N
N

N

HAL

open science

Modular Verification of Concurrency-Aware
Linearizability
Nir Hemed, Noam Rinetzky, Viktor Vafeiadis

» To cite this version:

Nir Hemed, Noam Rinetzky, Viktor Vafeiadis. Modular Verification of Concurrency-Aware Lineariz-
ability . DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. 10.1007/978-3-

662-48653-5_25 . hal-01207126

HAL Id: hal-01207126
https://hal.science/hal-01207126
Submitted on 30 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01207126
https://hal.archives-ouvertes.fr

Modular Verification of Concurrency-Aware
Linearizability

Nir Hemed!, Noam Rinetzky1 , and Viktor Vafeiadis?

I Tel Aviv University, Tel Aviv, Israel
2 MPI-SWS, Germany

Abstract. Linearizability is the de facto correctness condition for concurrent ob-
jects. Informally, linearizable objects provide the illusion that each operation takes
effect instantaneously at a unique point in time between its invocation and response.
Hence, by design, linearizability cannot describe behaviors of concurrency-aware
concurrent objects (CA-objects), objects in which several overlapping operations
“seem to take effect simultaneously”. In this paper, we introduce concurrency-
aware linearizability (CAL), a generalized notion of linearizability which allows
to formally describe the behavior of CA-objects. Based on CAL, we develop a
thread- and procedure-modular verification technique for reasoning about CA-
objects and their clients. Using our new technique, we present the first proof of
linearizability of the elimination stack of Hendler ez al. [[10] in which the stack’s
elimination subcomponent, which is a general-purpose CA-object, is specified and
verified independently of its particular usage by the stack.

1 Introduction

Linearizability [[12] is a property of the externally observable behavior of concurrent ob-
jects and is considered the de facto standard for specifying concurrent objects. Intuitively,
a concurrent object is linearizable if in every execution each operation seems to take
effect instantaneously between its invocation and response, and the resulting sequence
of (seemingly instantaneous) operations respects a given sequential specification. For
certain concurrent objects, however, it is impossible to provide a useful sequential speci-
fication: their behavior in the presence of concurrent (overlapping) operations is, and
should be, observably different from their behavior in the sequential setting. We refer to
such objects as Concurrency-Aware Concurrent Objects (CA-objects). We show that the
traditional notion of linearizability is not expressive enough to allow for describing all
the desired behaviors of certain important CA-objects without introducing unacceptable
ones, i.e., ones which their clients would find to be too lax.

Providing clear and precise specifications for concurrent objects is an important goal
and is a necessary step towards developing thread-modular compositional verification
techniques, i.e., ones which allow to reason about each thread separately (thread-modular
verification) and to compose the proofs of concurrent objects from the proofs of their
subcomponents (compositional verification). Designing such techniques is challenging
because they have to take into account the possible interference by other threads on the
shared subcomponents without exposing the internal structure of the latter.

2 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

We continue to describe the notions of CA-objects and CA-linearizability via exam-
ples. A prominent example of a CA-object is the exchanger object (see, e.g., java.util.
concurrent .Exchanger). Exchangers allow threads to pair up and atomically swap
elements so that either both threads manage to swap their elements or none of them does.
Although exchangers are widely used in practice in genetic algorithms, pipeline designs,
and implementations of thread pools and highly concurrent data structures such as chan-
nels, queues, and stacks [[10,21L[22}24]], they do not have a formal specification, which
precludes modular proofs of their clients. This is perhaps not so surprising: exchangers
are CA-objects, and as we show, they cannot be given a useful sequential specification
(see §3). In order to specify CA-objects, we extend the notion of linearizability: we
relax the requirement that specifications should be sequential, and allow them to be
“concurrency-aware” as in the following informal exchanger specification.

{true} 7;: x = exchange(v]) || f2: y = exchange(v,) {x = (true,v2) Ay = (true,v;)}
{true} t: x = exchange(v) {x = (false,v)}

where the notation ¢ : » = exchange (v) indicates that exchange is invoked by thread ¢.
This specification says that two concurrent threads #; and #, can succeed in exchanging
their values but that a thread can also fail to find a partner and return back its argument.

We next consider a client of the exchanger, the elimination stack of Hendler et
al. [[10]. The elimination stack is comprised of a lock-free stack and an elimination
module (an array of exchangers). It achieves high performance under high workloads
by allowing concurrent pairs of push and pop operations to eliminate each other and
thus reduce contention on the main stack. To verify the correctness of the elimination
stack, one needs to ensure that every push operation can be eliminated by exactly one
pop operation, and vice versa, and that the paired operations agree on the effect of the
successful exchange to the observable behavior of the elimination stack as a whole. We
present a reasoning technique which allows to provide natural specifications for such
intricate interactions, and modularly verify their correct implementation. Intuitively,
we instrument the program with an auxiliary variable that logs the sets of “seemingly
simultaneous™ operations on objects (CA-trace), e.g., pairs of matching successful
exchange operations and singletons of failed ones.

The contributions of this paper can be summarized as follows:

— We identify the class of concurrency-aware objects in which certain operations
should “seem to take effect simultaneously” and provide formal means to spec-
ify them using concurrency-aware linearizability (CAL), a generalized notion of
linearizability built on top of as restricted form of concurrent specifications.

— We present a simple and effective method for verifying CAL. The unique aspects
of our approach are: (i) The ability to treat a single atomic action as a sequence of
operations by different threads which must execute completely and without interrup-
tions, thus providing the illusion of simultaneity, and (ii) Allowing CA-objects built
over other CA-objects to define their CA-trace as a function over the traces of their
encapsulated objects, which makes reasoning about clients straightforward.

— We present the first modular proof of linearizability of the elimination stack [[10] in
which (i) the elimination subcomponent is verified independently of its particular
usage by the stack, and (ii) the stack is verified using an implementation-independent
concurrency-aware specification of the elimination module.

Modular Verification of Concurrency-Aware Linearizability 3

2 Motivating Examples

In this section, we describe an implementation of an exchanger object, which we use as
our running example, and of one of its clients, an elimination stack. In [9]], we describe
another client of the exchanger, a synchronous queue [22].

We assume an imperative programming language which allows to implement con-
current objects using object-local variables, dynamically (heap) allocated memory and
a static (i.e., a priori fixed) number of concurrent subobjects. A program is comprised
of a parallel composition of sequential commands (threads), where each thread has its
own local variables. Threads share access to the dynamically allocated memory and to a
static number of concurrent objects. We assume that concurrent objects follow a strict
ownership discipline: (1) objects can be manipulated only by invoking their methods;
(2) subobjects contained in an object o can be used only by o, the (unique) concurrent
object that contains them; and (3) there is a strict separation between the parts of the
memory used for the implementation of different objects. The operational semantics of
our language is standard and can be found in [9]]. We denote the object-local variables of
an object o by Vars(o). For readability, we write our examples in a Java-like syntax.

2.1 Exchanger

Figure [T|shows a simplified implementation of the (wait-free) exchanger object in the
java.util.concurrent library. A client thread uses the exchanger by invoking the
exchange method with a value that it offers to swap. The exchange method attempts
to find a partner thread and, if successful, instantaneously exchanges the offered value
with the one offered by the partner. It then returns a pair (true,data), where data
is the partner’s value of type int. If a partner thread is not found, exchange returns
(false,v), communicating to the client that the operation has failed. In more detail, an
exchange is performed using Of fer objects, consisting of the data offered for exchange
and a hole pointer. A successful swap occurs when the hole pointer in the 0Offer of
one thread points to the 0ffer of another thread, as depicted in Figure[T}d).

A thread can participate in a swap in two ways. The first way happens when the
thread finds that the value of g is null, as in the state depicted in Figure[T[a). In this case,
the thread attempts to set g to its Offer (line[I5) resulting in a state like the one shown
in Figure[T[b). It then waits for a partner thread to match with (line[T7). Upon awakening,
it checks whether it was paired with another thread by executing a CAS on its own hole
(line[T8). If the CAS succeeds, then a match did not occur, and setting the hole pointer to
point to the fail sentinel signals that the thread is no longer interested in the exchange.
(The resulting state is depicted in Figure[Tfc).) A failed CAS means that another thread
has already matched the Of fer and the exchange can complete successfully.

The second way happens when the thread finds at line[T5]that g is not null. In this
case, the thread attempts to update the hole field of the Offer pointed to by g from
its initial null value to its own Offer (CAS at line [29). An additional CAS (line 31)
sets g back to null. By doing so, the thread helps to remove an already-matched offer
from the global pointer; hence, the CAS at line @] is unconditional. Moreover, this
cleanup prevents having to wait for the thread that set g to its offer; such a wait would
compromise the wait-free property of the exchanger.

4 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

11 {ﬂ:\cid = T}
(a) g=null 12 (bool,int) exchange(int v) {
13 Offer n = new Offer(tid,v);
4 {A}
) g data 15 if (CAs(g, null, n)){ // in1T
hole —H 16 {(Telesa =T An— tid,v,null Ag = n) V B(n.hole) }
17 sleep(50);
18 if (CAS(n.hole, null, fail)) // pass
fail 0 o {Telusa =T}
L hole —— |2 return (false,v); // FaiL
(c) e data < 21 else {B(n.hole)}
g — 22 return (true,n.hole.data);
hole 23}
u {A}
e N 25 Offer cur = g;
d 8 data W (data 26 {A/\(g:Cur\/cur.hole;énul/)}
 hole+~ | hole—H |» if (cur = nulb) <
28 {AN(g = curV curhole # null) A cur # null N —s}
| class Offer { 29 bool s = CAS(cur.hole, null, n); // xcHe
> thread id tid; 30 {(=s NAV s AB(cur)) Acur # null A cur-hole # null }
3 int data; 31 CAs(g, cur, null); // cLEan
4 Offer hole; 2 if (s) {B(cur)}
s Offer(thread_id t, int d) 3 return (true,cur.data);
6 { tid = t; data = d; hole = null; } 34 ¥
7} 35 return (false,v); // FaiL
8 class Exchanger { N
9 private Offer g = null; , {(ﬂt’,vﬂ ret = (true,v') A Tg|¢ia = T-E.swap(tid,v,1',V)) }
10 private Offer fail = new 0ffer(0,0); V (ret = (false,v) A Telvia = T+ (E.{(tid,ex(v) > false,v)}))
38 }

Fig. 1. Implementation of the exchanger CA-object annotated with its proof outline.

2.2 Elimination Stack

The elimination stack [10] is a scalable concurrent stack implemented using two sub-
objects: a concurrent stack, S, which implements the internal stack data structure, and
an elimination layer, AR. The concurrent stack, S, exposes push () and pop () methods
that perform CAS operations to modify the top of the stack, and fail if there is any
contention on the head of the stack. The elimination layer, AR, essentially acts as an
exchanger object, but is implemented as an array of exchangers to reduce contention.

Figure 2] shows a simplified version of the elimination stack. A pushing, respectively,
popping, thread first tries to perform its operation on the main stack (lines [32)and 2. If
it fails due to contention, it uses the elimination layer to directly exchange a value with a
concurrently executing thread: A pushing thread invokes AR.exchange (line[34) with
its input value as argument, and a popping thread offers the special value POP_SENTINAL
(line[#4). When push calls AR. exchange, it randomly selects an array entry within the
elimination array’s range and attempts to exchange a value with another thread. The
pushing thread checks if the return value matches the POP_SENTINAL. Symmetrically, a
popping thread that calls AR. exchange checks if the return value is not POP_SENTINAL.
Note that the exchange operation might fail. This might happen either because no
exchange took place (the call to exchange returned (false, 0)) or because the exchange
was performed between two threads executing the same operation. A thread deals with
such a failure by simply retrying its operation.

Modular Verification of Concurrency-Aware Linearizability 5

| class ElimArray { 25 class EliminationStack {
2 Exchanger[] E = new Exchanger[Kl; |5 final int POP_SENTINAL = INFINITY;
3 (bool, int) exchange(int data) { 27 Stack S = new Stack();
4 int slot = random(0,K-1); 28 ElimArray AR = new ElimArray();
5 return E[slot].exchange(data); .

29 bool push(int v) {
6} 1} .

30 int d;
7 class Stack { 31 while(true) {
8 class Cell {int data; Cell next;} 3 bool b = S.push(v);
9 Cell top = null; 3 if (b) return true;
10 bool push(int data) { 3 (b,d) = AR.exchange(v);
1 Cell h = top; 35 if (d == POP_SENTINAL)
12 Cell n = new Cell(data, h); 36 return true;
13 return CAS(&top, h, n); 37t}
4} 33 (bool, int) pop() {
15 (bool, int) pop() { 39 l_)ool b;
16 Cell h = top; 40 Int. 'S
17 if (b == null) 41 while (true) {
18 return (false, 0); // EMPTY 2 (b,v) = S.popQ);
19 Cell n = h.next; 43 if (b) return (true,v);
20 if (CAS(&top, h, n)) 44 (b,v) = AR.exchange (POP_SENTINAL) ;
21 return (true, h.data); 45 if (v !'= POP_SENTINAL)
2 else 46 return (true,v);
23 return (false, 0); 7 1}
2%} } 48}

Fig. 2. An implementation of the elimination stack of Hendler et al. [10].

3 Concurrency-Aware Linearizability (CAL)

Linearizability [12] relates (the observable behavior of) an implementation of a concur-
rent object with a sequential specification. Both the implementation and the specification
are formalized as prefix-closed sets of histories. A history H = Y1y ... is a sequence of
method invocation (call) and response (return) actions. Specifications are given using
sequential histories, histories in which every response is immediately preceded by its
matching invocation. Implementations, on the other hand, allow arbitrary interleaving
of actions by different threads, as long as the subsequence of actions of every thread is
sequential. Informally, a concurrent object OS¢ is linearizable with respect to a spec-
ification OSy if every history H in OS¢ can be explained by a history S in OS4 that
“looks similar” to H. The similarity is formalized by a real-time relation H Cgr S, which
requires S to be a permutation of H preserving the per-thread order of actions and the
order of non-overlapping operations (execution of methods) on objects.

We claim that it is impossible to provide a useful sequential specification for the
exchanger. Figure [3] shows a program P which uses an exchanger object and three
histories, where an exchange(n) operation returning value 7’ is depicted using an
interval bounded by an “inv(n)” and a “res(n’)” actions. Note that histories H; and H,
might occur when P executes, but H3 cannot. Histories H; and H, correspond to the
case where threads #; and #, exchange items 3 and 4, respectively, and #3 fails to pair up.
History Hj is one possible sequential explanation of Hj. Using H3 to explain Hj raises
the following problem: if Hj is allowed by the specification then every prefix of H3 must
be allowed as well. In particular, history H} in which only #; performs its operation
should be allowed. Note that in H}, a thread exchanges an item without finding a partner.
Clearly, H} is an undesired behavior. In fact, any sequential history that attempts to

6 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

inv(3) res(4)

f inv(4) res(3) (P) exchg(3) || exchg(4) || exchg(7)

(Hi) 1y: _) p p
inv(7) res(L) 1 2 3
3: —
g B res@ (SH) A e e e
(Hy) ¢ inv(4) res(3)
.
inv(7) res(.L) o
3 — i
} (CAH) ~— I -
. inv(3) res(4)
o tl' inv(4) res(3) .
2° .]
T inv(7) res(L) S |y
13 — (CH)

time

N
4

Fig. 3. A client program P together with a concurrent history (H;), a CA-history (H>), and an
undesired sequential history (H3). We also show schematic depictions of a sequential history (SH),
a CA-history (CAH), and an arbitrary concurrent history (CH).

explain H; would allow for similar undesired behaviors. Indeed, sequential histories can
explain only executions in which all exchange operations fail. We conclude that any
sequential specification of the exchanger is either too restrictive or too loose.

3.1 A Formal Definition of Concurrency-Aware Linearizability

We now formalize the notion of concurrency-aware linearizability. We assume infinite
sets of object names o € O, method names f € F, and threads identifiers 7 € T.

Definition 1. An object action is either an invocation y = (t,invo.f(n)) or a response
vy = (t,reso.f > n). We denote the thread, object, and method of y by tid(y) =1,
oid(y) = o, and fid(y) = f, respectively.

Intuitively, an invocation y = (z,invo.f(n)) means that thread ¢ started executing method
f on object o passing n as a parameter, and a response W = (t,reso.f I>n) means that
the execution of method f’ terminated with a return value n.

Definition 2. A history H is a finite sequence of invocations and responses. A history is
sequential if it comprised of an alternation of invocations and responses starting with
an invocation. A history H is well-formed if for every thread t, H|, is sequential, where
H|; is the subsequence of H comprised of actions of thread t. A history is complete
if it is well-formed and every invocation has a matching response. History H® is a
completion of a well-formed history H if it is complete and can be obtained from H
by (possibly) extending H with some response actions and (possibly) removing some
invocation actions. We denote by complete(H) the set of all completions of H. An object
system is a prefix-closed set of well-formed histories.

Definition 3. The real-time order between actions of a well-formed history H is an
irreflexive partial order <y on (indices of) object actions: i <y j if there exists i <

Modular Verification of Concurrency-Aware Linearizability 7

i < j' < jsuch that tid(H;) = tid(Hy), tid(H;) = tid(Hy), Hy = (_,res_) and Hy =

(_,inv_)).

Essentially, a history records the interaction between the the client program and the
object system. The interaction is recorded at the interface level of the latter at the point
where control passes from the program to the object system and vice versa. Given two
operations, the real-time order determines whether one operation precedes the other or
whether the two are concurrent, i.e., their executions overlap.

Definition 4 (CA-traces). An operation of a concurrent object o, denoted by (t, f(n) >
n'), is a pair of an invocation (t,invo.f(n)) and its matching response(t,reso.f >n'). A
concurrency-aware trace T is a sequence of CA-elements where each CA-element is a
pair 0.S of an object 0 and a non-empty set S of operations of o.

Roughly speaking, every CA-element represents a set of overlapping operations on
one object and a CA-trace is a sequence of such sets. CA-traces provide a uniform
representation of complete histories where operations may only overlap in a pairwise
manner. For example, the CA-element o.{(11, fi(n1) > r1), ..., (t, fe(nx) > i) } repre-
sents, among others, the history ((t,invo.fi(n1))-...-(t,invo.fi(ng))- (t1,reso.f1 >
}’1)- - ~(lk,reso.fk > rk)).

Given a CA-trace T, the projection of T to a thread ¢, denoted by T/, is the sub-
sequence of CA-elements of 7 mentioning ¢. Note that the projection of a trace T to
thread ¢ returns not only the operations of ¢ but also all operations of other threads that
are concurrent with some operation of thread ¢. Similarly, T'|, denotes the subsequence
of CA-elements of 7 mentioning o.

Let H be a complete history, and i and j indices of an invoke action H; = (¢,invo. f(n))
and of its matching response H; = (,reso.f >>n'). The operation pertaining to H;, de-
noted by OP(H,i), is (¢, f(n) >n'). Let J C {1..H} be a set of indices of actions in
H which operate on the same object o, i.e., Vj € J. oid(Hj) = 0. The operation set
corresponding to J in H, denoted by OPSet(H,J), is 0.{OP(H,j)| j € J}.

Definition 5. A complete history H agrees with a CA-trace T, denoted by H Ccar T, if
there is a surjective function Tt : {i | 1 <i < |H|AH; = (_,inv_)} — {1..|T|} such that

Vi, j. (i =g j = n(i) < 1)) AVk € {1, ,|T|}. Ty = OPSet(H, {m | m(m) = k}).

Intuitively, a complete history H agrees with a CA-trace T if every operation in
H appears in one CA-element of T, and vice versa. Furthermore, the real-time order
between the operations in H must be included in the order of the CA-elements of T that
they appear in (i.e., T must preserve the order of any operations ordered according to H).

Formally, concurrency-aware linearizability of an object system is described by
relating each of its histories to a corresponding CA-trace:

Definition 6 (Concurrency-Aware Linearizability). We say that an object system, OS,
is concurrency-aware linearizable (CAL) with respect to a set of CA-traces, T, if
VH € OS.3H* € complete(H).3T € T.H CcaL 7.

Thus, a CA-linearizable object is one that every interaction with it can be “explained” by
a CA-trace adhering to its specification.

8 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

Note. In [8]], we formalized the notion of concurrency-aware linearizability in terms
of a relation between sets of histories. The novelty there was that the specification was
comprised of concurrency-aware histories (CA-histories) instead of sequential ones.
Informally, a CA-history allows for operations of different threads to overlap, as long as
they overlap in a pairwise manner: An invoke action can follow a response action only if
the latter appears at the end a complete history. As a result, a CA-histories can be seen
as a sequence of sets of concurrent operations where each set is an equivalence class
with respect to the real-time order. In this paper, we found that it is more convenient to
work with CA-traces, which provide an equivalent alternative presentation of complete
CA-histories that is insensitive to the order of actions of overlapping operations.

4 Specifying Concurrency-Aware Concurrent Objects

In this section, we gradually develop our approach for providing logical (symbolic)
specifications of CA-objects by applying it to the exchanger. An accurate specification
of the exchanger is one where every successful exchange corresponds to the overlapping
of exactly the two operations that participated in the exchange, while an unsuccessful
exchange, i.e., one that returns (false,_), does not overlap with any other operation.
Formally, the specification of an exchanger object E can be given as the set of CA-traces
515283... where each CA-element S' is either

- E{(r,ex(v)>true,V'), (¢',ex(V') > true,v)} for some 7,#’, v,V such thatz # ¢’ (which

in the following we will abbreviate as E.swap(t,v,t’,V')), or

- E{(¢,ex(v) >>false,v)} for some thread 7 and value v.
This specification, however, has a very global nature and is therefore cumbersome to use
when reasoning about a particular exchange.

What we would like is a local way to specify CA-objects that is amenable to logical
(syntactic) treatment. Our idea is to specify the effect of individual operations using Hoare
triples [[13]], as is common in the sequential setting. Indeed, Herlihy and Wing [[12] have
also adopted this approach to describe the set of histories in the sequential specification
of linearizable concurrent objects. Can we provide such a specification to the exchanger?

As a first attempt, consider the concurrent specification shown in §I] This specifica-
tion states that only two threads that execute exchange () concurrently can match and
successfully swap elements, while a thread that failed to find a partner fails to swap.

This specification may appear intuitive, but it is difficult to give it a formal meaning.
The standard interpretation of Hoare triples is insufficient, because it precludes thread-
modular compositional reasoning. The most obvious problem is that it is not possible to
reason about the body of one thread in a sequential manner because the specification
explicitly contains the parallel composition operator. A second problem is that it is
difficult to adapt the concurrent specification of the exchange operations to an agreed
asymmetric view in the context in which it is used. For example, when verifying the
elimination stack, we would like to pretend that the exchange operation of the pushing
thread happens right before that of the popping thread. This would allow to correctly
interpret the simultaneous exchange operations as an elimination of a push (n) operation
by a pop () which returns n.

Modular Verification of Concurrency-Aware Linearizability 9

To overcome the first problem, we extend the specification with an auxiliary variable
T recording the CA-trace witnessing that the exchanger is CAL. The specification of the
exchange operation says that if initially the recorded trace was T, then after the exchange
operation, it contains one more CA-element, corresponding either to the successful
exchange if exchange () returns true or to the unsuccessful exchange otherwise.

{Teltia=T} tid: ret =E.exchange(v)
(F',V. ret = (true,v') A Tglvia = T-E.swap(tid,v,t' V) At # tid)
V (ret = (false,v) A Tg|via = T+ (E.{(tid,ex(v) > false,v)}))

Note that in the precondition and the postcondition, we do not describe the contents of
the entire trace, but rather only of its projection to the current thread. We do so because
there may be other exchanges running concurrently to the specified exchange, which
may also append CA-elements to the recorded trace. To ensure that our specification is
usable in a concurrent setting, we thus ensure that the precondition and postcondition
are stable under interference from other threads, i.e., that concurrent operations cannot
invalidate these assertions.

To address the second problem, we only need to perform a minor change. We do
not change the specification as such, only the understanding of the auxiliary variable Tg.
Instead of having for each object one auxiliary variable that records its CA-trace, we
have one global auxiliary variable 7 that records the CA-traces for all the objects, and
define 7 to be the view of 7 according to object E. Our key idea is to let the exchanger
module define g as a function of 7. For the exchanger, we simply define 7T to be the
projection of 7 to the CA-elements of the exchanger (i.e., Tz = T |g).

Logging the object interaction using an auxiliary history variable. To specify and
verify CAL, we instrument the program with an auxiliary variable 7 that records the
CA-trace that is equivalent to a given concurrent history. Our idea is to add auxiliary
assignments to the programs that append CA-elements to 7 at the appropriate points.

Since multiple objects can manipulate T, the specification of an object o should not
directly mention o, but rather its view on 7, which we denote as 7,. A simple choice
would be to define this view to be T |,, the projection of the trace to the CA-elements
of object 0. While this works for objects that do not depend on subobjects, it does not
enable compositional verification of higher-level objects. The reason is that the desired
equivalent CA-trace of a higher-level object is typically determined by the CA-traces
of its subobjects. If, however, we want to verify an object compositionally, we are not
allowed to peek into the implementations of its subobjects in order to add auxiliary
assignments to 7.

Instead, we require for each object o to provide a function F, from the CA-elements
of its immediate subobjects to CA-traces containing only operations for 0. Given such
a function F,, we define its total extension £, as the function that given an element a
returns F,(a) if this is defined or a otherwise. Note that E, is idempotent and that for
disjoint objects 0 and o', F, o F,y = Fy o F,,. Next, we define F, to recursively apply FZ,I. for
all objects o; encapsulated by o. This is defined by induction on the object nesting depth.
At each level, if o depends on objects o1, ...,0,, we define F, £ F, o (Fpy0...0F,).

10 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

Again, because of encapsulation, the order in which F,, to F,, are composed does not
matter. Finally, define 7, £ F,(T).

Encoding interference and cooperation using rely-guarantee conditions. Next, since
the exchange operations are concurrent, we cannot merely give a sequential specification
in Hoare logic, but instead use rely/guarantee reasoning [15]], a more expressive formal-
ism that allows expressing concurrent specifications. In rely/guarantee, each program
C is specified not only by a precondition P and a postcondition Q, but also by a rely
condition R and a guarantee condition G, which we have written as R,G I+ {P} C {0}.
These rely/guarantee conditions are parameterized by thread identifiers and describe the
interaction between threads. For a thread ¢, the rely condition R’ records the interference
that 7 might incur from the other threads, while the guarantee G’ records the effect 7 is
allowed to have on other threads. Rely/guarantee gives thread-modular reasoning as it
exposes the interaction between threads without referring to the code of other threads.

Internally, in the verification of the exchanger, these conditions will correlate the
concrete state manipulated by the algorithm and the recorded history. For example, they
require that when a thread successfully modifies the g.hole to point to its own offer, it
also logs in 7 a CA-element which records the successful exchange (see §3).

From the client’s perspective, however, the internal definitions of R**¢ and G*¢
are irrelevant. For them to be usable, however, they should adhere to a few minimal
constraints, which are common for any object o:

— For every two distinct threads ¢ # ¢/, we should have G' = R''. This is the standard
requirement in rely/guarantee reasoning ensuring that multiple methods of 0 may be
invoked in parallel.

— The methods of 0 may only modify the auxiliary history variable, T, the parts of the
memory used in its own representation, and (via method calls) the state of its con-
current subobjects. Moreover, they may only append onto 7 entries corresponding
to o and its encapsulated objects, and pertaining only to threads currently executing

one of its methods. Formally, this is G' = (3T. T = ?T AT =Tl|, =T ANVx ¢
{h}UVars(0). x= X), where we use the hook arrow notation to represent the value
of a program variable in prior state.

— The object o does not assume anything about the private state of other objects,
and allows them to extend the auxiliary history variable, 7. Formally, we require

that IRRELEVANT!, = R’ where IRRELEVANT, = 3T. T, = T,-TAT|, =T}, =
e A (Vx € Vars(o). x= "X).
Finally, since there are may be multiple threads running concurrently, the precondition
and postcondition of the exchange method, we take the projection of g to the thread
of interest (i.e., Tg|via). As is standard in Hoare logic, we use the logical variable T to
record the initial value of Tg|¢iq.

Stack specification. The specification of the elimination stack as well as the ordinary
concurrent stack it contains is expressed in a similar style. Technically, we say that a
sequential history of stack operations is well-defined over an initial stack, if executing
the (successful) operations in order is possible and yields the same results for the pop

Modular Verification of Concurrency-Aware Linearizability 11

operations. A history is well-formed with respect to the stack object, denoted WFs(H),
if H|s is a sequential well-defined history over the empty initial stack. The specifications
for the stack methods f € {push, pop} are:

R',G' \F{WFs(Ts)ATsl; =H} t: r:=S.f(n) {WFs(Ts)ATs|; =H-(S{(t,f(n)>r)})}

The abstract value of a concurrent object, if needed (e.g., to determine the result of a
pop() operation), can be “computed” by replaying the logged actions.

5 Verifying the Exchanger and the Elimination Stack

In this section, we prove that the elimination stack is linearizable by verifying each
of objects—the exchanger, the elimination array, the central stack, and the elimination
stack—modularly. For space reasons, we only present the key ingredients of the proof.
The full proofs can be found in [9].

We start with the elimination array, whose correctness is the simplest to demonstrate.
The elimination array, AR, encapsulates an array of exchanger objects E[0],...,E[K-1]
and exposes the same specification as a single exchanger. To verify that it conforms to
its specification, we define the Fyp function as Fyg(E[{].S) £ (AR.S), i.e., an exchange
done by any of AR’s exchanger subobjects is converted to look like an exchange on
the elimination array. This hides the implementation of the elimination array from its
clients, in our case, the elimination stack. To verify the implementation of the elimina-
tion array, we pick the rely condition to be the conjunction of all the rely conditions
of the encapsulated objects, Rl = A, Rzri1, and the guarantee condition to be the dis-
junction of the corresponding guarantee conditions, G}z = \/; Gy ;7 - The postcondition
of AR.exchange follows directly from the postcondition of E[slot] .exchange by
observing that hyg = Fag(hersiot])-

Verifying that the central stack is a straightforward proof of linearizability, and we
omit it for brevity. Next, we consider the elimination stack assuming that the central
stack, S, and the elimination array, AR, satisfy their specifications. Given our setup, this
proof is also straightforward. The key step is to define the function Fgs correctly:

Fis((S.(t,push(n) > true))) = ((ES.(¢,push(n) > true)))

Fis((S.(¢,pop() > true,n))) = ((ES.(t,pop() > true,n)))

(t,ex(n I>true 00) (ES.(#,push(n) >> true)) - .
Fes (AR {(t ex(e0) > true,n) ES.(¢,pop() > true,n)) provided n 7~
(S._

Fs(S._)2¢e Fg(AR_)2¢

(1>

This function picks as linearization points the successful pushes and pops of S, as well
as a successful exchange where the exchanged values are o and n # . In the latter case,
the push is linearized before the pop. All other operations are ignored.

5.1 Verifying the Exchanger

We move on to the verification of the exchanger, which is more challenging than that of
its clients. As the exchanger does not encapsulate other objects besides memory cells,

12 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

INIT 2 [3n. ‘g = null An.tid =t An.hole = null A g = nl,
CLEAN' £ ['g .hole # null A g' = null],

PASS' £ [g.hole = null A g.tid =t A g.hole = faill hole

>

XCHG! |:E|n # fail. n.tid =t A g.hole = null A\ g.tid #t A g.hole =n A

T = ?E.swap(g.tid,g.data,t,n.data)
FAIL! £ [Hd‘ T = T-(E{(t, ex(d) > fa|se,d)})] .
Gy 2 (INIT' VCLEAN' VPASS' V XCHG' VFAIL') R 2 (IRRELEVANTE V3 # 1. Gly)

:| g.hole, T

>

J 2Vt g #null Ag.hole = null = Ing(g.tid)
A2 Telvia =T A(g = null V g.hole # null v g.tid # tid) An > tid, p,null
B(k) £ (k # null Nk.tid # tid A Tg|eia = T-E.swap(tid, p,k.tid, k.data))

Fig. 4. Rely/guarantee conditions and assertions used for the exchanger proof.

we take Fg to be the completely undefined function, which means that 7z = 7 |g. The
proof outline is shown in Figure[I] The proof uses two forms of auxiliary state. First,
we instrument the code with assignments to the history variable, 7, which appears in
the specification of the exchanger. We instrument the code with assignments to 7 at the
successful CAS on line[29|and at the return statements on line[35} (The exact assignments
we add can be read from the corresponding actions in Figure [d]) Second, we extend
the Offer class with an auxiliary field tid to record the identifier of the thread that
allocated the offer object. This field is used to ensure that the auxiliary assignment to 7~
in the XCHG action records the correct thread identifiers.

Figure[d]defines the rely/guarantee conditions that are used in the proof. Following the
trend in modern program logics [5126]], the rely/guarantee conditions are defined in terms
of actions corresponding to the individual shared state updates performed. Here, actions
are parametrized by the thread ¢ performing the action. The first four actions describe
the effects of the algorithm’s CAS operations to the shared state, when they succeed.
They modify g or g.hole and in the case of XCHG also the auxiliary history variable A.
The FAIL action records the auxiliary assignments to & for failed exchanges, while IRR
is a ‘frame’ action allowing other objects to append their events to A. Discarding the
effects to the memory cells encapsulated by the exchanger (i.e., restricting attention to
the variable %), the actions match those in the exchanger specification.

Figure[dalso defines the global invariant J saying that g cannot contain an unsatisfied
offer of a thread not currently participating in the exchange, and two assertions A and
B that will be used in the proof outline. We write n — ¢,d,m as an abbreviation for
n.tid =t An.data = d A n.hole = m. We note that J is stable both under the rely and
guarantee conditions and we implicitly assume it to hold throughout execution.

We now proceed to the proof outline in Figure[I] Thanks to the encapsulated nature
of concurrent objects in our programming language, we may assume that just before the
start of the function —Ing(tid) holds, i.e., that thread tid is not executing a function of
E. Hence, from invariant J, we can deduce that g = null V g.hole = null v g.tid # tid.
Then after allocating the offer object, we have the assertion A. The assertion states that

Modular Verification of Concurrency-Aware Linearizability 13

the thread has not performed its operation yet, which is implied by 7g|+iq = T, and that
no other thread can access the newly allocated offer.

If the initialization CAS succeeds at line we know that g = n A g.hole = null A
Te|via = T. This assertion, however, is not stable because another thread can come along
and modify g.hole, i.e., performs the XCHG action. If this happens, then it would have
made 7n.hole non-null and extend the history appropriately (i.e., B(n.hole) will hold).
Therefore, at line the disjunction of these two assertions holds: Either an exchange
has not happened, and then n.hole = null, or that it was done by some other thread, and
then B(b.hole) holds.

The CAS at line [T8]checks which of the above cases hold: If it succeeds, it means
that waiting passively for a partner thread did not pan out. This failure, indicated by the
ability to set n.hole to fail, is manifested in the history by extending it with the failed
operation (action PASS'). If the CAS failed than the wait did work out. Specifically,
because a thread can modify the hole field of an offer of anther thread only when it can
justify it using the XCHG action, which implies that the partner thread has also logged
the successful exchange in the history variable.

Otherwise, if the initialization CAS fails, the algorithm reads g into the local variable
cur at line @ After this, we cannot assert that g = cur because another thread may
have modified g in the meantime. For this to happen, however, we know that cur.hole
must be non-null; thus the disjunction g = curV g.hole # null is stable. Then, if cur is
non-null, the algorithm performs a CAS at line 29]trying to satisfy the exchange offer
made by cur.tid. If the CAS succeeds, we know that cur = g at the point that the CAS
succeeded, and thus we can perform action XCHG and get the postcondition B(cur).
Whether the CAS succeeds or not, afterwards at line we know that cur.hole # null,
which allows us to satisfy the precondition of the CLEAN action corresponding to the
final CAS operation.

6 Related Work

Neiger [18]] proposed set-linearlizability as a means to unify specification of concurrent
objects with task solutions. The main idea is to linearize concurrent operations against
(a sequence of) sets of simultaneous operations. Neiger showed that set-linearizability
is expressive enough to provide a specification for certain important tasks e.g., for
Borowsky and Gafni’s immediate atomic snapshot objects [2[]. The notion of concurrency-
aware lineraizabiity is similar to set-linearizability. Neiger, however, neither provides
a formal definition of set-linearizability nor a syntactic approach to define concurrent
specifications. Also, Neiger does not provide a proof technique that takes advantage of
set-linearizability. In contrast, we develop a modualr proof the more general specification.
In contrast, we develop all a formal proof technique for verifying concurrency-aware
linearizability and employ it to produce the first compositional proof of a CA-object and
of its client, namely the exchanger and the elimination stack [10]. Castaneda et al. [3]]
showed that set-linearizability cannot express certain tasks, e.g., write snapshot, and
extended it to interval-linearizability which allows for arbitrary concurrent specification.

Linearizability is shown to be equivalent to observational refinement [7]]. The equiva-
lence was shown to hold even when the specification is not sequential. Thus, a direct

14 Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

implication of their result is that concurrency-aware linearizability also ensures observa-
tional refinement.

The idea of elimination was introduced in [24]], where it was used to construct pools
and queues using trees. Example for other CA-linearizable concurrent objects can be
found in [1,/11},/17,22].

Scherer et al. present a family of dual-data structures [|14] which support “operations
that must wait for some other thread to establish a precondition”. Linearizability of
dual-data structures is established by explicitly specifying a “request” and “follow-up”
observable checkpoints within the object’s purview, each with its own linearization
point. Dual-data structures are in fact CA-objects. We believe that using CA-histories to
describe the behavior of dual data structure would help streamline their specification as
it would obviate the need to specify two linearization points.

Vafeiadis [26] gives a thread modular proof for a variant of the HSY stack using
RGSep [26], an extension of separation logic [19]] to reason about fine-grained concur-
rency. His proof is not compositional as the reasoning about the elimination module
is coupled with the reasoning about the stack. In particular, the elimination module is
not given a context-independent specification. Dragoi et al. [6] present a technique for
automatically verifying linearizability for concurrent objects are where the linearization
points may be is in the body of another thread. Their technique rewrites the program to
introduce combined methods whose linearization points are easy to find. They verified
the elimination stack by introducing a new method push+pop, which simulates the elim-
ination. As a result, their proof is inherently non compositional. In contrast, we allow
for compositional proofs by (i) providing usage-context specifications for CA-object
objects, (ii) allowing clients to interpret operations that seem to happen in the same
point in time as an imaginary sequence of abstract operations, (iii) hiding operations on
subobjects from clients of their containing object.

Sergey et al. [23] present a framework for verifying linearizability of highly con-
current data structures using time-stamped histories and subjective states, and used
it to verify Hendler et al.’s flat combining algorithm. Their approach allows to hide
the inter-thread interaction in the algorithm, but does not allow, at least by its current
instantiations, to verify CA-linearizability. Schellhorn et al. [20] proved that backward
simulation is complete for verification linearizability; it would be interesting to see if
their result extends to CAL.

A novel feature of our proof technique is that it allows to relate a single concrete
atomic step done by one thread with a sequence of abstract steps done by multiple
threads. Our approach stands in contrast with the standard technique of using atomicity
abstraction [4l]161231[25]], which allows to relate several concrete atomic actions with a
single abstract step executed by one thread.

Acknowledgments. This research was sponsored by the EC FP7 FET project ADVENT
(308830) and by Broadcom Foundation and Tel Aviv University Authentication Initiative.

References

1. Afek, Y., Hakimi, M., Morrison, A.: Fast and scalable rendezvousing. Distributed Computing
26(4), 243-269 (2013)

10.
11.

12.

13.

15.
16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

Modular Verification of Concurrency-Aware Linearizability 15

. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Anderson, J.,

Toueg, S. (eds.) PODC (1993)

. Castaneda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: Beyond lineariz-

ability and up to tasks. In: DISC (2015)

. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time and data abstrac-

tion. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207-231. Springer (2014)

. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent

abstract predicates. In: ECOOP. LNCS, vol. 6183, pp. 504-528 (2010)

. Dragoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of concurrent objects

with cooperating updates. In: Sharygina, N., Veith, H. (eds.) CAV. pp. 174-190 (2013)

. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Theor.

Comput. Sci. 411(51-52) (Dec 2010)

. Hemed, N., Rinetzky, N.: Brief announcement: Concurrency-aware linearizability. In:

Halldérsson, M.M., Dolev, S. (eds.) PODC. pp. 209-211. ACM (2014)

. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware lineariz-

ability (2015), available athttp://www.cs.tau.ac.il/"nirh/disc15-ext.pdf
Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: SPAA (2004)
Hendler, D., Incze, 1., Shavit, N., Tzafrir, M.: Scalable flat-combining based synchronous
queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC. pp. 79-93 (2010)

Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. Trans.
Program. Lang. Syst. 12(3), 463-492 (1990)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576-580 (1969)

. I, W.N.S., Scott, M.L.: Nonblocking concurrent data structures with condition synchroniza-

tion. In: Guerraoui, R. (ed.) DISC 2004, LNCS, vol. 3274, pp. 174-187. Springer (2004)
Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress (1983)

Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer, D.: Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. In: POPL (2015)
Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement scalable and
lock-free fifo queues. In: SPAA. pp. 253-262. ACM (2005)

Neiger, G.: Set-linearizability. In: Anderson, J.H., Peleg, D., Borowsky, E. (eds.) PODC 1994.
pp- 396-396. ACM (1994)

. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data

structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1-19. Springer (2001)
Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique for lineariz-
ability of concurrent data structures. ACM Trans. Comput. Logic 15(4) (2014)

Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange channel.
SCOOL (2005)

Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Torrellas, J., Chat-
terjee, S. (eds.) PPoPP 2006. pp. 147-156. ACM (2006)

Sergey, 1., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algorithms with
histories and subjectivity. In: Vitek, J. (ed.) ESOP. LNCS, vol. 9032, pp. 333-358 (2015)
Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks. Theory
Comput. Syst. 30(6), 645-670 (1997)

Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao, Z. (ed.)
ESOP 2014, LNCS, vol. 8410, pp. 149-168. Springer (2014)

Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, University of
Cambridge (2008)

http://www.cs.tau.ac.il/~nirh/disc15-ext.pdf

	Modular Verification of Concurrency-Aware Linearizability

