
HAL Id: hal-01207146
https://hal.science/hal-01207146

Submitted on 30 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Geometric Semantics to Asynchronous
Computability

Éric Goubault, Samuel Mimram, Christine Tasson

To cite this version:
Éric Goubault, Samuel Mimram, Christine Tasson. From Geometric Semantics to Asynchronous Com-
putability. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-
3-662-48653-5_29�. �hal-01207146�

https://hal.science/hal-01207146
https://hal.archives-ouvertes.fr

From Geometric Semantics to Asynchronous Computability

Éric Goubault1, Samuel Mimram1, and Christine Tasson2

1 LIX, École Polytechnique
2 PPS, Université Paris 7

Abstract. We show that the protocol complex formalization of fault-tolerant protocols can be
directly derived from a suitable semantics of the underlying synchronization and communication
primitives, based on a geometrization of the state space. By constructing a one-to-one relation-
ship between simplices of the protocol complex and (di)homotopy classes of (di)paths in the lat-
ter semantics, we describe a connection between these two geometric approaches to distributed
computing: protocol complexes and directed algebraic topology. This is exemplified on atomic
snapshot, iterated snapshot and layered immediate snapshot protocols, where a well-known com-
binatorial structure, interval orders, plays a key role. We believe that this correspondence be-
tween models will extend to proving impossibility results for much more intricate fault-tolerant
distributed architectures.

1 Introduction
Fault-tolerant distributed computing is concerned with designing algorithms, and, when possible,

solving so-called decision tasks on a given distributed architecture, in the presence of faults. The
seminal result in this field was established by Fisher, Lynch and Paterson in 1985, who proved the
existence of a simple task that cannot be solved in a message-passing system (or in shared memory
[27]) with at most one potential crash [11]. In particular, there is no way in such a distributed system
to solve the very fundamental consensus problem: each processor starts with an initial value in local
memory, typically an integer, and should end up with a common value, which is one of the initial
values.

Later on, Biran, Moran and Zaks developed a characterization of the decision tasks that can be
solved by a (simple) message-passing system in the presence of one failure [3]. The argument uses
a “similarity chain”, which can be seen as a connectedness result of a representation of the space
of all reachable states, called the view complex [25] or the protocol complex [24]. Of course, this
argument turned out to be difficult to extend to models with more failures, as higher-connectedness
properties of the protocol complex matter in these cases. This technical difficulty was first tackled,
using homological considerations, by Herlihy and Shavit [23] (and independently [5,31]): there are
simple decision tasks, such as k-set agreement, a weaker form of consensus, that cannot be solved for
k < n in the wait-free asynchronous model, i.e. shared-memory distributed protocols on n processors,
with up to n−1 crash failures. Then, the full characterization of wait-free asynchronous decision tasks
with atomic reads and writes (or equivalently, with atomic snapshots) was described by Herlihy and
Shavit [24]: this relies on the central notion of chromatic (or colored) simplicial complexes, and their
subdivisions. All these results stem from the contractibility of the “standard” chromatic subdivision,
which was completely formalized in [25,26] (and even for iterated models [19]) and corresponds to
the protocol complex of distributed algorithms solving layered immediate snapshot protocols.

Over the years, the geometric approach to problems in fault-tolerant distributed computing has
been very successful, see [22] for a fairly complete up-to-date treatment. One potential limitation
however is that for some intricate models, it is extremely difficult to produce their corresponding pro-
tocol complex. In this paper, we are exploring the links between the semantics of the synchronization
and communication primitives we are considering on a given distributed architecture, and the protocol
complex. The interest is that the semantics of such synchronization primitives is much simpler to write
down than the protocol complex, which is very error-prone to describe, as we will see in Section 3.2.
We advocate in this paper the calculation of protocol complexes directly from the formal semantics of
the underlying synchronization primitives.

The other aim of this article is to make the link between two geometric theories of concurrent and
distributed computations: one based on protocols complexes, and the other, based on directed alge-
braic topology. Actually, the semantics of concurrent and distributed systems can be given by topo-
logical models, as pushed forward in a series of seminal papers in concurrency, in the early 1990s.
These papers have explored the use of precubical sets and Higher-Dimensional Automata (which are
labeled precubical sets equipped with a distinguished beginning vertex) [30,32], begun to suggest
possible homology theories [17,18,6] and pushed the development of a specific homotopy theory,
part of a general directed algebraic topology [20]. On the practical side, directed topological models
have found applications to deadlock and unreachable state detection [9], validation and static analy-
sis [15,4,7], state-space reduction (as in e.g. model-checking) [16], serializability and correctness of
databases [21] (see also [14,10] for a panorama of applications).

In order to instantiate this link, we will be considering the simple model of shared-memory concur-
rent machines with crash failures, where processors compute and communicate through shared loca-
tions, and where reads and writes are supposed to be atomic. This model can also be presented [28] as
atomic snapshot protocols [1,2], where processors are executing the following instructions: scanning
the entire shared memory (and copying it into their local memory), computing in its local memory, and
updating its “own value”, i.e. writing the outcome of its computation in a specific location in global
memory, assigned to him only. The methodology we are describing here is by no means limited to
this simple model: we have provided in this paper a general framework that builds protocol complexes
from the semantics of communication primitives. However, what is more difficult is determining the
set of directed homotopy classes of directed paths in this semantics. This is one of the reasons why
we chose to exemplify the method on a well-known and simple case in fault-tolerant distributed com-
puting. In general, this step is by no means trivial, reinforcing the need for formally deriving protocol
complexes from semantics.The other reason is that the reader will be more familiar with the model
and the expected result, and will be able to focus on the new technical (directed algebraic topological)
aspects of the paper.

Contents of the paper and main contributions. Section 2.1 begins by defining the standard seman-
tics (or interleaving semantics) of atomic read/write protocols, and more precisely of atomic snapshot
protocols where read and write primitives are replaced by update and (global) scan ones. In Sec-
tion 2.2, we give an alternative geometric semantics, which encodes also independence of actions,
as a form of homotopy in a geometric model. The very basics of directed algebraic topology have
been introduced for this purpose, but we refer the reader to [20,8] for more details. Yet, for the wider
picture, we prove the fact that (directed) homotopy encodes commutation of actions, in the form of
an equivalence between the standard semantics and the geometric semantics. It is shown in Section
2.3, Proposition 4 that two traces in the interleaving semantics modulo commutation of actions induce
dihomotopic (directed) paths in the geometric model. The converse is shown in Section 2.3, Proposi-
tion 10, using the combinatorial notion of interval order [12]. We then combine these results with the
semantic equivalence of Proposition 6, Section 2.3; this is the first main contribution of the paper.

In Section 3, we turn to the other geometric model of distributed systems: protocol complexes. The
second main contribution of the paper is developed in Section 3.2: the protocol complex for atomic
snapshot protocols (possibly iterated) is derived from the geometric semantics of Section 2.2, through
interval orders. We specify this construction in Section 3.3 to the case of layered immediate snapshot
which is generally studied by most authors, since it is much simpler to study, and is enough to prove
the classical impossibility theorems, as e.g. [23]. Our explicit description of the protocol complex in
the latter case is the same as the one of [19] (linked as well to the equivalent presentation of [25]), see
Theorem 20. Combined with the result of [19] it proves that the layered immediate snapshot protocols
produce collapsible protocol complexes, for any number of rounds. It then implies the asynchronous
computability theorem of [23] all the way from the semantics of the communication primitives.

2

2 Concurrent semantics of asynchronous read/write protocols

2.1 Interleaving semantics of atomic read/write protocols

In atomic snapshot protocols, n processes communicate through shared memory using two prim-
itives: update and scan. Informally, the shared memory is partitioned in n parts, each one cor-
responding to one of the n processes. The part of the memory associated with process Pi, with
i ∈ {0, . . . , n− 1}, is the one on which process Pi can write, by calling update. This primitive
writes onto that part of memory, a value computed from the value stored in a local register of Pi. Note
that as the memory is partitioned, there are never any write conflicts on memory. Conversely, all pro-
cesses can read the entire memory through the scan primitive. Note also that there are never any read
conflicts on memory. Still, it is well known that atomic snapshot protocols are equivalent [28] with
respect to their expressiveness in terms of fault-tolerant decision tasks they can solve, to the proto-
cols based on atomic registers with atomic reads and writes. Generic snapshot protocols are such that
all processes loop, any number of times, on the three successive actions: locally compute a decision
value, update then scan. It is also known [23,24] that, as far as fault-tolerant properties are con-
cerned, an equivalent model of computation can be considered: the full-information protocol where,
for each process, decisions are only taken at the end of the protocol, i.e. after rounds of update then
scan, only remembering the history of communications.

Interleaving semantics and trace equivalence. Formally, we consider a fixed set V of values, to-
gether with two distinguished subsets I andO of input and output values, the elements of V \ (I ∪O)
being called intermediate values, and an element ⊥ ∈ I ∩ O standing for an unknown value. We
suppose that the sets of values and intermediate values are infinite countable, so that pairs 〈x, y〉 of
values x, y ∈ V can be encoded as intermediate values, and similarly for tuples. We suppose fixed a
number n ∈ N of processes. We also write [n] as a shortcut for the set {0, . . . , n− 1}, and Vn for the
set of n-tuples of elements of V , whose elements are called memories. Given v ∈ Vn and i ∈ [n], we
write vi for the i-th component of v. We write ⊥n for the memory l such that li = ⊥ for any u ∈ [n].

There are two families of memories, each one containing one memory cell for each process Pi: the
local memories l = (li)i∈[n] ∈ Vn, and the global (shared) memory: m = (mi)i∈[n] ∈ Vn. A state of
a program is a pair (l,m) ∈ Vn × Vn of such memories. Processes can communicate by performing
actions which consist in updating and scanning the global memory, using their local memory: we
denote by ui any update by the i-th process and si any of its scan. We write Ai = {ui, si} and
A =

⋃
i∈[n]Ai for the set of actions.

Formally, the effect of the actions on the state is defined by a protocol π which consists of two
families of functions πui : V → V and πsi : V ×Vn → V indexed by i ∈ [n] such that πsi(x,m) = x
for x ∈ O. Starting from a state (l,m), the effect of actions is as follows: ui means “replace the
contents of mi by πui(li)”, and si means “replace the contents of li by πsi(li,m)”.

A protocol is full-information when πui(x) = x for every x ∈ V , i.e. each process fully dis-
closes its local state in the global memory. A sequence of actions T ∈ A∗ is called an interleaving
trace, and we write JT Kπ(l,m) for the state reached by the protocol π after executing the actions
in T , starting from the state (l,m). A sequence of actions T ∈ A∗ is well-bracketed or well-formed
(giving some form of generic protocol) when for every i ∈ [n] we have proji(T) ∈ (uisi)

∗, where
proji : A∗ → A∗i is the obvious projection which only keeps the letters in Ai in a word over A. We
denote by Aω the set of countably infinite sequences of actions; such a sequence is well-bracketed
when every finite prefix is.

It can be noticed that different interleaving traces may induce the same final local view for any
process. Indeed, if i 6= j, then ui and uj modify different parts of the global memory, as we already
noted informally, and thus uiuj and ujui induce the same action on a given state. Similarly, si and
sj change different parts of the local memory, and thus sisj and sjsi induce the same action on a
given state. On the contrary, uisj and sjui may induce different traces as ui may modify the global
memory that is scanned by sj . We thus define an equivalence≈ on interleaving traces, as the smallest
congruence such that ujui ≈ uiuj and sjsi ≈ sisj for every indices i and j. Therefore :

3

Proposition 1. The equivalence ≈ of traces induces an operational equivalence: two equivalent in-
terleaving traces starting from the same initial state lead to the same final state.

This justifies that we consider traces up to equivalence in the following. We use the usual notions on
such operational semantics: execution traces, interleaving traces will denote any finite sequences of
actions ui and si in A∗, maximal execution traces are traces that cannot be further extended. We also
use the classical notions of length and concatenation of execution traces.

Decision tasks. We are going to consider the possibility of solving a particular task with an asyn-
chronous protocol. Formally, those tasks are specified as follows:

Definition 2. A wait-free task specification Θ is a relation Θ ⊆ In×On such that for all (l, l′) ∈ Θ,
i ∈ [n] such that li = ⊥, and x ∈ I, we also have (lxi , l

′) ∈ Θ where lxi is the memory obtained from
l by replacing the i-th value by x. We note domΘ = {l ∈ In | ∃l′ ∈ On, (l, l′) ∈ Θ} for the domain
of a wait-free task specification Θ and codomΘ = {l′ ∈ On | ∃l ∈ In, (l, l′) ∈ Θ} for its codomain.

Notice that domΘ induces a simplicial complex, with [n]× (I \ {⊥}) as vertices, and simplices are
of the form {(i, x) ∈ [n]× V | li = x 6= ⊥}, for any l ∈ domΘ. This simplicial complex is called
the input complex; the output complex is defined similarly from codomΘ. We say that a protocol π
solves a task specification Θ when for every l ∈ domΘ, and well-bracketed infinite sequence of
actions T ∈ Aω , there exists a finite prefix T ′ of T such that (l, l′) ∈ Θ where l′ is the local memory
after executing T ′, i.e. (l′,m′) = JT ′Kπ(l,⊥n). It can be shown [24] that, w.r.t. task solvability, we can
assume that domΘ contains only the memory l such that li = i, for all i, and its faces; for simplicity
we will do so in Section 3.

Of particular interest is the view protocol (sometimes identified with the full-information proto-
col in the literature) π^ such that π^

ui(x) = x for x ∈ V , i.e. the protocol is full-information, and
π^
si(x,m) = 〈x, 〈m〉〉 for x ∈ V and m ∈ Vn: when reading the global memory, the protocol stores

(an encoding of) the pair constituted of its current local memory x and (an encoding as a value of) the
global memory m it has read. This is akin to the use of generic protocols in normal form [24], where
protocols only exchange their full history of communication for a fixed given number of rounds, and
then apply a local decision function. It can be shown that the view protocol is the “most general one”
(i.e. initial in a suitable category). Thus, we will be satisfied with describing the potential sets of
histories of communication between processes, without having to encode the decision values: this is
the basis of the geometric semantics of Section 2.2. As a direct consequence, we recover the usual
definition of the solvability of a task as a simplicial map from some iterated protocol complex to the
output complex [24,22].

2.2 Directed geometric semantics

In this section, we give an alternative semantics to atomic snapshot protocols, using a geometric
encoding of the state space, together with a notion of “time direction”. One of the most simple settings
in which this can be performed is the one of pospaces [29,13]: a pospace is a topological space X
endowed with a partial order ≤ such that the graph of the partial order is closed in X × X with
the product topology. The intuition is that, given two points x, y ∈ X such that x ≤ y, y cannot
be reached before x. The encoding, or semantics of a concurrent or distributed protocol in terms of
directed topological spaces of some sort can be done in a more general manner [7,8]. Here, we simply
define, directly, the pospace that gives the semantics we are looking for. It is rather intuitive and we
will check this is correct with respect to the interleaving semantics, in Section 2.3.

Consider the pospace Xn(r) below, indexed by the number n of processes and the vector of number
of rounds (r) = (r0, . . . , rn−1) (each ri ∈ N, with i ∈ [n], is the number of times process Pi
performs update followed by scan). Here, we use a vector to represent the number of rounds: this
is because we do not want to treat only the layered immediate snapshot protocols, but more general
atomic snapshot protocols. We claim now that the geometric semantics of the generic protocol, for n

4

processes and (r) rounds, is represented by the pospace

Xn(r) =
∏
i∈[n]

[0, ri] \
⋃

i,j∈[n],k∈[ri], l∈[rj]
Uki ∩ Slj (1)

endowed with the product topology and product order induced by Rn, where
– n, ri ∈ N and u, s are any reals such that 0 < u < s < 1: u (resp. v) is representing the local time

at which an update (resp. scan) takes place in a round, and their precise values will not matter,

– Uki =
{
x ∈∏i∈[n][0, ri]

∣∣∣ xi = k + u
}

stands for the region where the i-th process updates the
global memory with its local memory for the k-th time,

– Slj =
{
x ∈∏i∈[n][0, ri]

∣∣∣ xj = l + s
}

stands for the region where the j-th process scans the
global memory into its local memory for the l-th time.

U0 S0

U1

S1

U1
1 ∩ S1

0

U1
0 ∩ S1

1

t0

t1

(2)

t0

t1

t2

(3)

The meaning of (1) is that a state (x0, . . . , xn−1) ∈
∏
i∈[n][0, ri], i.e. a

state in which each process Pi is at local time xi, is allowed except
when it is in Uki ∩ Slj (for i, j ∈ [n] and k ∈ [ri], l ∈ [rj]): these
forbidden states are precisely the states for which there is a scan and
update conflict. Namely, states in Uki ∩ Slj are states for which pro-
cess Pi updates (for the k-th time) while process Pj scans (for the l-th
time), which is forbidden in the semantics. Indeed, the memory has to
serialize the accesses since shared locations are concurrently read and
written, and either the scan operation will come before the update
one, or the contrary, but the two operations cannot occur at the same
time. This is reflected in the geometric semantics by a hole in the state
space, as pictured on (2) for two processes with one round each, and
in (4) for two processes with several rounds each. Notice that the holes
are depicted as squares instead of points to improve the visibility on
the diagram. In higher-dimensions, the holes exhibit a complicated combinatorics.

For instance, for three processes, and one round each, as in (3) shows forbidden regions that
intersect one another. What happens in dimension 3 is that for all 3 pairs of processes (P ,Q), we have
to produce a forbidden region which has a projection, on the two axes corresponding to P and Q,
similar to the one on (2). Hence for all three pairs of processes, we have two cylinders with square
section punching entirely the set of global states of the system. Each of these 6 cylinders correspond
to a pair (P ,Q) of processes, and a hole created either by a scan of P and an update of Q, or a scan of
Q and an update of P . Consider the cylinder created by the conflict between the scan of P with the
update of Q: it intersects exactly two cylinders (parallel to the other axes), the one created by the scan
of the third processor R and the update of Q, and the one created by the update of R and the scan of
P , see (3).

2.3 Equivalence of the standard and geometric semantics

In the geometric semantics of Section 2.2, we can define notions analogous to equivalence of
traces as for the standard interleaving semantics of Section 2.1 (Proposition 1). A dipath (or directed
path) in a pospace (X,≤) is a continuous map α : [0, 1]→ X which is continuous and non decreasing
when [0, 1] is endowed with the order and topology induced by the real line. A dipath is the continuous
counterpart (as we will make clear later) of a trace in the interleaving semantics, or an execution.
A dipath α : [0, 1] → X is called inextendible, if there is no dipath β : [0, 1] → X such that
α([0, 1]) (β([0, 1]). This is the analogous, in our geometric setting, to maximal execution traces.
The concatenation of two dipaths α, α′ : [0, 1] → X with compatible ends, i.e. α(1) = α′(0) is the
dipath α · α′ such that α · α′(x) is α(x) (resp. α′(2x− 1)) when x ≤ 0.5 (resp. x ≥ 0.5).

The continuous setting allows us to use the classical concepts of (di)homotopy, which is the
natural notion of equivalence between paths, and to use some tools from algebraic topology to de-
rive properties of protocols (and more generally programs [14]). A dihomotopy is a continuous map

5

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

u0

u1

s0

u0

s0

u0

s0

u0

s0

s1

u1

s1

(4)

H : [0, 1] × [0, 1] → X such that
for all t ∈ [0, 1], the map H(−, t)
is a dipath. Two dipaths α, β such
that α(0) = β(0) and α(1) = β(1)
are dihomotopic, if there is a dihomo-
topy H : [0, 1] × [0, 1] → X with
H(−, 0) = α and H(−, 1) = β.
We denote by [α] the set of inex-
tendible dipaths dihomotopic to α and
dPath(X) the set of dipaths up to di-
homotopy. For instance, two dipaths that are dihomotopic in the geometric semantics X2

(4,2) can be
pictured as in Figure (4).

From equivalence classes of interleaving traces to dipaths modulo dihomotopy. To any interleav-
ing trace T with n processes and (r) rounds, we associate a dipath αT in Xn(r). This dipath accurately
reflects the whole computation of T , e.g. if T ′ extends T , then αT ′ also extends αT . For example, the
black path of (4) is the dipath associated to the trace u0u1s0u0s1s0u1u0s0u0s1s0: the points along it
correspond to actions and the path consists of a linear interpolation between those. The dipath αT is
built by induction on the length of trace T : when T is of length 0, αT is the constant dipath staying at
the origin; when T is the concatenation of a trace T1 with an action A, we concatenate the dipath αT1

and a dipath β which is defined according to the previous actions in T1:

Lemma 3. There exists a (not necessarily inextendible) dipath αT in Xn(r) such that αT (0)i = 0, for
every i ∈ [n], and satisfying the following. For any i ∈ [n], if the last action of process i in T is its
k-th update, then αT (1)i ∈

{
k + u, k + u+s

2

}
. If it is its k-th scan, then αT (1)i ∈ {k + s, k + 1}.

If the last action in T is the k-th update of process i, then αT (1)i = k + u. If it is the k-th scan of
process i, then αT (1)i = k + s.

Proof. First, when T is of length 0, αT is the constant dipath staying at the origin 0. Otherwise, let
T = T1 · A be the concatenation of a trace T1 with action A (being either update ui or scan si). By
induction, we have a dipath αT1

starting at 0 and ending at αT1
(1), associated to T1, that satisfies

Lemma 3. Now, construct a dipath β, which is a line, as pictured below,

0

j

i

Uj : l+u

l+u+s
2

Sj : l+s

l+1

k−1+s

Si

k k+u

Ui

end point of αT1
αT1

0

j

i

Uj : l+u

l+u+s
2

Sj : l+s

l+1

k+u

Ui

k+u+s
2

k+s

Si

end point of β β

(5)

starting at β(0) = αT1
(1), and ending at β(1) and such that:

– Let us assume that the action A is an update, say the k-th update of process i. As partly rep-
resented on the left part of (5), by Lemma 3, since the previous action was a scan or nothing,
αT1

(1)i ∈ {0, k − 1 + s, k} and we set β(1)i = k + u.
For any other process j 6= i, if the last action of j is its say l-th scan, then αT1

(1)j ∈ {l+s, l+1}
and we set β(1)j = l + 1 (in red tones), otherwise we set β(1)j = αT1

(1)j (in blue tones).
– If A is a scan, say the k-th scan of i then, see the right part of (5). Since the action of i before was

the k-th update, we have αT1
(1)i ∈

{
k + u, k + u+s

2

}
and we set β(1)i = k + s.

For any other process j, if the last action of j is its l-th update, then αT1
(1)j =

{
l + u, l + u+s

2

}
and set β(1)j = l + u+s

2 (in red tones), otherwise we set β(1)j = αT1(1)j (in blue tones).

6

We then define the dipath αT1·A = αT1
· β. ut

To a maximal interleaving trace T , we associate an inextendible dipath α′T by further extend-
ing αT : we define α′T to be αT · γ where γ is the dipath given by (any parameterization of) the line
from γ(0) = αT (1) to γ(1) = (ri)i∈[n], the point γ(1) being the end of all inextendible dipaths
in Xn(r). We shall not distinguish in the sequel α′T from αT since we will only consider maximal
interleaving traces and their inextendible counterparts.

Proposition 4. Two equivalent interleaving traces induce dihomotopic dipaths.

Proof. Recall from Proposition 1 that the equivalence of traces is generated by uiuj ≈ ujui and
sisj ≈ sjsi. Consider two traces T and T ′ and their associated dipaths αT and αT ′ . Assume that
T and T ′ are identical until the (m − 1)-th action and only differ by the ordering of their m-th and
(m+ 1)-th actions. Up to reparametrization, we can assume that these actions occur at the same time
in αT and αT ′ , respectively tm−1, tm, and tm+1.

0

j

i

l−1+s

sj

l

l+u

uj

k−1+s

si
k k+u

ui

α(tm−1) α(tm) α(tm+1)

0

j

i

l+u

uj

l+u+s
2

l+s

sj

k+u

ui
k+u+s

2
k+s

si

αT ′ αT

(6)

First assume that in T , the m-th action is the k-th update of process i and the (m + 1)-th action
is the l-th update of process j. On the left part of (6), the possible paths are drawn, one color being
associated to one possible point at tm−1. Notice that from tm, the paths are identical and are colored
in black. Indeed, by Lemma 3,

αT (tm)i = k + u and αT (tm+1)j = l + u.

These actions are in the reverse order in T ′, so

αT ′(tm)j = l + u and αT ′(tm+1)i = k + u.

The action of i and j before tm in T are respectively the (k − 1)-th scan and the (l − 1)-th scan or
nothing. Hence,

αT (tm−1)i = αT ′(tm−1)i ∈ {0, (k − 1) + s, k} ,
αT (tm−1)j = αT ′(tm−1)j ∈ {0, (l − 1) + s, l} .

Besides, by construction (the scan and update region is forbidden),

αT ′(tm)i = k and αT (tm)j = l,

αT (tm+1)i = k + u and αT ′(tm+1)j = l + u.

Then t 7→ tαT + (1− t)αT ′ is a dihomotopy in Xn(r) between αT and αT ′ .
Now, assume that in T , the m-th action is the k-th scan of process i and the (m + 1)-th action is

the l-th scan of process j. The possible paths are drawn on the right part of (6). Again by Lemma 3,

αT (tm)i = k + s and αT (tm+1)j = l + s.

7

These action are in the reverse order in T ′, so

αT ′(tm)j = l + s and αT ′(tm+1)i = k + s.

The action of i and j before tm in T are respectively the k-th update and the l-th update. Hence,

αT (tm−1)i = αT ′(tm−1)i ∈ {k + u, k + (u+ s)/2} ,
αT (tm−1)j = αT ′(tm−1)j ∈ {l + u, l + (u+ s)/2} .

Besides, by construction (the scan and update region is avoided),

αT ′(tm)i = k + (u+ s)/2 and αT (tm)j = l + (u+ s)/2,

αT (tm+1)i = k + s and αT ′(tm+1)j = l + s.

Then t 7→ tα+ (1− t)α′ is a dihomotopy between αT and αT ′ . ut

Equivalence between equivalence classes of interleaving traces and (colored) interval orders.
In order to prove that dipaths modulo dihomotopy are in bijection with interleaving traces modulo
equivalence, we introduce a combinatorial tool encoding the history of events observable on both an
equivalence class of interleaving traces, and a dihomotopy class of dipaths in our continuous models.

Definition 5. Let (Ix)x∈X be a family of intervals on the real line (R,≤). This family induces a poset
(X,�), where ≺ is defined as x ≺ y if and only if for every s ∈ Ix and t ∈ Iy we have s < t. Such a
poset is called an interval order [12]. We denote as x‖y the independence relation.
An [n]-colored interval order is given by an interval order (X,�) and a labeling function ` : X → [n]
such that two elements with the same label are comparable. Then for any i ∈ [n], the restriction of
the interval order to intervals labeled by i is a total order. We denote as cIO(X) the set of colored
interval orders on a set X .

Proposition 6. There is a bijection between [n]-colored interval orders and traces up to equivalence.

Proof. We first associate a colored interval order to an interleaving trace T . For any i ∈ [n]. Let ri be
the number of occurrences of ui in T . Let υki and σki be the respective k-th occurrence of ui and si.
Let X = {(i, k) | k ∈ [ri], i ∈ [n]}. Any embedding of T in the real line induces an interval order by
setting I(i,k) = [υki , σ

k
i]. More precisely, X is then endowed with the partial order:

(i, k) ≺ (i′, k′) iff σki < υk
′
i′ (7)

that is σki occurs before υk
′
i′ . We can label this interval order (X,�) by ` : (i, k) 7→ i, and hence

produce an [n]-colored interval order since T is well-bracketed.
Conversely, we associate an interleaving trace TI to an [n]-colored interval order I = (X,�)

labeled by `. For any i ∈ [n], the set {x ∈ X | l(x) = i} is totally ordered of cardinal [ri]. Then, we
can assume w.l.o.g. that X = {(i, k) | k ∈ [ri], i ∈ [n]} and that (i, k) ≺ (i, k′) whenever k < k′.
Let us choose w.l.o.g. an interval representation I of (X,�) such that endpoints are pairwise disjoints.
For any k ∈ [ri], i ∈ [n], let υki and σki be the left and right endpoint of the interval I(i,k) of the real
line. The real line order induces a linear ordering of the endpoints such that the equivalence (7) is
satisfied. Then TI is obtained by substituting ui to υki and si to σki in the given sequence of endpoints.

Let us finally prove that two interval representations I = (Ik,i) and J = (Jk,i), indexed by
k ∈ [ri] and i ∈ [n], induce equivalent traces TI ≈ TJ . From the equivalence (7), we deduce that
if (i, k) ≺ (i′, k′) then σki < υk

′
i′ and if (i, k)‖(i′, k′) then σki 6< υk

′
i′ , that is σki > υk

′
i′ . Thus, the

only freedom is on the ordering of the ui’s on the one side, and of the si’s on the other side, which
corresponds precisely to the equivalence of traces. ut

From Propositions 4 and 6, we can associate to any interval order a class of dipaths modulo dihomo-
topy. Let i : cIO(Xn)→ dPath(Xn(r)) be mapping an interval order to a dipath up to dihomotopy.

8

From dipaths modulo dihomotopy to equivalence classes of interleaving traces. As already men-
tioned, dipaths geometrically represent execution traces, keeping in mind that dipaths which can be
deformed through a continuous family of executions are operationally equivalent. This argument can
be made concrete for the asynchronous model we are working on, by giving the explicit relation
between dipaths and colored interval orders (Definition 5), because of Proposition 6.

To any inextendible dipath α : [0, 1] → Xn(r), we associate an interval order �α on the set
Xn

(r) = {(i, k) | i ∈ [n], k ∈ [ri]} through the interval collection for i ∈ [n], I(i,k) = [uki , s
k
i] colored

by i where uki or ski respectively correspond to the event “α enters an update or scan hyperplane”:

uki = inf
{
t ∈ [0, 1]

∣∣ α(t)i ∈ Uki } , ski = inf
{
t ∈ [0, 1]

∣∣ α(t)i ∈ Ski } . (8)

For any i ∈ [n], the restriction of this order to the intervals labeled by i is a total order. Indeed, dipaths
α are non decreasing, u < s and α(uki)i = k + u, α(ski)i = k + s, hence for all k ∈ [ri], uki < ski
and if k 6= 0, sk−1i < uki .

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

Let us give simple examples of this in dimension 2 and 3. In dimension 2, and for
one round, consider the three inextendible dipaths in X2

(1,1) pictured on the left (we
are not writing the round number as upper index since we are considering here only
one round). Those are representatives of the three dihomotopy classes of dipaths in
this pospace. The dipath α0, on the above figure, corresponds to an execution in which
process 1 does its update and scan before process 0 even starts updating. Hence, the
interval of local times at which process 1 updates and scans is less than the interval of
local times at which process 0 updates and scans: this is reflected by the corresponding
interval order [u1, s1] ≺α0

[u0, s0]. The one on the figure below, αZ is symmetric:
the corresponding interval order is [u0, s0] ≺α2

[u1, s1]. The dipath on the middle
corresponds to an execution in which the two processes are running synchronously,
updating at the same time, and scanning at the same time: the corresponding interval
order is [u0, s0]‖[u1, s1].

t0

t1

t2

In dimension 3, there are more dipaths that one can draw. Consider, for instance,
the synchronous execution of the three processes (i.e. the pospace X3

(1,1,1)),
shown on the right. It corresponds to the interval order where the intervals [u0, s0],
[u1, s1] and [u2, s2] are not comparable. The path figured corresponds to a synchronous execution.

We then have the following simple facts first :

Lemma 7. Two inextendible dipaths α and β, which intersect the update and scan hyperplanes in the
same order, are dihomotopic.

Proof. Since α and β intersect the update and scan hyperplanes in the same order, we can reparametri-
ze β such that the times at which uki and slj intersect are the same for α and β. Then, the function
defined byH : x, t 7→ t α(x)+(1−t)β(x) is a dihomotopy. Let us prove thatH takes its value in Xn(r),
that is, for all x, t ∈ [0, 1], H(x, t) /∈ Uki ∩ Slj . Assume for instance that uki > slj . If H(x, t) ∈ Uki ,
then H(x, t)i = k + u and, since α, β ∈ Xn(r),

– either α(x)i > k+u and β(x) < k+u, then, as α and β are non decreasing, x > uki and x < uki
and we get a contradiction,

– either α(x)i < k + u and β(x) > k + u, this case is impossible for the same reason,
– or α(x)i = k + u and β(x) = k + u, then, as α and β are non decreasing,

α(x)j ≥ α(uki)j > α(slj)j = l + s

and β(x)j > l + s, thus H(x, t) /∈ Slj .
If uki < slj , consider H(x, t) ∈ Slj to show H(x, t) /∈ Uki . ut

Remark 8. One should keep in mind that a dipath α satisfies:
– α(uki)i = k + u and α(ski)i = k + s,

9

– if uki ≤ t < ski , then k + u ≤ α(t)i < k + s,
– if ski ≤ t < uk+1

i , then k + s ≤ α(t)i < (k + 1) + u.
Moreover, notice that the trace Tα induced by the intersection of α with the update and scan hyper-
planes is associated to the interval order (Xn

(r),�α).

We write α! β when the two dipaths are dihomotopic.

Proposition 9. A dipath α is dihomotopic to the dipath associated to the interval order induced by α,
that is, i ◦ r(α) ! α.

Proof. Let T be a trace representing the interval order (Xn
(r),�α) induced by α. Let Tα be the trace

induced by the sequence of intersection of α with the update and scan hyperplanes. By Remark 8, Tα
is also representing the interval order (Xn

(r),�α), so that Tα and T are equivalent interleaving traces.
Thus, αT ! αTα by Proposition 4. Now, by construction, the dipath αTα intersects the update and
scan hyperplanes in the order given by Tα, that is in the same order as α (see Remark 8). Therefore,
by Lemma 7, α! αTα . Finally, we get α! αTα ! αT = i(r(α)). ut

This implies the following, among the main results of this article :

Proposition 10. Two dihomotopic inextendible dipaths on Xn(r) induce the same interval order.

Theorem 11. There is a bijective correspondence between traces up to equivalence and dipaths up
to dihomotopy over Xn(r), that is: r ◦ i = idcIO(Xn), where r : dPath(Xn(r)) → cIO(Xn) maps a
dipath up to dihomotopy to an interval order.

3 Protocol complexes, derived from the concurrent semantics
We will see that two executions modulo dihomotopy correspond to higher-dimensional simplices

in protocol complexes (Proposition 14). In the case of update/scan protocols, these executions modulo
dihomotopy are characterized by the nice combinatorial notion of interval order, which makes the
construction of the protocol complex (Definition 18) from the geometric semantics immediate.

3.1 Protocol complex

The protocol complex has been designed [24] to represent the possible reachable states, at some
given round, of the generic protocol in normal form, i.e. it is going to encode all possible histories
of communication between processes, and as we will prove later on, all interleaving traces up to
equivalence (or equivalently the dipaths up to dihomotopy), by maximal simplices:

Definition 12. The protocol complex for atomic snapshot protocols is the abstract simplicial complex
constructed from the generic protocol in normal form, and whose

– vertices are pairs (i, li) where i ∈ [n] represents the name of a process and li its local memory,
– maximal simplices are {(0, l0), . . . , (n, ln)} where li is the local view by process i at the end of

the execution represented by this simplex.

Example 13. The local views in each vertex are determined by the operational semantics of Sec-
tion 2.1, as in the following example:

Global ⊥ ⊥

Local 0 1

u0 //
0 ⊥

0 1

u1 //
0 1

0 1

s1 //
0 1

0 01

s0 //
0 1

01 01

leading to the local view l = 〈〈0, 〈0, 1〉〉 , 〈1, 〈0, 1〉〉〉. Similarly, the trace u0s0u1s1 leads to the local
view l = 〈〈0, 〈0,⊥〉〉 , 〈1, 〈0, 1〉〉〉, and there is a third potential outcome of the computation, symmet-
ric to this last case, in which process 1 updates and scans before process 0 does. Putting this together,
according to Definition 12, we get the protocol complex for one round and two processes [24]:

0, (0⊥) 1, (01) 0, (01) 1, (⊥1)

10

The encoding of the local states, i.e. vertices in the graph above, is as follows. The identifier of the
process whose local view is the number before the comma, e.g. the state 0, (0⊥) above is the local
view of processor 0. The group of numbers or ⊥ within parentheses, e.g. (0⊥) in the state above, is a
condensed notation for the local state where l0 = 〈0, 〈0,⊥〉〉, see Section 2.1. Similarly, state 1, (01)
denotes the local view of processor 1, with local state such that l1 = 〈1, 〈0, 1〉〉.

3.2 Construction of the protocol complex from the directed geometric semantics

We can now link protocol complexes with interval orders, i.e. traces up to equivalence or dipaths
up to dihomotopy: a colored interval order represents indeed an execution and we can deduce the local
view of the i-th process by restricting the interval order to the last scan of i. We encode local views
restricting to the full information generic protocol in normal form with initial local state li = i for
i ∈ [n] (this only changes the naming of local states, and not the structure of the protocol complex).

Proposition 14. Let (Xn
(r),�) be an [n]-colored interval order. Then the local memory of the i-th

process at round k of its corresponding execution3. is given by its restriction Vki to the k-th scan Ski
of the i-th process, i.e.

Vki = {(j, l) | (i, k)‖(j, l) or (j, l) ≺ (i, k)}

meaning that it is the value of the local state li under the semantics of Section 2.1 for the interleaving
path corresponding to the interval order Vki under the equivalence of Proposition 6.

Proof. Remember that (i, k) ≺ (j, l) iff Ski happens before U lj , see (7). By contradiction, (i, k)‖(j, l)
or (j, l) ≺ (i, k) iff Ski happens after U lj . We conclude, noticing that the i-th local memory only
depends on the updates preceding the last scan of process i. ut

Example 15. Consider again the one round, two processes case. We have represented below the pro-
tocol complex already depicted in Example 13, and decorated its maximal simplices, i.e. edges, with
the corresponding dipaths modulo dihomotopy above, and the corresponding interval order, below:

0, (0⊥)
0≺1 1, (01)

0 1
0, (01)

0�1 1, (⊥1)

The local view of process 0 which is 0, (0⊥) comes from the restriction of the interval order 0≺1,
subscript of the leftmost edge in the graph above, to 0: an interleaving trace corresponding to this
interval order, under Proposition 6 is u0s0 leading to local state (0⊥) on process 0. Similarly, 1, (01)
corresponds to the local state l1 = (01) for process 1, both for the restriction 0≺1 of 0≺1 to V1

1

(corresponding to a trace u0s0u1s1, as in the trace superscript of the edge on the left of the graph
above) and for the restriction 0 1 of 0 1 to V1

1 (corresponding to a trace u0u1s0s1 for instance, as in
the trace superscript of the middle edge of the graph above).

We are now in a position to give a combinatorial description of the protocol complex of Defini-
tion 12, using interval orders. We call the resulting equivalent complex, the interval order complex:

Definition 16. The interval order complex is the simplicial complex whose
– vertices are ((i, k), V ki) where i stands for the i-th process, k for the round number and V ki for

an interval order such that for all (j, l) ∈ V ki , either (i, k)‖(j, l) or (j, l) ≺ (i, k),
– maximal simplices are {((0, r0), V r00), . . . , ((n, rn), V

rn
n)} such that there is an interval order

(Xn
(r),≺) whose restriction to (i, ri) is V rii .

In that case we say that it is the interval order complex on (r) rounds and for n+ 1 processes.

3 In the full-information generic protocol in normal form, i.e. its view (see Proposition 6 and the following
example).

11

0, ((0)((0)1)) 0, ((0(01))(01))
0 1

0

OO

1

^^ OO

1, ((0(01))(01))

0, ((0))

0

��

// 1

0

OO @@

// 1

OO

1, ((0)((0)1))

0 1

0

OO @@

// 1

OO
0 // 1

0

OO

//

@@

1

OO

0, ((0)1)

0 // 1

0

OO @@

// 1

OO^^

1, ((0)(01))

0 1

0

OO @@

// 1

^^ OO

0, ((0)(01))

0 1oo

0 //

@@OO

1

^^ OO

1, (0(01))

0 1oo

0

OO

1

^^ OO

0 1oo

0

OO @@

1

^^ OO

0, ((01)(01))

0 1

0

OO @@

1

^^ OO

1, ((01)(01))

0 // 1

0

OO @@

1

^^ OO

1, ((1)) 0, ((0(1))(1))
0 1

��

oo

0

OO

1oo

^^ OO
0 1

0

OO

1oo

^^ OO

1, (0(1))
0 1oo

0

OO

1oo

^^ OO
0, ((01)(1))

0 1oo

0

OO @@

1oo

^^ OO
1, ((01)(1))

0 1

0

OO @@

1oo

^^ OO
0, ((01)1)

0 // 1

0

OO @@

1oo

^^ OO
0 // 1

0

OO @@

1

OO

1, ((0(1))(1)) 1, ((01)((01)1))

0 1

0

OO @@

1

OO

0, ((01)((01)1))

Fig. 1. Interval order complex, together with corresponding traces, of 2 processes, 2 rounds.

Example 17. An example of interval order complex with the traces corresponding to the execution for
2 processes, 2 rounds is depicted at Figure 1. Note that this is not the classical iterated subdivision in
three parts at each round, i.e. a 9 edges complex, that is depicted for atomic snapshot protocols [22].
This is because we are considering more executions than the classical layered immediate snapshot
protocols [22]: we allow round 2 of process 0 to begin while process 1 is still in round 1 for instance.

Consider the interval order
0

��

// 1

0

OO @@

// 1

OO labeling the upper left edge of the protocol complex in Figure 1,

where an arrow x // y means x ≺ y. As shown in the same figure, it corresponds to the execution

precisely where process 0 is executing its 2 rounds before process 1 even starts its first round.

The local view of process 0 at (its) round 2 corresponds to the interval order
0

0

OO , restriction of
0

��

// 1

0

OO @@

// 1

OO

to V(2,0)
0 . An interleaving trace corresponding to this is e.g. u0s0u0s0, which, by the semantics of

Section 2.1, leads to the local state of process 0: 〈0, 〈0, 〈0,⊥〉〉⊥〉 written in condensed form as the
upper left local state 0, ((0_)_) in Figure 1.

In Figure 2, we show the interval order complex for 3 processes and 1 round. Note again that we do
not have exactly the same picture as in [22]: to the 13 triangles of [22], we have to add the 6 extra blue
triangles that make the complex not faithfully representable as a planar shape and which correspond
to non immediate snapshot executions. For instance, the upper left blue triangle is labeled with the
interval order where 0 is not comparable to both 1 and 2, and 2 is less than 1. An interleaving trace
(up to equivalence) corresponding to this interval order is given on the same figure: u0u2s2u1s1s0.

3.3 Particular case of 1-round immediate snapshot protocols

We have not quite finished with describing the connections between directed algebraic topology
and the protocol complex approach : the combinatorial description of the protocol complex in the
case of layered immediate snapshot protocols seems, at first glance, of a different nature than the one
using interval order complexes of Definition 16. We recall that an (layered, for multi-round protocols)
immediate snapshot protocol [22] is a protocol where the snapshot of a given process comes “right
after” its update, meaning that the allowed traces (within one round), up to equivalence, should be,
of the form ui1 . . . uiksi1 . . . sik . Of course, there is some difference in that interval order complexes
account for non necessarily layered nor “immediate” protocols. It is the aim of this section to make
the connection between the subcomplex of interval order complexes describing layered immediate
snapshot protocols, and the equivalent two definitions of chromatic barycentric subdivision [25,19]
that describe combinatorially the protocol complex in that case.

The standard chromatic subdivision χ(∆[n]) of the standard [n]-colored simplicial complex ∆[n]

is defined as follows (see [19], where an equivalence with the Definition in [25] is also shown):

12

0 : 0⊥⊥

1 : ⊥1⊥2 : ⊥⊥2

1 : 012

0 : 012

2 : 012

2 : 0⊥2

0 : 0⊥2

1 : ⊥12 2 : ⊥12

0 : 01⊥

1 : 01⊥

u0u1u2s0s1s2

0 1 2

u1u2s1s2u0s0
1 2

0

2
1

0u2s2
u1s1

u0s0
1

2
0

u1s1u2s2u0s0

0

1

2

u1s1u0u2s0s2

u0u2s0s2u1s1
0 2

1

2

0

1

u 2
s 2
u 0
s 0
u 1
s 1

0
2

1
u
0
s 0
u
2
s 2
u
1
s 1

0

2

1

u2s2u0u1s0s1

u0u1s0s1u2s2
0 1

2

0

1

2

u
1 s
1 u

0 s
0 u

2 s
2

0
1

2

u
0 s

0 u
1 s

1 u
2 s

2

1
0

2

u0s0u1u2s1s2

20

1

u0u2s0u1s1s2

21

0

u 1
u 2
s 1
u 0
s 0
s 2

12

0
u
1 u

2 s
2 u

0 s
0 s

1

01

2

u0u1s0u2s1s2

02

1

u
0 u

2 s
2 u

1 s
1 s

0

01

2

u 0
u 1
s 1
u 2
s 0
s 2

Fig. 2. Interval order complex with traces of 3 processes, 1 round.

Definition 18. The standard chromatic subdivision χ(∆[n]) of ∆[n] is the [n]-colored simplicial com-
plex whose vertices are pairs (V, i) with V ⊆ [n] and i ∈ V and simplices are sets of the form
σ = {(V0, i0), . . . , (Vd, id)} with d ≥ −1 (σ = ∅ when d = −1) which are
1. well-colored: for every k, l ∈ [d], ik = il implies k = l,
2. ordered: for every k, l ∈ [d], Vk ⊆ Vl or Vl ⊆ Vk,
3. transitive: for every k, l ∈ [d], il ∈ Vk implies Vl ⊆ Vk.

This complex is colored via the second projection: `(V, i) = i.

Remark 19. The transitivity (property 3) of Definition 18 is equivalent to looking only at immediate
snapshot executions. Observe the left upper blue triangle of Figure 1, which is composed of ver-
tices (0 : 012), (1 : 012) and (2 : 0⊥2) (respectively meaning ({0, 1, 2} , 0), ({0, 1, 2} , 1) and
({0, 2} , 2) in the notations of Definition 18). It does not correspond to a layered execution: it corre-
sponds to the equivalence class of traces u0u2s2u1s1s0. Transitivity does not hold either: 0 ∈ {0, 2}
but {0, 1, 2} 6⊆ {0, 2}.

This leads us to the last main result of our article :

Theorem 20. Layered immediate snapshot executions correspond to the interval orders such that:
J ≺ K and I is not comparable with J implies I ≺ K. The subcomplex of the interval order complex
on one round, (Xn

(1,...,1),�), that contains only immediate snapshot executions is isomorphic to the
chromatic barycentric subdivision of Definition 18.

Proof. For the first part, suppose that we have an interval order �, representing some simplex in
the interval order complex such that J ≺ K and I is not comparable with J and K. I , J and K
correspond to some intervals of updates and scans local times on some process, [ulii , s

li
i], [u

lj
j , s

lj
j]

and [ulkk , s
lk
k] respectively. Suppose that I is not comparable with K, this means that the interleaving

path . . . ulii . . . u
lj
j . . . s

lj
j . . . u

lk
k . . . s

lk
k . . . s

li
i . . . is in the equivalence class represented by the interval

order we are considering. This is clearly not layered nor immediate snapshot, therefore being a layered
immediate snapshot execution implies the condition on � of Theorem 20.

Conversely, we suppose that for I not comparable to J and J ≺ K, then I ≺ K and we prove that
all interleaving paths are layered and immediate snapshot ones. Suppose we have an interleaving path

13

(up to equivalence) of the form: Tuljj Us
lj
j V u

lk
k Wslkk X where T , U , V , W and X are interleaving

paths. This is a layered immediate snapshot execution except if there are update and scans ulii , slii
such that ulii appears in U and slii appears in W . But ulii appearing in U implies I = [ulii , s

li
i] is not

comparable with J and hence, by hypothesis, I must be less that K, implying that slii appears in U
or V .

Now, we prove the second statement. Consider a simplex σ = {(V0, i0), . . . , (Vd, id)} with d ≥ 0
(the case d = −1 is trivial) in the chromatic barycentric subdivision of Definition 18. We asso-
ciate to σ the following simplex in the interval order complex: we construct a partial order �σ on
{(V0, i0), . . . , (Vd, id)} such that Vk ≺σ Vl if Vk (Vl and the color of (Vl, il) is il, we just need to
prove that this partial order is a colored interval order, and that the condition of Theorem 20 holds.

Let us now consider, in our partial order�σ , four elements (Vx, ix), (Vy, iy), (Vz, iz) and (Vt, it),
and suppose furthermore that (Vx, ix) ≺σ (Vy, iy) and (Vz, iz) ≺σ (Vt, it). Then, as σ is “ordered”
(see Definition 18), necessarily, either Vx ⊆ Vz or Vz ⊆ Vx. Suppose we are in the first situation. We
also have that Vz ⊆ Vt and Vz 6= Vt by definition of �. Hence Vx ≺σ Vt. We conclude that, as a
partial order, �σ is (2+2)-free, property which characterizes interval orders [12].

Now consider again σ in the chromatic barycentric subdivision, and its associated interval or-
der �σ . Take (Vy, iy) ≺σ (Vz, iz) and (Vx, ix) which is not comparable with (Vy, iy). Hence, by
definition of the (strict) order ≺σ , Vx = Vy or Vx 6⊆ Vy . In the first case, (Vx, ix) ≺σ (Vz, iz),
trivially, and in the second case, by property 2 (“ordered”) of Definition 18, Vy (Vx which implies
(Vy, iy) ≺σ (Vx, ix), impossible since (Vx, ix) and (Vy, iy) are supposed incomparable.

Finally, note that well-coloredness of σ implies that the labeling we define is indeed a labeling
function of a colored interval order.

Conversely, suppose we have a 1-round colored interval order (X,�) on d + 1 elements which
satisfies the property from Theorem 20. We consider the interval orders V ki , restriction of X to
Vki = {(j, l) | (i, k)‖(j, l) or (j, l) ≺ (i, k)}. We construct a (colored) d-simplex in the chromatic
barycentric subdivision of Definition 18 by defining k-simplices (for all k ≤ n) σX = ((|V kii |, i))i∈[k]
(where |V | the set of elements of an interval order V). Indeed we check easily that this is well-colored.
Suppose we have (|Vk|, ik) and (|Vl|, il) such that il ∈ |Vk|. As Vk and Vl are restrictions of the same
interval order to both the set of elements less than or incomparable to ik, respectively il, and that by
definition of Vl, il ∈ Vl, we have |Vl| ⊆ |Vk|. A similar argument shows that property 2 of Defini-
tion 18 holds as well. ut

4 Conclusion and future work
We have revealed strong connections between directed algebraic topology, with its applications to

semantics and validation of concurrent systems, and the protocol complex approach to fault-tolerant
distributed systems. This has been exemplified on the simple layered immediate snapshot model, but
also on the more complicated (non layered, non immediate) iterated snapshot model. This, combined
with the results of [26,19], entirely classifies geometrically the computability of wait-free layered
immediate snapshot protocols, directly from the semantics of the update and scan primitives. We
classified combinatorially, en route, the potential schedules of executions (equivalently, the potential
local views of processes) as an interesting and well-known combinatorial structure: interval orders.

This is a first step towards a more ambitious program. Fault-tolerant distributed models, whose
protocol complex are more complex to guess combinatorially, may be handled by going through the
very same steps we went through, starting with the geometric semantics of the communication primi-
tives, and classifying dipaths modulo dihomotopy. We shall apply this to atomic read/write protocols
with extra synchronization primitives such as test&set, compare&swap and others. In the long run, we
would like to derive impossibility results directly by observing some obstructions in the semantics, in
the form of suitable directed algebraic topological invariants.

Acknowledgments. We gratefully acknowledge M. Herlihy, S. Rajsbaum and D. Kozlov for inspiring
discussions, and the referees for helping us improve this paper. The first two authors were partially

14

supported by the academic chair “Complex Systems Engineering” of École polytechnique-ENSTA-
Télécom-Thalès-Dassault Aviation-DCNS-DGA-FX-Fondation ParisTech-FDO ENSTA.

References
1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared memory. J.

ACM, 40(4), September 1993.
2. J. H. Anderson. Composite registers. In Conference on Principles of Distributed Computing. ACM, New

York, 1993.
3. O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the distributed tasks which are solvable

in the presence of one faulty processor. In PoDC. ACM, 1988.
4. R. Bonichon, G. Canet, L. Correnson, É. Goubault, E. Haucourt, M. Hirschowitz, S. Labbé, and S. Mimram.

Rigorous evidence of freedom from concurrency faults in industrial control software. In SAFECOMP, 2011.
5. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous computations.

In STOC, 1993.
6. J. Dubut, E. Goubault, and J. Goubault-Larrecq. Natural homology. In Automata, Languages, and Program-

ming - 42nd International Colloquium, pages 171–183, 2015.
7. L. Fajstrup, É. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Trace spaces: An efficient new technique

for state-space reduction. In ESOP, 2012.
8. L. Fajstrup, É. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Directed Algebraic Topology and

Concurrency. Springer Verlag, 2015, to be published.
9. L. Fajstrup, É. Goubault, and M. Raussen. Detecting deadlocks in concurrent systems. In CONCUR, number

1466 in LNCS. Springer-Verlag, 1998.
10. L. Fajstrup, M. Raussen, and É. Goubault. Algebraic topology and concurrency. TCS, 357(1), 2006.
11. M. J Fischer, N. A Lynch, and M. S Paterson. Impossibility of distributed consensus with one faulty process.

Journal of the ACM (JACM), 32(2):374–382, 1985.
12. P. C Fishburn. Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psy-

chology, 7(1):144–149, 1970.
13. G. Gierz. A Compendium of continuous lattices. Springer, 1980.
14. É. Goubault. Some geometric perspectives in concurrency theory. Homology, Homotopy and Appl., 2003.
15. É. Goubault and E. Haucourt. A practical application of geometric semantics to static analysis of concurrent

programs. In CONCUR 2005. Springer, 2005.
16. É. Goubault, T. Heindel, and S. Mimram. A geometric view of partial order reduction. MFPS, Electr. Notes

Theor. Comput. Sci., 298, 2013.
17. É. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. of CONCUR, 1992.
18. É. Goubault. The Geometry of Concurrency. Ph.D. dissertation, ENS, 1995.
19. É. Goubault, S. Mimram, and C. Tasson. Iterated chromatic subdivisions are collapsible. APplied Categori-

cal Structures, 2014.
20. M. Grandis. Directed Algebraic Topology : Models of Non-Reversible Worlds, volume 13 of New Mathemat-

ical Monographs. Cambridge University Press, 2009.
21. J. Gunawardena. Homotopy and concurrency. Bulletin of the EATCS, 54:184–193, 1994.
22. M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial Topology. Elsevier,

2014.
23. M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In Proceedings of

the twenty-fifth annual ACM symposium on Theory of computing, pages 111–120. ACM, 1993.
24. M. Herlihy and N. Shavit. The topological structure of asynchronous computability. Journal of the ACM

(JACM), 46(6):858–923, 1999.
25. D. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and Appl., 14(2), 2012.
26. D. Kozlov. Topology of the view complex. arXiv preprint arXiv:1311.7283, 2013.
27. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous

processes. Advances in Computing Research, 4, 1987.
28. N. A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
29. L. Nachbin. Topology and order. Van Nostrand mathematical studies. Van Nostrand, 1965.
30. V. Pratt. Modeling concurrency with geometry. In POPL. ACM Press, 1991.
31. M. E. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: the topology of public knowledge.

In STOC, 1993.
32. R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report, Stanford, 1991.

15

	From Geometric Semantics to Asynchronous Computability

