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Computing in Additive Networks with
Bounded-Information Codes ⋆

Keren Censor-Hillel1, Erez Kantor2, Nancy Lynch2, and Merav Parter2

1 Department of Computer Science, Technion, Haifa 32000, Israel
2 CSAIL, Massachusetts Institute of Technology, MA 01239, USA

Abstract. This paper studies the theory of the additive wireless net-
work model, in which the received signal is abstracted as an addition
of the transmitted signals. Our central observation is that the crucial
challenge for computing in this model is not high contention, as assumed
previously, but rather guaranteeing a bounded amount of information
in each neighborhood per round, a property that we show is achievable
using a new random coding technique. Technically, we provide efficient
algorithms for fundamental distributed tasks in additive networks, such
as solving various symmetry breaking problems, approximating network
parameters, and solving an asymmetry revealing problem such as com-
puting a maximal input. The key method used is a novel random coding
technique that allows a node to successfully decode the received infor-
mation, as long as it does not contain too many distinct values. We then
design our algorithms to produce a limited amount of information in each
neighborhood in order to leverage our enriched toolbox for computing in
additive networks.

1 Introduction

The main challenge in wireless communication is the possibility of collisions,
occurring when two nearby stations transmit at the same time. In general, col-
lisions provide no information on the data, and in some cases may not even be
distinguishable from the case of no transmission at all. Indeed, the ability to
merely detect collisions (a.k.a., the collision detection model) gives additional
power to wireless networks, and separation results are known (e.g., [26]).

Traditional approaches for dealing with interference (e.g., FDMA, TDMA)
treat collisions as something that should be avoided or at least minimized [12,
21, 23]. However, modern coding techniques suggest the ability to retrieve in-
formation from collisions. These techniques significantly change the notion of
collisions, which now depends on the model or coding technique used. For exam-
ple, in interference cancellation [2], the receivers may decode interfering signals
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that are sufficiently strong and cancel them from the received signal in order
to decode their intended message. Hence, from this viewpoint, collision occurs
only when neither the desired signal nor the the interfering signal are relatively
strong enough.

In this paper, we consider the additive network model, in which colliding
signals add up at the receiver and are hence informative in some cases. It has
been shown that such models approximate the capacity of networks with high
signal-to-noise ratio [3], and that they can be useful in these settings for various
coding techniques, such as ZigZag decoding [11, 22], and bounded-contention
coding [6]. While in practice there are limitations for implementing such networks
to the full extent of the model, the above previous research shows the importance
of understanding the fundamental strength of models that allow the possibility
of extracting information out of collisions. In a recent theoretical work [6], the
problems of local and global broadcast have been addressed in additive networks,
under the assumption that the contention in the system is bounded.

The central observation of this paper is that in order to leverage the addi-
tive behavior of the system, what needs to be bounded is not necessarily the
contention, but rather the total amount of information a node has to process
at a given round. This observation allows us to extend the quantification of the
computational power of the additive network model in solving distributed tasks
way beyond local and global broadcast. Our key approach in this paper is not
to assume a bound on the initial number of pieces of information in the system,
but rather guarantee a bound on the number of distinct pieces of information in
a neighborhood of every vertex. We then use a new random coding technique,
which we refer to as Bounded-Information Codes (BIC), in order to extract the
information out of the received signals. This allows us to efficiently solve various
cornerstone distributed tasks.

1.1 Contributions and Methods

On the technical side, we provide efficient algorithms for fundamental symmetry
breaking tasks, such as leader election, and computing a BFS tree and a maximal
independent set (MIS), as well as algorithms for revealing asymmetry in the
inputs, such as computing the maximum. We also provide efficient algorithms
for approximating network parameters by a constant factor. Our key methods
are based on enriching the toolbox for computing in additive networks with
various primitives that leverage the additive behavior of received information
and our coding technique.

Main techniques: The work in [6] introduced Bounded-Contention Codes (BCC)
as the main technique. BCC allows the decoding of the XOR of any collection
of at most a codewords, where a is the bound on the contention. As mentioned,
our key approach in this paper is not to assume a bound on the contention, but
rather to make sure that the amount of distinct information colliding at a node
at a given round is limited. Our main ingredient is augmenting the deterministic
BCC codes with randomization, resulting in Bounded-Information Codes. BIC



allows successful decoding of any transmission of n nodes sending at most O(a)
distinct values altogether, with high probability.

Randomization plays a key role in the presented scheme in two different
aspects. First, the drawback of the standard BCC code is that the transmission of
the same message by an even number of neighbors is cancelled out. By increasing
the message size by factor of O(log n) and using randomization, BIC codes add
random “noise” to the original BCC codeword so that the probability that two
BIC messages cause cancellation becomes negligible.

Another useful aspect of randomization is intimately related to the fact that
our information bounds are logarithmic in n. This allows for a win-win situation:
if the number of distinct pieces of information (in a given neighborhood) is small
(i.e., O(log n)), the decoding is successful thanks to the BIC codes. On the other
hand, if the number of distinct pieces of information is large (i.e., Ω(log n)), there
are sufficiently many transmitting vertices in the neighborhood which allows
one to obtain good concentration bounds by, e.g., using Chernoff bounds (for
example, in estimating various network parameters). It is noteworthy that our
estimation technique bares some similarity to the well-known decay strategy [4]
which is widely used in radio-networks. The key distinction between the long line
of works that apply this scheme and this paper is the dimension to which this
strategy in applied. Whereas so-far, the strategy was applied to the time axis
(e.g., in round i, vertex u transmits with probability 2−i), here it is applied to
the information (or message) axis (e.g., vertex u writes the specific information
in the i’th block of its message with probability 2−i). This highly improves the
time bounds compared to the basic radio model (i.e., the statistics are collected
over the multiple blocks of the message instead of over multiple slots).

An immediate application of BIC is a simple logarithmic simulation of algo-
rithms for networks that employ full-duplex radios (where a node can transmit
and receive concurrently) by nodes who have only half-duplex radios (where a
node either transmits or receives in a given round). This allows us to consider
algorithms for the stronger model of full-duplex radios and obtain a transla-
tion to half-duplex radios, and also allows us to compare our algorithms to a
message-passing setting. To make justice with such comparisons, we note that
a message-passing setting not only does not suffer from collisions, but also is in
some sense similar to having full duplex, as a node receives and sends information
in the same round.

Note that in the standard radio model, collision detection is not an integral
part of the model but rather an external capability that can be chosen to be
added. In BIC, collision detection is an integral part of the model, where collision
now refers to the situation where the number of distinct pieces of information
exceeds the allowed bound. To avoid confusion, the collision detection in the
context of BIC, is hereafter referred to as information-overflow detection. We
show that information-overflow can be detected while inspecting the received
codeword, without the need for any additional mechanisms.

Symmetry breaking: The first type of algorithms we devise are for various sym-
metry breaking tasks. The main tool in this context is the select-level function,



SL, that outputs two random values according to a predefined distribution. Ev-
ery vertex v computes the SL function locally, without any communication. The
power of this function lies in its ability to assign random levels to nodes, such
that with high probability3 the maximal level contains at most a logarithmic
number of nodes (i.e., below the information bound of the BIC code), and the
nodes in the maximal level have different values for their second random variable.

The SL function allows us to elect a leader in O(D) rounds, w.h.p., where D
is the diameter of the network. The elected leader is the node with the maximal
pair of values chosen by the SL function. A by-product of this algorithm is a
2-approximation of the diameter, and the analysis is done over a BFS tree rooted
at the leader. We also show how to construct a BFS tree rooted at an arbitrary
given node in O(D) rounds, w.h.p, by employing both the SL function and BIC.

Apart from the above new algorithms, our framework allows relatively sim-
ple translations of known algorithms for solving various tasks in message passing
systems into additive networks. This includes Luby’s MIS algorithm [18], Schnei-
der and Wattenhofer’s coloring algorithm [24], and approximating the minimum
dominating set of Wattenhofer and Kuhn [15], improving significantly over the
known bounds for standard radio-model. We give a flavor of these translations
by providing the full MIS algorithm and analysis in [7], and sketch the results
for coloring and approximating the minimum dominating set.

Approximations: We design algorithms for approximating various network pa-
rameters. We show how to compute a constant approximation of the degree of
a node, as well as a constant approximation of the size and diameter of the net-
work. (Our coding scheme only requires nodes to know a polynomial bound N on
the network size n.) Our algorithms naturally extend to solve the more general
tasks of local-sum and global-sum approximations4 that have been recently con-
sidered in [17]. Yet, the additive setting allows us to obtain much better bounds
than those of [17].

Asymmetry revealing: In addition to the above symmetry breaking algorithms,
we show that additive networks also allow for fast solutions for tasks which
do not require symmetry breaking, but rather already begin with inputs whose
asymmetry needs to be revealed: we give an algorithm that computes the exact
maximal value of all inputs in the network in O(D·log n/ log log n) rounds, w.h.p.
(in contrast, a 2-approximation for the maximal value can be computed within
Θ(D) rounds). We obtain this because our coding scheme allows us to perform a
tournament at a high rate. For example, for single-hop networks, in each round
only a O(log n) fraction of the remaining competing vertices survive for the next
round.

In some sense, asymmetry revealing can be viewed as the counterpart of
symmetry breaking. Clearly, if we compute the maximal input in the system then

3 We use the term with high probability (w.h.p.) to denote a probability of at least
1− 1/nc for a constant c ≥ 1.

4 These are generalizations of degree-approximation and network-size approximation,
respectively.



we can obtain a leader as a by-product. However, the opposite does not hold, and
indeed in our leader-election algorithm mentioned above we significantly exploit
the fact that the leader need not be predetermined, and use our new toolbox to
obtain a leader within only O(D) rounds.

1.2 Comparison with Related Work

First, we compare our results with previous theoretical work on the additive
network model. The work of [6] assumes a bound a on the contention in the
system, i.e., there are at most a initial inputs in total in the network. The
main method for obtaining global broadcast in the above work is random linear
network coding, which can be shown to allow an efficient flow of information in
the system. However, this is what requires the bound on the contention. Our
BIC coding method bares some technical similarity to the approach of random
linear network coding, but allows us to refrain from making assumptions on the
total information present in the network.

The aforementioned global broadcast algorithm requires O(D + a + log n)
rounds. While this algorithm can be used to solve many of the problems that
we address in this paper, such as electing a leader and computing the maximal
input, it would require O(n) rounds, as for these problems it holds that a can
be as large as the total number of nodes in the network. In comparison, our
O(D)-round leader election algorithm is optimal, and our O(D log n/ log log n)-
round algorithm for computing the maximal input is nearly-optimal, as O(D) is
a natural lower bound for both problems, even in the message-passing model.

It is important to mention that our algorithms use messages of size O(log3 n).
While a standard assumption might be that the message size is O(log n) bits,
this difference is far from rendering our results easy. In comparison, the global
broadcast algorithm of [6] requires a message size of O(a log n+ℓ) bits for inputs
of size ℓ and contention bounded by a. In our setting, we assume ℓ fits the
message size (say, is logarithmic in n), but since a can be as large as n, such a
message size would be unacceptable. In addition, if we compare our results to
algorithms for the much less restricted message-passing setting, it is crucial to
note that even unbounded message sizes do not make distributed tasks trivial.
For example, it is possible to compute an MIS in general graphs in O(log n)
rounds even with messages of size O(1) [19], but the best known lower bound is
Ω(log∆+

√
log n) even with unbounded messages [14]. Recently, Barenboim at

el. [5] showed a randomized MIS algorithm with O(log∆ ·
√
log n) rounds using

unbounded messages.
In [7], we overview results that address the same tasks as this paper in the

standard radio network model and in the message-passing model. An additive
network can be viewed as lying somewhere in between these two models, as
it does suffer from collisions, but to a smaller extent. Nevertheless, while our
coding methods assist us in overcoming collisions, the additive network model
is still subject to the broadcast nature of the transmissions, and therefore it is
highly non-trivial to translate algorithms for the message-passing setting that
make use of the ability to send different messages on different links concurrently.



The related work overviewed in [7], include algorithms and lower bounds for
various problems in radio networks, such as the wake-up problem [9], MIS with
and without collision detection [20,26] or with multiple channels [8], leader elec-
tion [10], and approximation of local parameters [17], as well as MIS algorithms
for message passing systems [1, 18,25] and lower bounds [14,16].

2 Background: Additive Networks and BCC

The Additive Network Model: A radio network consists of stations that can
transmit and receive information. We address a synchronous system, in which in
each round of communication each station can either transmit or listen to other
transmissions. This is called the half-duplex mode of operation. Mainly due to
theoretical interest, we also consider the full-duplex mode of operation which is
considered harder to implement. We follow the standard abstraction in which
stations are modeled as nodes of a graph G = (V,E), with edges connecting
nodes that can receive each other’s transmissions.

In the standard radio network model, a node v ∈ V receives a message
m in a given round if and only if in that round exactly one of its neighbors
transmits, and its transmitted message is m. In the half-duplex mode, it also
needs to hold that v is listening in that round, and not transmitting. If none of
v’s neighbors transmit then v hears silence, and if at least two of v’s neighbors
transmit simultaneously then a collision occurs at v. In both cases, v does not
receive any message.

Some networks allow for collision detection, where the effect at node v of
a collision is different from that of no message being transmitted, i.e., v can
distinguish a collision from silence (despite receiving no message in both). Other
networks operate without a collision detection mechanism, i.e., a node cannot
distinguish a collision from silence. It is known that the ability to detect collisions
has a significant impact on the computational power of the network [26].

In contrast, in this paper, we study the additive network model, in which a
collision of transmissions is not completely lost, but rather is modeled as receiv-
ing the XOR of the bit representation of all transmissions. More specifically, we
model a transmission of a message m by node v as a string of bits. A node v
that receives a collision of transmissions of messages {mu | u ∈ Γ (v)}, receives
their bitwise XOR, i.e., receives the message y =

⊕
u∈Γ (v) mu. Here Γ (v) is the

set of neighbors of v. Note that the above notation does not distinguish between
the case where a node u transmits to that where it does not, because we model
the string of a node that does not transmit as all-zero.

The network topology is unknown, and only a polynomial upper bound N =
nO(1) is known for the number of nodes n. Throughout, we assume that each
vertex v has a unique identifier idv in the range [1, . . . , nc] for some constant
c ≥ 1. The bandwidth is O(poly log n) bits per message.

Bounded-Contention Coding (BCC): Bounded-Contention Codes were intro-
duced in [6] for the purpose of obtaining fast local and global broadcast in



additive networks. Given parameters M and a, a BCC code is a set of M code-
words such that the XOR of any subset of size at most a is uniquely decodable.
As such, BCC codes can leverage situations where the number of initial messages
is bounded by some number a, and can be used (along with additional mecha-
nisms) for global broadcast in additive networks. Formally, Bounded-Contention
Codes are defined as follows.

Definition 1. An [M,m, a]-BCC-code is a set C ⊆ {0, 1}m of size |C| = M
such that for any two subsets S1, S2 ⊆ C (with S1 ̸= S2) of sizes |S1|, |S2| ≤ a it
holds that

⊕
S1 ̸=

⊕
S2.

Simple BCC codes can be constructed using the dual of linear codes. We refer the
reader to [6] for additional details and a construction of an [M,a logM,a]-BCC
code for given values of M and a.

3 New Tools

In this section we enrich the toolbox for computing in additive networks with
the following three techniques. The first is a method for encoding information
such that it can be successfully decoded not when the number of transmitters in
limited, but rather when the amount of distinct pieces of information is limited
(even if sent by multiple transmitters concurrently). The second technique is a
general simulation of any algorithm for full-duplex radios in a setting of half-
duplex radios within a logarithmic number of rounds. Finally, we show that we
can detect whether the number of distinct messages exceeds the given threshold.

Bounded-Information Codes (BIC). Using BCC and randomization allows one
to control the number of distinct pieces of information in the neighborhood.
Let G = (V,E) be an n-vertex network and assume that all the messages are
integers in the range [0, n]. We show that for a bandwidth of size O(log3 n),
one can use randomization and BCC codes to guarantee that every vertex v,
whose neighbors transmit O(log n) distinct messages (i.e., hence bounded pieces
of information) in a given round, can decode all messages correctly with high
probability (i.e., regardless of the number of transmitting neighbors).5 Let C
be an [n, log2 n, log n]-BCC code and x ∈ [0, n]. By the definition of C, the
codeword C(x) = [b1, . . . , bk] ∈ {0, 1}k contains k = O(log2 n) bits. Due to the
XOR operation, co-transmissions of the same value even number of times are
cancelled out. To prevent this, we use a randomized code, named hereafter as a
BIC code (or BIC for short) as defined next.

Definition 2. Let C be an [n, log2 n, log n]-BCC code. An [n, c log3 n, log n]-BIC
code for C is a random code CI defined as follows. The codeword CI(x) consists
of k′ = ⌈c · log n⌉ blocks, for some constant c ≥ 4, each block is of size k =

5 The definition of the BIC code can be given for any bound a on the number of
distinct values. Since we care for messages of polylogarithmic size, we provide the
definition for specific bound a = O(logn).



O(log2 n) (the maximal length of a BCC codeword), and the i’th block contains
C(x) with probability 1/2 and the zero word otherwise, for every i ∈ {1, . . . , k′}.
In other words, for vertex v with value x, let m(v) = CI(x) be the message
containing the BIC codeword of x and let mi(v) denote the i’th block of v’s
message. Then, mi(v) = C(x) with probability 1/2 and mi(v) = 0k otherwise.
Let m′(v) =

⊕
u∈Γ (v) m(u) be the received message obtained by adding the BIC

codewords of v’s neighbors. Then the decoding is performed by using BCC to
decode each block m′

i(v) separately for every i ∈ {1, . . . , k′}, and taking a union
over all decoded blocks.

Lemma 1. Let V ′ ⊆ V be a set of transmitting vertices with values X ′ =∪
v∈V ′ Val(v) where |X ′| = O(log n). For every v ∈ V ′, let CI

v be an [n, c ·
log3 n, log n]-BIC code, for constant c ≥ 4. Let m(v) be the CI

v codeword of
Val(v). Then, the decoding of

⊕
v∈V ′ m(v) is successful with probability at least

1− 1/nc−1.

Proof. For every x ∈ X ′, let Vx = {v ∈ V ′ | Val(v) = x} be the set of
transmitting vertices in V ′ with the value x. For x ∈ X ′ and i ∈ {1, . . . , k′}, let
V i
x = {v ∈ Vx | mi(v) = C(x)} be the set of vertices v whose i’th block mi(v)

contains the codeword C(x). We say that block i is successful for value x ∈ X ′,
if |V i

x | is odd (hence, the messages of Vx are not cancelled out in this block).
Let Mi ⊆ X ′ be the set of values for which the i’th block is successful, and let
V ′
i contain one representative vertex with a value in Mi. We first claim that

with high probability, every value x ∈ X ′ has at least one successful block ix ∈
{1, . . . , k′}. We then show that the decoding of this ix’th block is successful. The
probability that the i’th block is successful for x is 1/2 for every i ∈ {1, . . . , k′}.
By the independence between blocks, the probability that x has no successful
block is at most 1/nc. By applying the union bound over all m ≤ n distinct
messages, we get that with probability at least 1 − 1/nc−1, every value x ∈ X
has at least one successful block ix in the message. Let m′ =

⊕
v∈V ′ m(v) be

the received message and let m′
i be the i’th block of the received message. It

then holds that m′
i =

⊕
v∈V ′ mi(v) =

⊕
v∈V ′

i
mi(v). To see this, observe that

the values with even parity in the i’th block are cancelled out and the XOR of
an odd number of messages with the same value C(x) is simply C(x). Since m′

i

corresponds to the XOR of |V ′
i | = O(log n) distinct messages, the claim follows

by the properties of the BCC code. ⊓⊔

In our algorithms, the messages may contain several fields (mostly a constant)
each containing a value in [0, nc] for some constant c ≥ 1. To guarantee a proper
decoding on each field, the messages are required to be aligned correctly. For
example, a message containing ℓ fields where the i’th field contains xi ∈ [0, n] is
split evenly into ℓ blocks and all bits are initialized to zero. The BIC codeword
of xi, denoted by CI(xi), is written at the beginning of the i’th block. Hence,
when the messages are added up, all codewords of a given block are added up
separately. To avoid cumbersome notation, a multiple-field message is denoted
by concatenation of the BIC codewords of each field, e.g., the content of a two-
field message containing x1 and x2 is referred as CI(x1)◦CI(x2), where formally



the message is divided into two equi-length blocks and CI(x1) (resp., C
I(x2)) is

written at the beginning of the first (resp., second) block.

From full-duplex to half-duplex. The algorithms provided in this paper are mostly
concerned with the full-duplex setting. However, in the additive network model,
one can easily simulate a full-duplex protocol Pf by half-duplex protocol Ph with
a multiplicative overhead of O(log n) rounds with high probability, as explain in
more details in [7].

Information-Overflow Detection. In the standard radio model, a collision cor-
responds to the scenario where multiple vertices transmit in the same round to
a given mutual neighbor. In an additive network, this may not be a problem,
since with BIC codes, the decoding is successful as long as there are O(log n)
distinct pieces of information in a given neighborhood. In this section, we de-
scribe a scheme for detecting an event of information-overflow. Our scheme is
adapted from the contention estimation scheme of [6], designed for the setting
of detecting whether there are more than a certain number of initial messages
throughout the network. In our setting, the nodes generate values by themselves,
and we will later wish to use the fact that we can detect whether too many dif-
ferent values were generated. The key observation within this context, is that
using a BIC code with a doubled information-limit allows one to detect failings
with high probability. To see this, assume an information bound K = c log n for
constant c ≥ 1 and consider an [n, 2K logn, 2K]-BCC code C. The BIC code
CI based on C supports 2K distinct messages. Throughout, because of space
considerations, some of the proofs are omitted. However, all the proofs are given
in the full version [7].

Lemma 2. With high probability, either it is detected that the number of distinct
values exceeds K, or each value w is decoded successfully.

4 Symmetry Breaking Tasks

In this section we show how to solve symmetry breaking tasks efficiently in ad-
ditive networks. As a key example, we focus on the problem of leader election.
In [7], we consider additional tasks that involve symmetry breaking such as com-
puting a BFS tree, computing an MIS and finding a proper vertex coloring. A key
ingredient in many of our algorithms is having the vertices choose random vari-
ables according to some carefully chosen probabilities, which, at a high level, are
used to reduce the amount of information that is sent throughout the network.
We refer to this as the SL (Select Level) function and describe it as follows.

The SL function does not require communication, and only produces two
local random values, an r-value and an z-value, that can be considered as primary
and secondary values for breaking the symmetry between the vertices. The r-
value is defined by letting r = j with probability of 2−j , and the z-value, z, is
sampled uniformly at random from the set {1, ..., 28r}.



Note that SL does not require the knowledge of the number of vertices n. We
next show that the maximum value of r(v) is concentrated around O(log n) and
that not to many vertices collide on the maximum value. Let jSL

max = max{r(v) |
v ∈ V } and SSL

max = {v ∈ V | r(v) = jSL
max}.

Lemma 3. With high probability, it holds that (a) jSL
max ≤ 3 log n + 1; (b)

|SSL
max| ≤ 2 log n; and (c) z(v) ̸= z(v′) for every v, v′ ∈ SSL

max.

Proof. Let Pv = P(r(v) ≥ 3 log n+1). Then, by definition, Pv =
∑∞

i=3 logn+1 2
−i

= 1/n3. By applying the union bound over all vertices in S, we get that with
probability at least 1 − 1/n2, r(v) ≤ 3 log n + 1, for every v ∈ S, as needed for
Part (a). We now turn to bound the cardinality of SSL

max. The random choice of
r(v) can be viewed as a random process in which each vertex flips a coin with
probability 1/2 and proceeds as long as it gets “head”. The value of r(v) corre-
sponds to the first time when it gets a “tail”. We now claim that the probability
that |SSL

max| > 2 log n is very small. This holds since the probability that all of
2 log n coin flips are “tails” is exactly 2−2 logn which is less than the probability
that |SSL

max| > 2 log n and none of the vertices in SSL
max succeeded in getting an-

other head (and hence in having a larger r-value). Hence, the probability that
|SSL

max| ≤ 2 log n is at least 1− 2−2 logn = 1− 1/n2, as needed for Part (b).
Finally, consider Part (c). It is sufficient to show that the z-values (of vertices

of SSL
max) are sampled from a sufficient large range. Note that, the size of this

range is 28·j
SL
max . We later show that jSL

max ≥ logn/2 with high probability. This
implies that the range size (of the z-values) is at least n4 with high probability.
Assume that jSL

max ≥ log n/2, then the probability that z(v) = z(v′), for any pair
v, v′ ∈ SSL

max is at most 1/n4. Applying the union bound over all pairs in SSL
max

gives the claim, since |SSL
max| ≤ n.

In the remaining, we show that indeed, jSL
max ≥ log n/2 with high probability.

For every v ∈ V , let xv be an indicator variable for the event that r(v) ≥ log n/2,
i.e., xv = 1, if r(v) ≥ log n/2 and xv = 0, otherwise. Let X =

∑
v∈V xv . Note

that, the probability that X ≥ 1 is the same as the probability that jSL
max ≥

log n/2. In addition, Pr[xv = 1] = 2−(logn/2)+1 ≥ 2− logn/2 and hence (by the
linearity of expectation) E[X] =

∑
v∈V Pr[xv = 1] =

√
n. By Chernoff bound,

the probability that X = 0 is exponentially small. Hence, X ≥ 1 and so jSL
max ≥

log n/2 with the high probability. Part (c) holds. ⊓⊔

4.1 Leader Election

A Leader-Election protocol is a distributed algorithm run by any vertex such
that each node eventually decides whether it is a leader or not, subject to the
constraint that there is exactly one leader. Moreover, at the end of the algorithm
all vertices know the SL function values of the leader.

We first describe a two-round leader election protocol for single-hop net-
works. Let CI be an [N,O(log3 N), O(logN)]-BIC code sampled uniformly at
random from the distribution of all random codes that are based on a particu-
lar [N,O(log2 N), O(logN)]-BCC code C (which is used by all vertices). First,



the vertices apply the SL function to compute r(v), z(v). To do that, in the
first communication round, every vertex v transmits CI(r(v)). Since with high
probability, by Lemma 3(a), jSL

max ≤ 2 log n, the information is bounded and
by Claim 2, each vertex can compute SSL

max w.h.p. In the second communica-
tion round, every vertex v with r(v) = jSL

max, transmits CI(z(v)). That is, in
the second phase only the vertices of SSL

max transmit the codeword of their z′s
value. Since by Lemma 3(b), with high probability, |SSL

max| = O(log n), and by
Claim 2 again, the z-values of all vertices in SSL

max are known to every vertex in
the network w.h.p. Finally, the leader is the vertex v∗ ∈ SSL

max with the largest
z-value, i.e., z(v∗) = maxv′∈SSL

max
z(v′). In [7], we consider the general case of

electing a leader in a network G with diameter D, and also show how it implies
a 2-approximation of the diameter as a byproduct.

5 Approximation Tasks: Degree Approximation

In this section we consider approximation tasks. As a key example, we focus on
the task of approximating the degree, i.e., each vertex v is required to compute
an approximation for its degree in the graph G. We refer the reader to [7] for
additional approximation schemes such as (1) an approximation for the network
size; (2) an approximation for the network diameter; and (3) a 2-approximation
for the maximum (or minimum).

We describe Algorithm AppDegree that computes with high probability a
constant approximation for the degree of the vertices within O(1) rounds. For
vertex v and graph G, let deg(v,G) = |Γ (v,G)| be the degree of v in G. When
the graph G is clear from the context, we may omit it and simply write deg(v).
Recall that we assume that each vertex v has a unique identifier idv in the range
of [1, . . . , nc] for some constant c ≥ 1.

The algorithm consists of two communication rounds (which can be unified
into a single round). The first round is devoted for computing the exact degree for
low-degree vertices v with degree deg(v) ≤ c · log n. The second round computes
a constant approximation for high-degree vertices v with deg(v) > c · log n. In
the first communication round, every vertex v uses a random instance CI

v of an
[N, c·log3 N, c·logN ]-BIC code to encode its ID and transmits CI

v (idv) as part of
m1(v). In addition, the vertices use the Information-Overflow Detection scheme
of Section 3 to verify if their BIC decoding is successful (that is, the message
m1(v) consists of two fields, the first encodes the ID and the second is devoted for
overflow detection). Upon receiving m′

1(v) =
⊕

u∈Γ (v) m1(u), the vertex applies
BIC decoding to the first field of the message and applies Information-Overflow
Detection to the second field to verify the correctness of the decoding. Note that
by the properties of the BIC code, in this round, the low-degree vertices compute
their exact degree in G.

The second round aims at computing a constant factor approximation for
the remaining vertices with high-degree. Set a = 40 · logN and b = 2 logN .
Every vertex v sends an (a · b)-bit message m2(v) defined by a collection of
a random numbers in the range of {1, . . . , b} sampled independently by each



vertex v. Specifically, for every v and i ∈ {1, . . . , a}, ri(v) is sampled accord-
ing to the geometric distribution, letting ri(v) = j for j ∈ {1, . . . , b − 1} with
probability 2−j , and ri(v) = b with probability 2−b+1 (the remaining proba-
bility). For every i ∈ {1, . . . , a} and every j ∈ {1, . . . , b}, let xi,j(v) = 1 if
j < ri(v) and xi,j(v) = 0 otherwise. Let Xi(v) = xi,b(v) · · ·xi,2(v) · xi,1(v)
and let m2(v) = X(v) = Xa(v) · · ·X2(v) · X1(v) be the transmitted message
of v. Let Y (v) =

⊕
u∈Γ (v) X(u) be the received message of v. The decoding

is applied to each of the a blocks of Y (v) separately, i.e., treating Y (v) as
Y (v) = Ya(v) · · ·Y2(v) · Y1(v), where Yi(v) = yi,b(v) · · · yi,2(v) · yi,1(v), such
that yi,j(v) =

⊕
u∈Γ (v) xi,j(u). For every j ∈ {1, ..., b} and every v ∈ V , define

SUM(j, v) =
∑a

i=1 yi,j(v). Finally, define j∗(v) = min{j | SUM(j, v) ≤ 0.2 · a},
if there exists an index j such that SUM(j, v) ≤ 0.2 · a (we later show that
such index do exists with high probability) and j∗(v) = 0, otherwise as a de-
fault value. The approximation δ(v) is then given by 2j

∗(v)−1. This completes
the description of the algorithm.

As mentioned earlier, the correctness for low-degree vertices follows immedi-
ately by the properties of the BIC code and the information-overflow detection
(Lemma 1 and Lemma 2). We then show that in the second round, for high-
degree vertices v, we have δ(v)/deg(v) = O(1), with high probability. We thus
have the following.

Theorem 1. There exists an O(1)-round algorithm that computes w.h.p. the
exact degree deg(v) for vertices with deg(v) = O(log n) and a constant approxi-
mation if deg(v) = Ω(log n).

6 Revealing Asymmetry – Distributed Tournament

Consider the setting where every vertex is given an input value (corresponding to
its rank, for example) and the goal is to find the vertex with the maximum value.
We will show that BCC codes with message size of O(log3 n) allow one to perform
many simultaneous competitions between Ω(log n) candidates, which result in a
tournament process of O(D · log n/ log log n) rounds for a network of diameter D.
Specifically, the fact that the BCC code provides successful decoding when there
are O(log2 n) concurrent transmitting neighbors, allows us to reduce the number
of competitors by a factor of Ω(log n) in every round, and hence the winner is
found within O(D · log n/ log log n) rounds. Because of space considerations, we
presenting here only the protocol for single-hop networks. The protocol for any
network of diameterD > 1, which requires some subtle modifications is presented
in the full version [7].

Single-hop network. Let V = {v1, . . . , vn} be the vertices of the network and let
X = {x1, . . . , xn}, where xi ∈ {1, . . . n2} for all i, be the set of integral inputs
such that vertex vi holds the input xi. Let max(X) = maxni=1 xi be the maximum
value in X. Note that by Section 5, a 2-approximation for the maximum can be
computed within a single round, w.h.p. The main contribution of this section is
the exact computation of the maximum value.



Theorem 2. The maximum value max(X) can be computed within O
(

logn
log logn

)
rounds, with high probability.

Algorithm CompMaxSH consists of O(log n/ log log n) communication rounds.
For simplicity, assume that the input values are distinct. This can be obtained
by appending to every input value ⌈log n⌉ least significant bits corresponding
to the ID of the vertex. Let c ≥ 2 be an upper bound on the approximation
ratio of Algorithm ApproxNetSize and set τ = ⌈c · log n/ log log n⌉. Initially, all
vertices are active. In round t = {1, . . . , τ}, let nt be a constant approximation
for the number of active vertices at the beginning of round t, and let C be an
[n1, 32c·log3 n1, 32c·log2 n1]-BCC code6. After computing nt, every active vertex
vj transmits C(xj) with probability pt = 4c · log2 n1/nt. If a vertex vi receives an
input xj > xi in round t, it becomes inactive. The final result max(vi) of every
vertex vi corresponds to the maximum input value xj it received throughout the
algorithm. This completes the description of the algorithm.

We now analyze the algorithm and begin with correctness. Let At be the
active vertex set at the beginning of round t. Note that Aτ ⊆ . . . ⊆ A1 = V . Let
vm be a vertex with maximum input, i.e., xm = max(X).

Lemma 4. For each round t ∈ {1, . . . , τ}, with high probability it holds that
|At| = O(n1/ log

t−1 n1) and xm ∈ At.

Proof. The claim is shown by induction. For the base of the induction t =
1, we have that A1 = V , and n1 ≤ c · n since by the properties of Algo-
rithm ApproxNetSize it holds that with high probability n1 ∈ [n/2, c · n] for
some constant c ≥ 2. Assume that the claim holds up to step t − 1 ≥ 1 and
consider step t. Order the values of the vertices in At−1 in increasing order of
their inputs and consider the subset Ht−1 ⊂ At−1 of the ⌈|At−1|/ log n1⌉ vertices
with the highest input values in At−1. We first claim that with high probability,
at least one of the vertices in Ht−1 transmits in round t−1. Since every vertex in
At−1 transmits with probability of pt−1 = 4c log2 n1/nt−1 and nt−1 ≤ c · |At−1|,
in expectation there are at least 4 log n1 transmitting vertices in Ht−1 and hence,
by a Chernoff bound, w.h.p there is at least one transmitter in Ht−1.

We proceed by showing that the number of transmitting vertices in round
t − 1 is O(log2 n). In expectation, the number of transmitting vertices in At−1

is at most 8c · log2 n1, and hence by Chernoff bound, with high probability
there are less than 32c log2 n1 transmitters. By the properties of the BCC code,
all messages received in round t − 1 are decodable. This implies that all ver-
tices know the value of at least one vertex in Ht−1 and as a result all ver-
tices in V \ Ht−1 become inactive. In other words, At ⊆ Ht−1 and hence
nt ≤ |Ht−1| = |At−1|/ logn1 = O(n1/ log

t n1), where the last equality holds
w.h.p by the induction assumption. Finally, by the induction assumption for
t − 1, vm ∈ At−1, since all messages were decoded successfully in round t − 1
w.h.p, it holds that vm remains in At as well. The claim follows. ⊓⊔
6 This approximation for the size of the network can be obtained by applying Al-
gorithm ApproxNetSize or simply Algorithm AppDegree in the case of single-hop
networks (where only the active vertices participate in these algorithms).



We thus have the following, which proves Theorem 2.

Lemma 5. With high probability max(vi) = max(X) for every vertex vi ∈ V .

7 Discussion

It is clear that computing in the additive network model should be doable faster
than in the standard radio network model. In this paper we quantify this intu-
ition, by providing efficient algorithms for various cornerstone distributed tasks.
Our work leaves open several important open questions for further research.
First, it is natural to ask whether our algorithms can be improved. Specifically,
most of our algorithms apply for the full-duplex model and translate into half-
duplex by paying an extra factor of O(log n). It would be interesting to obtain
better bounds for half-duplex radios without using the full-duplex protocol as a
black box. An additional axis that requires investigation is the multiple chan-
nels model. It would be interesting to study the tradeoff between running time,
message size and the number of channels. Note, that whereas most of our al-
gorithms are optimal for full-duplex radios (up to constant factors), some leave
room for improvements. For example, in the problem of computing the maxi-
mum input, we believe that some pipelining of the simulation of phases should
be able to give a round complexity of O(D + log n/ log log n), instead of the
current O(D · log n/ log log n). However, this is not immediate. Designing lower
bounds for this model is another important future goal. It seems that the prob-
lem of computing the maximum input in a single-hop network, should be a good
starting point, as we believe that this task requires Ω(log n/ log log n) rounds.
Another interesting future direction involves the implementation of an abstract
MAC layer over additive radio network model. Such an implementation was
provided recently [13] for the standard radio network model. Finally, we note
that all our algorithms are randomized, as opposed to the original definition of
BCC codes. Is randomization necessary? What is the computational power of
the additive network model without randomization?
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