messages sent within each
round of the protocol.6 We focus on the Byzantine model throughout this
work.

Within this model, two types of adversaries were considered in the
literature: static adversaries, who need to specify the parties they corrupt

6 Such an adversary is often referred to as “rushing”.

before the protocol begins, and adaptive adversaries, who can corrupt
the parties adaptively based on the transcript so far. Our results hold
for both types of adversaries. Throughout this work, we focus on the
adaptive setting, since the proof is more complicated in this setting. In
Subsection 3.1 we mention how to modify (and simplify) the proof for the
static setting.

Correctness and security. For any protocol Π and any adversary A,
we denote by

out(AΠ | r1, . . . , rn)

the output of the protocol Π when executed with the adversary A, and
where each honest party Pi uses randomness ri.

Let Π be a protocol whose output is a string in {0, 1}m for some
m ∈ N. Loosely speaking, we say that an adversary is “successful” if
he manages to bias the output of the protocol to his advantage. More
specifically, we say that an adversary is “successful” if he chooses a pre-
determined subset M ⊆ {0, 1}m of some size s, and succeeds in biasing
the outcome towards the set M . To this end, for any set size s, we define

succs(AΠ)
def
= max

M⊆{0,1}m s.t. |M |=s
succM (AΠ)

def
= max

M⊆{0,1}m s.t. |M |=s

(
Pr

r1,...,rn
[out(AΠ | r1, . . . , rn) ∈M] −

Pr
r1,...,rn

[outΠ(r1, . . . , rn) ∈M]

)
,

where outΠ(r1, . . . , rn) denotes the outcome of the protocol Π if all the
parties are honest, and use randomness r1, . . . , rn.

Intuitively, the reason we parameterize over the set size s is that we
may hope for different values of succM (AΠ) for sets M of different sizes,
since for a large set M it is often the case that Prr1,...,rn [outΠ(r1, . . . , rn) ∈
M] is large, and hence succM (AΠ) is inevitably small, whereas for small
sets M the value succM (AΠ) may be large.

For example, for coin-flipping protocols (where m = 1 and the out-
come is a uniformly random bit in the case that all parties are honest),
often an adversary is considered successful if it biases the outcome to his
preferred bit with probability close to 1, and hence an adversary is consid-
ered successful if succM (AΠ) ≥ 1

2 − o(1) for either M = {0} or M = {1},
whereas for general selection protocols (where m is a parameter) one of-
ten considers subsets M ⊆ {0, 1}m of size γ · 2m for some constant γ > 0,

and an adversary is considered successful if there exists a constant δ > 0
such that succM (AΠ) ≥ δ.

Definition 2 (Security). Fix any constant δ > 0, any t = t(n) ≤ n,
and any n-party protocol Π whose output is an element in {0, 1}m. Fix
any s = s(m). We say that Π is (t, δ, s)-adaptively secure if for any
adversary A that adaptively corrupts up to t = t(n) parties, it holds that

succs(AΠ) ≤ δ.

We note that this definition generalizes the standard security definition
for coin-flipping protocols and selection protocols. We emphasize that
our results are quite robust to the specific security definition that we con-
sider, and we could have used alternative definitions as well. Intuitively,
the reason is that we show how to transform any d-round protocol Π
into another d-round protocol with short messages, that simulates Π (see
Definition 3 below), where this transformation is independent of the se-
curity definition. Then, in order to prove that the resulting protocol is as
secure as the original protocol Π, we show that if there exists an adver-
sary for the short protocol that manages to break security according to
some definition, then there exists an adversary for Π that “simulates” the
adversary of the short protocol and breaches security in the same way.
(See Section 1.3 for more details, and Section 3 for the formal argument).

Finally, we mention that an analogous definition to Definition 2 can
be given for static adversaries. Our results hold for the static definition
as well.

Definition 3 (Simulation). Let Π be an n-party protocol with outputs
in {0, 1}m. We say that an n-party protocol Π ′ simulates Π if

SD (outΠ , outΠ′) = negl(n),

where outΠ is a random variable that corresponds to the output of protocol
Π assuming all parties are honest, and outΠ′ is a random variable that
corresponds to the output of protocol Π ′ assuming all parties are honest.

3 Compressing Communication in Distributed Protocols

In this section we show how to transform any n-party d-round t-adaptively
secure public-coin protocol, that outputs messages of length m and sends
messages of length L, into an n-party d-round t-adaptively secure public-
coin protocol in which every party sends messages of length ` = m ·
polylog(n, d).

Throughout this section, we fix µ∗ to be the negligible function defined
by

µ∗ = µ∗(n, d) =
(√

ε+ 1− (1− ε)dn
)
· 2dn, (2)

and where ε = 2− log2(dn).

Theorem 2. Fix any m = m(n), d = d(n), L = L(n), and any n-
party d-round public-coin protocol Π that outputs messages in {0, 1}m
and in which all parties send messages of length L = L(n). Then, for
any constant δ > 0, any t = t(n) < n, and any s = s(m), if Π is
(t, δ, s)-adaptively secure then there exists an n-party d-round (t, δ′, s)-
adaptively secure public-coin protocol, that simulates Π, where all parties
send messages of length ` = m · log4(n · d), and where δ′ ≤ δ + µ∗ (and
µ∗ = µ∗(n, d) is the negligible function defined in Equation (2)).

Proof. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-round
public-coin protocol Π that outputs messages in {0, 1}m and in which all
parties send messages of length L = L(n). Fix any constant δ > 0, any
t = t(n) < n, and any s = s(m) such that Π is (t, δ, s)-adaptively secure.
We start by describing the construction of the (short message) protocol.
Let

N = 2` = 2m·log
4(n·d). (3)

Let
H = {H : [d · n]× {0, 1}` → {0, 1}L}

be the set all possible [d · n] × {0, 1}` ≡ [d · n] × [N] matrices, whose
elements are from {0, 1}L. Note that |H| = 2d·n·N ·L. We often interpret
H : [d · n]× {0, 1}` → {0, 1}L as a function

H : [d]× [n]× {0, 1}` → {0, 1}L,

or as a matrix where each row is described by a pair from [d] × [n]. We
abuse notation and denote by

H(i, j, r) , H((i− 1)n+ j, r).

As a convention, we denote by R a message from {0, 1}L and by r and a
message from {0, 1}`.

From now on, we assume for the sake of simplicity of notation, that
in protocol Π, in each round, all the parties send a message. Recall that
we also assume for the sake of simplicity (and without loss of generality)

that Π is a public-coin protocol (see Definition 1). For any H ∈ H we
define a protocol ΠH that simulates the execution of the protocol Π, as
follows.

The Protocol ΠH . In the protocol ΠH , for every i ∈ [d] and j ∈ [n], in
the ith round, party Pj sends a random string ri,j ← {0, 1}`. We denote
the resulting transcript in round i by

TransH,i = (ri,1, . . . , ri,n) ∈
(
{0, 1}`

)n
,

and denote the entire transcript by

TransH = (TransH,1 . . . ,TransH,d).

We abuse notation, and define for every round i ∈ [d],

H(TransH,i) = (H(i, 1, ri,1), . . . ,H(i, n, ri,n)).

Similarly, we define

H(TransH) = (H(TransH,1) . . . , H(TransH,d)).

The outcome of protocol ΠH with transcript TransH is defined to be the
outcome of protocol Π with transcript H(TransH).

It is easy to see that the round complexity of ΠH (for every H ∈ H) is
the same as that of Π. Moreover, we note that with some complication in
notation we could have also preserved the exact communication pattern
(instead of assuming that in each round all parties send a message).

In order to prove Theorem 1 it suffices to prove the following two
lemmas.

Lemma 1. There exists a subset H0 ⊆ H of size |H|2 , such that for every
matrix H ∈ H0 it holds that ΠH is (t, δ′, s)-adaptively secure for δ′ =
δ + µ∗, where µ∗ is the negligible function defined in Equation (2).

Lemma 2. There exists a negligible function µ = µ(n, d) such that,

Pr
H←H

[SD(outΠH , outΠ) ≤ µ] ≥ 2

3
.

Indeed, given Lemmas 1 and 2, we obtain that there exists an H ∈ H
such that ΠH is (t, δ′, s)-adaptively secure and it simulates Π.

The proofs of Lemmas 1 and 2 can be found in the full version [5].

3.1 Static Adversaries

We note that Theorem 2 holds also for static adversary. For completeness,
we restate the theorem for static adversaries.

Theorem 3. Fix any m = m(n), d = d(n), L = L(n), and any n-
party d-round public-coin protocol Π that outputs messages in {0, 1}m
and in which all parties send messages of length L = L(n). Then, for any
constant δ > 0, any t = t(n) < n, and any s = s(m), if Π is (t, δ, s)-
statically secure then there exists an n-party d-round (t, δ′, s)-statically se-
cure public-coin protocol that simulates Π, where all parties send messages
of length ` = m · log4(n · d), and where δ′ ≤ δ + µ∗ (where µ∗ = µ∗(n, d)
is the negligible function defined in Equation (2)).

The proof of Theorem 3 is almost identical to the proof of Theorem 2.
An outline is given in the full version [5].

4 Public-Coin Protocols

In this section we show how to convert any distributed protocol in which
parties do not have private inputs into a public-coin protocol.

Theorem 4. Every protocol Π in which parties do not have private in-
puts can be transformed into a protocol Π ′ which simulates Π and such
that the messages sent in Π ′ are uniformly random. Moreover, the proto-
col Π ′ preserves the security of Π and its round complexity.

The proof sketch of this theorem can be found in the full version [5].

Acknowledgments We thank Nancy Lynch, Merav Parter and David
Peleg for helpful remarks and pointers. The second author thanks his
advisor Moni Naor for his continuous support.

References

1. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and min-
ima of banzhaf values. In: 26th Annual Symposium on Foundations of Computer
Science, FOCS. pp. 408–416 (1985)

2. Feige, U.: Noncryptographic selection protocols. In: 40th Annual Symposium on
Foundations of Computer Science, FOCS. pp. 142–153 (1999)

3. Goldreich, O., Sheffet, O.: On the randomness complexity of property testing.
Computational Complexity 19(1), 99–133 (2010)

4. Goldwasser, S., Kalai, Y.T., Park, S.: Adaptively secure coin-flipping, revisited.
In: 42nd International Colloquium on Automata, Languages and Programming,,
ICALP. pp. 663–674 (2015)

5. Kalai, Y.T., Komargodski, I.: Compressing communication in distributed proto-
cols. Electronic Colloquium on Computational Complexity (ECCC) 22, 92 (2015)

6. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press (1997)

7. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS. pp. 364–373 (1997)

8. Lichtenstein, D., Linial, N., Saks, M.E.: Some extremal problems arising form
discrete control processes. Combinatorica 9(3), 269–287 (1989)

9. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: 33rd Annual ACM Symposium on Theory of Computing, STOC.
pp. 590–599 (2001)

10. Newman, I.: Private vs. common random bits in communication complexity. Inf.
Process. Lett. 39(2), 67–71 (1991)

11. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for In-
dustrial and Applied Mathematics (2000)

12. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput. 30(5),
1427–1442 (2000)

13. Russell, A., Saks, M.E., Zuckerman, D.: Lower bounds for leader election and
collective coin-flipping in the perfect information model. SIAM J. Comput. 31(6),
1645–1662 (2002)

14. Sarma, A.D., Molla, A.R., Pandurangan, G., Upfal, E.: Fast distributed pagerank
computation. Theor. Comput. Sci. 561, 113–121 (2015)

