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Abstract

Recommending items to users is a challenging task due
to the large amount of missing information. In many
cases, the data solely consist of ratings or tags volun-
tarily contributed by each user on a very limited subset
of the available items, so that most of the data of po-
tential interest is actually missing. Current approaches
to recommendation usually assume that the unobserved
data is missing at random.

In this contribution, we provide statistical evidence
that existing movie recommendation datasets reveal a
significant positive association between the rating of
items and the propensity to select these items. We pro-
pose a computationally efficient variational approach
that makes it possible to exploit this selection bias so
as to improve the estimation of ratings from small pop-
ulations of users. Results obtained with this approach
applied to neighborhood-based collaborative filtering il-
lustrate its potential for improving the reliability of the
recommendation.

1 Introduction

Since the early 1990’s, automated methods for recom-
mending content to users based on historical data has
been an active line of research in connection with the
widespread deployment of online services [1, 2]. The
Netflix prize [3, 4] was a recent highlight that triggered
off a lot of attention on movie recommendation. In this
contribution, we consider settings that are typical of the
collaborative filtering paradigm in which the available
information can be summarized by the list of ratings
of some “items”, contributed voluntarily by the users.
The aim is to exploit these ratings originating from the
whole population so as to recommend items to a spe-
cific user, based on his/her own historical data [5,6]. In
practice, these methods are rarely used alone and can
be complemented by using item and/or user metadata
or features so as to improve the prediction.

A frequent abstraction used in this field consists in
viewing the data available at some point in the process
as a very large matrix of ratings, whose rows corre-

spond to users and columns to items, that is incom-
pletely observed. In typical datasets available in movie
recommendation, the number of missing entries from
this matrix is two orders of magnitude larger than the
number of entries that are actually observed. The main
challenge is thus to extrapolate the observed ratings de-
spite the very large fraction of missing data. To do so, it
is a standard practice to consider only the ratings that
have been actually observed; the ratings that have not
been observed being simply ignored. Doing so means
that the sampling distribution, under which the ratings
in the matrix are revealed by the data is viewed as a
nuisance parameter rather than as an aspect of the data
that could be use for estimation —see, e.g., [7] in the
context of matrix completion.

Our goal with this paper is to investigate the gain
achievable by exploiting the “selection bias” that is
present in available movie recommendation datasets.
This bias consists in a significant positive association
between the rating of items in a given population and
the natural propensity of this population to select these
items. We will show in Section 2 below that this obser-
vation is robust, being present both at the scale of whole
datasets but also in ratings corresponding to small sub-
populations of users. To leverage this observation in a
manner that stays computationally feasible in realistic
scenarios, we will use a simple convex variational crite-
rion that captures the main features of the relationship
between the ratings and the item popularity. To illus-
trate the approach, we will specialize it to the case of
neighborhood-based collaborative filtering in which the
preferences of the user is extrapolated from the popu-
lation of users that are closest to him/her given his/her
historical ratings.

Taking into account the popularity of items in order
to improve the recommendation has been considered be-
fore by [8] who design a greedy sequential preprocessing
procedure aimed at subtracting different explanatory
effects that may have an influence on the data. These
include standard user and item rating effects as well
as popularity —referred to as “support” in [8]— and
time-related effects. Interestingly, [8] uses successive
Bayesian regressions for each effect to reduce the vari-

1



ability inherent in using a linear model with many miss-
ing observations. However, our finding that the item
rating and the popularity effects are strongly positively
associated suggests that these should not be considered
as uncorrelated effects that can be be successively elim-
inated in a linear regression model.

A more comprehensive model of an informative se-
lection bias in recommendation has been investigated
earlier by [9] who proposed to use generative proba-
bilistic models involving both the observed ratings as
well as latent variables. The latent variables correspond
to unobservable explanatory variables that can influ-
ence both the fact that a particular rating is available
as well as its value, allowing to model Not Missing At
Random (NMAR) data in the sense of [10]. In [11], the
authors report the results of experiments that support
the necessity of such a modeling by showing a significant
mismatch between the empirical distributions of volun-
tary ratings of user-selected songs (listened through Ya-
hoo! Music’s LaunchCast Radio) and ratings of system-
selected songs by users recruited to participate to the
experiment.

In contrast to [9], we do not intend to model explic-
itly the missing data mechanism nor to introduce latent
variables representing implicit categories of the popula-
tion of users. The proposed approach consists in de-
riving a simple regularization (or penalty) term that
incorporates some general knowledge about the selec-
tion bias. This regularization term can be used with
any recommendation method expressed as the solution
of a variational criterion that involves the true popula-
tion average of the ratings. In the context of this paper,
we only consider the case where the regularization term
is used to improve the estimation of movie ratings from
small samples of the population in neighborhood-based
prediction.

In Section 2, we provide a quantification of the se-
lection bias phenomenon on the MovieLens and Netflix
datasets. Section 3 describes our variational approach
for learning ratings taking into account this selection
bias. Sections 4 and 5 provide, respectively, numerical
experiments on simulated data and on the MovieLens
dataset.

2 Characterizing the Selection

Bias

In this Section, we present statistical observations made
on well-known movie rating datasets showing significant
positive association between the popularity of movies
and their ratings.

Figure 1 displays scatterplots of movie average rating
as a function of the number of ratings corresponding
to, from left to right, the MovieLens 1M (6k users, 3.7k
movies, 1M ratings); MovieLens 10M (70k users, 11k

movies, 10M ratings); and, Netflix (480k users, 17.8k
movies, 100M ratings) datasets. The y-scales of the
three subplots of Fig. 1 are directly comparable and
correspond to a 1-5 scale where 5 corresponds to the
highest possible rating1. The number of ratings are
plotted on the x-scale using a base ten log scale. In
particular, the number of ratings obtained by the most
rated movies is observed to be roughly proportional to
the overall number of ratings, which increases by a fac-
tor ten when going from one plot to the next. It is im-
portant to keep in mind that the leftmost part of each
plot —especially for the two MovieLens datasets— cor-
responds to very small samples (movies with less than
ten ratings when the x-value is smaller than one) and
should not be considered as individually reliable. From
Fig. 1, it is observed that despite their differences2, the
three datasets do show the same general pattern that
the highest rated movies are also among the most “pop-
ular” ones (i.e., those with highest numbers of ratings).
Given the relatively small spread of ratings on the y-
axis (for MovieLens 10M for instance, half of the movie
ratings are between 2.8 and 3.6), this positive associa-
tion between the popularity of movies and their rating
is rather significant; we will refer to this phenomenon
as the selection bias.
The observed positive association does not imply a

direct causality relationship. However, it is to be ex-
pected that this observation applies, to some extent, to
all situations where rating an item is a voluntary ac-
tion taken by the user. The important point is that the
popularity of an item is in itself a valuable information
even when the objective is to estimate the population
average of its rating. To illustrate this fact, assume that
movies A and B have comparable average ratings but
that these ratings were obtained from nA and nB users,
where nB is larger than nA. Standard statistical argu-
ments suggest that the rating of item B is more reliable
than that of item A because it has been estimated from
more users. The positive association reinforces this ob-
servation by making the hypothesis that the actual pop-
ulation rating of B exceeds that of A more likely, as it
has been selected more often. This effect will be most
likely negligible if nA is itself large as the statistical
error in estimating the population rating of item A is
small anyway in this case. On the other hand, when
dealing with small samples —when nA is, say, less than
fifty—, taking into account the selection bias can be
significant. The issue of small samples is inherent to
recommendation. For instance, 32% of the 10k movies

1MovieLens ratings are half integers from .5 to 5 and Netflix
ratings are integer-valued from 1 to 5. Given the variance of the
ratings —which is about 1—, the difference between both sorts of
ratings is not significant. In the following we treat the ratings as
continuous Gaussian random variables with homoscedastic vari-
ance.

2One difference is that all movies included in the Nextflix
dataset have been rated by at least fifty users, as can be observed
on the rightmost subplot of Fig. 1.
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Figure 1: Scatterplot of average movie rating as function of the base ten logarithm of the number of views. The
red line indicates the fitted regression curve. From left to the right: MovieLens 1M, MovieLens 10M and Netflix.

of MovieLens 10M have been rated by less than 50 users,
despite the fact that the most popular movie has been
rated by about half of the users. When one wants to go
beyond recommending the highest rated items based on
the whole population, the explicit or implicit use of sub-
populations of users will necessitate a proper handling
or small samples, even when the complete database is
very large.

In the rest of this section, our objective is twofold.
First, we make the previous comments more formal by
providing a quantitative measure of the association be-
tween the popularity and the rating. Next, our aim is
to do so in a way which can be exploited in a compu-
tationally efficient manner to improve the estimation of
movie rating based on small populations of users. This
objective will be addressed by use of linear regression.

Assuming the population can be considered as ho-
mogeneous, we define the observations as the pairs
(Xt, Yt)t=1,..,n, where Xt ∈ {1, . . .K} is the selected
movie and Yt ∈ R denotes the rating of the movie. n
and K refer, respectively, to the total number of rat-
ings and to the number of rated items. We further as-
sume that pairs can be considered as independent and
identically distributed so that the statistical model is
parameterized by

{

θk = E(Yt|Xt = k) (expected item rating)

λk = P(Xt = k) (item selection probability)

(1)
for k = 1, . . . ,K. Sufficient statistics for this model are
given by

Nk =
n
∑

t=1

1{Xt=k}

and

Sk =

n
∑

t=1

Yt1{Xt=k}

which are, respectively, the number of times item k has
been rated as well as the cumulated sum of its ratings.

The subplots of Fig. 1 display Sk/Nk as a function of
log10(Nk), for all items k = 1, . . . ,K. As noted earlier,
both the x- and y- values of this scatterplot correspond
to statistics computed from data and should thus be
considered as noisy, which is clearly visible in the left-
hand part of each subplot. To account for this fact we
use weighted Total Least-Squares (TLS) – or Deming –
regression to fit a symmetrized form of the linear regres-
sion curve to the scatterplot. More precisely, denoting
by xk = ln(Nk/n) and yk = Sk/Nk for k = 1, . . . ,K we
fit (a, b) by minimizing

K
∑

k=1

(xk − x̂k)
2/vk + (yk − ŷk)

2/wk (2)

where (x̂k, ŷk) is the orthogonal projection of (xk, yk)
onto the straight line y = ax+ b. Standard asymptotic
statistical arguments show that, as n tends to infinity,

√

Nk(xk − lnλk) ⇒ N (0, 1− λk)
√

Nk(yk − θk) ⇒ N (0, σ2)

where ⇒ corresponds to convergence in distribution,
N (µ, υ) denote the Gaussian distribution with mean
µ and variance υ, and, σ2 is the common variance of
the ratings, which can be estimated from the data. In
light of these results and given the fact that most of
the movies have a selection probability λk that is much
smaller than 1, we used as weights

vk = 1/Nk and wk = σ2/Nk

The main effect of the weights vk and wk in (2) is to
focus the estimation on the most popular movies, whose
average ratings should be considered as being more pre-
cisely estimated. Note that the use of TLS also makes
the problem symmetric and one would obtain the same
linear fit by permuting the data associated to the x- and
y- axis (which is of course not true for standard linear
regression which assumes that the data on the x-axis is
observed without noise). The weighted TLS regression
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Data MovieLens 1M MovieLens 10M Netflix

full dataset 0.36 0.16 0.09

random
subsets of
size 100

- 0.27 0.15

Table 1: Slope a estimated by weighted TLS on the
three datasets MovieLens 1M, MovieLens 10M and Net-
flix (see Fig. 1) and median slopes estimated on random
subsets of MovieLens 10M and Netflix (see Fig. 2).

Figure 2: Histogram of slopes a estimated on 5,000 in-
dependent random subsets of size 100; for MovieLens
10M (red) and Netflix (blue).

estimate of a and b is obtained using the implementa-
tion of [12].

The first row of Table 2 reports the values of a es-
timated by the above method for the three datasets.
Corresponding regression lines are shown in red on the
three subplots of Fig. 1 (note that the x-axis is there
log10(Nk) to make the interpretation of the values eas-
ier). In all three cases, one obtains a significantly posi-
tive slope a. When fitting the regression model on whole
datasets it is also observed that the estimated slope de-
cays with the size of the dataset. This observation can
be related to the fact that as the size of the dataset
increases, the maximal number of ratings obtained by
the most popular movies increases proportionally while
the rating scale stays unchanged.

This being said, even in very large datasets, rec-
ommendation methods will explicitly (neighborhood-
based) or implicitly (matrix factorization methods) de-
fine sub-populations of reduced size that can be consid-
ered as homogeneous. To illustrate the effect of consid-
ering sub-populations we randomly drew 5, 000 random
sub-populations from both the MovieLens 10M and the
Netflix datasets. On each of them we fitted a regression
model using weighted TLS. The size of each population
was chosen to consist of the ratings of 100 users cho-
sen at random. The selections of these users typically
correspond to subsets of 3.5k (MovieLens 10M) or 4.9k

(Netflix) movies, with number of ratings in the range
1–50, where about 43% of the movies in the selection
have a single rating. The values of a fitted on these sub-
populations are displayed as histograms on Figure 2 and
the median value of each histogram is reported in the
second row of Table 2. This experiment shows that val-
ues of a appropriate for sub-populations are higher and
usually in the range 0.1–0.35.
To understand the implication of these numbers,

consider again our running example: if a = 0.25, it
means that if we know that movie A has been viewed
by nA users and movie B by nB users, where nB is
twice as large as nA, and in the absence of any other
data, we should expect the average rating of B to be
0.25 ln(2) ≈ 0.17 higher than that of B. This infor-
mation is non-negligible, corresponding to roughly one
sixth of the standard deviation σ of the ratings. In Sec-
tion 5, we will show that knowledge of this selection
bias can indeed be leveraged to improve the prediction
of ratings in realistic scenarios.

3 Using the Selection Bias as a

Regularizer

In this section, we derive an estimation criterion that
corresponds to a regularized likelihood estimator, where
the regularization accounts for the selection bias. We
show that optimizing this criterion, which is both
smooth and convex, can be done efficiently using stan-
dard numerical optimization tools.

3.1 Variational Model

As indicated before, we model the ratings of movie k by
a Gaussian distribution

p(Y |X = k; θ) ∼ N (θk;σ
2)

where σ2 is a fixed variance for all movies and θ =
(θk)k=1,...,K is the vector of expected movie ratings.
This is clearly not the only option and the method
could also be applied using the logit link function, as
in [13, 14], if we were given binary (“like/dislike”) rat-
ings.
For, the selection probabilities λ = (λk)k=1,...,K it is

important to consider the logistic form of the multino-
mial distribution parameterized by a vector β:

λk =
eβk

∑K
j=1

eβj

Up to a shift, βk is homogeneous to lnλk and hence
to the quantity displayed on the x-axis of Fig. 1. Note
that the vector β itself is only identifiable up to a shift
as replacing all βk by βk + δ would leave the vector λ of
probabilities unchanged due to the logistic normaliza-
tion term. This lack of identifiability is not a problem
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as estimating β is not required and we will treat β as
a so-called “nuisance parameter”, optimizing it over all
possible values.
Our model of the selection bias thus relies on the as-

sumption that β —the log-probability of selecting each
item (up to a constant)— must be close to aθ+ b where
a and b are global parameters that quantify the selec-
tion bias, estimated following the method exposed in
Section 2. Due to the non-identifiability of β, we can
disregard the intercept b and let β be determined in the
shift direction by the value of θ.
Thus, the problem of estimating θ boils down to

jointly minimizing over θ and β the following cost func-
tion :

f ((Xt, Yt)
n
t=1; θ, β) =L1 ((Yt|Xt)

n

t=1
; θ)

+ L2 ((Xt)
n

t=1
;β)

+ r‖θ − aβ‖2
2

(3)

where

1. L1 is the negative conditional log-likelihood of the
Gaussian model of the observed ratings;

2. L2 is the negative log-likelihood of the marginal
distribution of the selections (Xt);

3. the last term is the regularization that constrains
the ratings θ to stay close to aβ, the log-probability
of selection scaled by a.

The parameter r > 0 controls the influence of the
regularization term and will typically be set using cross-
validation on the training data.

3.2 Inference Algorithm

We first rewrite L1 and L2 :

L1 =

K
∑

k=1

n
∑

t=1

1{Xt=k}
(Yt − θk)

2

2σ2

L2 = −
K
∑

k=1

n
∑

t=1

1{Xt=j}βk + n log





K
∑

j=1

eβj





Using the notations Nk and Sk introduced in Sec-
tion 2, one obtains

L1 =

K
∑

k=1

θ2k
2σ2

Nk −
θk
σ2

Sk + C

and

L2 = n log





K
∑

j=1

eβj



−
K
∑

k=1

Nkβk

C being a constant that does not depends on θ.

The gradient of the objective function f is the con-
catenation of the gradients with respect to θ and β:

∇f =

[

∇θf
∇βf

]

∈ R
2K

where∇θf(k) =
θk
σ2Nk−

Sk

σ2 +2r(θk−aβk) and∇βf(k) =

−Nk + n eβk
∑

j
e
βj

− 2ra(θ − aβ).

The Hessian has the following block structure

Hf =

[

Hθθ Hθβ

Hβθ Hββ

]

where Hθθ = diag
(

Nk/σ
2 + 2r, k = 1...K

)

, Hθβ =
Hβθ = diag(−2ra) and

[Hββ ]ij =

{

nλi(1− λi) + 2ra2 if i = j

−nλiλj otherwise

Proposition 1. Assuming that all counts (Nk)k=1,...,K

are strictly positive, the criterion

f
(

(Xt, Yt)
N
t=1|θ, β

)

is strictly convex with respect to (θ, β).

Proof. Assuming Nk > 0, L1 and L2 are known to be
strictly convex wrt. to, respectively, θ and β up to
the already mentioned identifiability issue for β (the
Hessian of L2 has β = (1, . . . , 1)T as null direction).
For the regularization term, the function

(θ, β) ∈ R
K × R

K 7→ ‖θ − aβ‖2

being separable in k, it is sufficient to consider the case
where K = 1, i.e when (θ, β) ∈ R

2. In that case, the
Hessian of the regularization term reduces to the fol-
lowing 2 by 2 matrix:

H(θ, β) =

[

2 −2a
−2a 2a2

]

The eigenvalues of this matrix are 0 and 2(a2 + 1) and
the associated eigenvectors are respectively (a, 1) and
(−a, 1). Hence the Hessian of ‖θ − aβ‖2 is a positive
matrix. Its K null directions (vectors of the form θ =
(0, . . . , 0, a, 0, . . . , 0), β = (0, . . . , 0, 1, 0, . . . , 0)) do not
span the null direction of L2 and hence Hf is positive
definite.

The parameter inference can thus be performed us-
ing fast converging algorithms like Newton-Raphson. In
most scenarios however, the large size of the Hessian
matrix —equal to twice the number of items—makes its
storage and inversion cumbersome. For the experiments
reported in the following we thus used open source im-
plementations of the Limited-memory BFGS (L-BFGS)
approach that yields comparable performance using a
very small memory footprint (typically of the order of
ten times the number of items in our case).
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4 Validation: experiments on

simulated data

To illustrate the behavior of the method, we start by
considering a small-scale simulated scenario in which
the data is generated using a probabilistic model related
to the variational criterion proposed in (3). We first
show that in this situation, the proposed approach —
referred to as SB (for Selection Bias) in the following—
is indeed able to recover the true mean rating parame-
ter more efficiently than the least squares (LS) estima-
tor that estimates θk directly by the empirical average
Sk/Nk

3. We also discuss the robustness of the approach
with respect to the parameters a, r, as well as, the size
n of the sample.
For simulating the data, we select an arbitrary vec-

tor of mean ratings θ∗ of size K and generate the
associated vectors of logistic parameters according to
β∗ ∼ N (θ∗/a, σb). The data is then simulated accord-
ing to

Xt ∼ Mult(λ∗)

Yt|Xt = k ∼ N (θ∗k;σ
2)

for t = 1, . . . , n, where λ∗
k = eβ

∗

k/(
∑K

j=1
eβ

∗

j ).
The parameters of the simulation are selected to be

somewhat comparable to the observations made on real
data in Section 2: values of θk in the range 1–5, a =
0.35, σ = 1. The value of σb is set to 1. For illustration
purpose we use a small value of K, K = 3, varying the
number n of ratings between 20 and 2,000. Note that
due to the relatively high values of a and of the ratings
spread (see Fig. 3 below) the best rated, and hence most
popular, of the three items is typically forty times more
frequent than the lowest rated one. Hence, the value of
Nk for the lowest rated item is usually rather small, in
the range between 1 to 50, depending on the value of
n4.

4.1 Recovery of ratings

Figure 3, compares the results obtained by the Selec-
tion Bias (SB) and Least Squares (LS) estimators for
n = 2, 000 using 200 Monte Carlo replications of the
data (Xt, Yt)t=1,...,n. It is observed that the value corre-
sponding to the item that is simultaneously worst rated
and least selected (corresponding to k = 1) is slightly
under-estimated by the SB estimator compared to LS,
with a standard deviation of the estimator that is also
reduced. For the third item that is both highly rated
and very frequent the difference between both estima-
tors becomes to be negligible. Taking into account the

3Note that the LS estimator may also be interpreted as the
solution of (3) when the regularization parameter r is set to zero.

4To ensure that the minimizer of (3) is uniquely defined, only
the simulations for which all Nk, for k = 1, . . . , 3, are strictly
positive are retained.
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Figure 3: Recovery of the parameter θ: comparison of
the Selection Bias (SB) and the Least Squares (LS) es-
timators. Red: true value θ∗ for k = 1, . . . , 3; Dark
green: mean value estimated by SB; Light green: mean
value estimated by LS. The vertical whiskers represent
the standard deviation of the estimates..

selection bias in the SB estimator thus produces a down-
ward bias and reduced variability of the estimated mean
rating for infrequent items.

20 40 60 80 100 120 140 160 180 200
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Figure 4: RMSE for SB and LS as a function of n, with
corresponding error bars.

4.2 Robustness in small samples

The effect observed on Fig. 3 is all the more pronounced
that the sample size n is small. To illustrate this fact,
Figure 4 plots the Root Mean Square Error (RMSE)
to the true value θ∗, when n increases from 20 to 200,
computed from 50 Monte Carlo replications of the data.
The RMSE is the square root of the average value of
‖θ̂ − θ∗‖2, where θ̂ denotes the estimated value of θ.
Fig 4 confirms that the RMSE of the SB estimator is
always smaller than that of LS and that the gap between
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rameter r.

them increases for small sample sizes (when n is small).
Note that the variability of the SB estimator is also
much reduced compared to that of LS.

4.3 Influence of r

The value selected for r may affect the quality of the
results. Figure 5, shows the RMSE obtained when
n = 2, 000 for different values of r varying between 0.2
and 10. The curve is averaged over 200 Monte Carlo
replications. Here the optimal value of r is r = 7, which
is rather high as the simulation parameters almost sat-
isfy β∗ = a∗θ∗, up to the Gaussian perturbation of
variance σ2

b . Most importantly, the curve displayed on
Fig. 5 is very smooth around its minimum with a small
curvature, meaning that values of r between 5 and 10
yield, in this case, a performance comparable to that
corresponding to the optimal choice of r.
In Section 5, r will be set by searching for the mini-

mum value of the RMSE on a validation subset corre-
sponding to a small number of users.

4.4 Influence of a

The previous experiments have been carried out in the
idealized setting where the parameter a that controls
the generation of the data is known and used for the in-
ference. In realistic scenarios, a will be known approxi-
mately only and it is not advisable to try to estimate a
together with the other parameters, in light of the vari-
ability observed on Fig. 2. Figure 6 shows the RMSE
when the parameter a used in the objective function (3)
differs from the value a∗ used for simulating the data,
which is here fixed to a∗ = 0.35. It is observed that the
RMSE barely varies for a ∈ (0.23, 1.2), indicating that
the SB estimator is very robust to the overestimation of
the slope a and only requires that it be set high enough
to perform well.

0.0 0.5 1.0 1.5 2.0
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Figure 6: RMSE as a function of the parameter a used
in the objective function; the parameter value used to
simulate the data is set to a∗ = 0.35.

In the experiments to be described in the next section,
we also observed that the results were very robust to the
choice of a, with values in the range 0.25–0.5 yielding
unnoticeable changes in overall performance.

5 Experiments On Real Data Us-

ing Neighborhood-based Col-

laborative Filtering

In this section, we describe recommendation experi-
ments carried out on the MovieLens dataset. The in-
ference algorithm described in the previous section is
used to estimate the ratings of films selected by sub-
populations of users. Each sub-population corresponds
to the neighborhood of the user for which one wants
to make recommendations. We first discuss the choice
of the similarity measure used to define the neighbor-
hoods.

5.1 Neighborhood construction

The penalization scheme introduced in (3) is a generic
tool designed to improve the estimation of ratings from
small samples by taking into account the selection bias.
In this section, we describe the simplest way in which
this method can be used in the context of recommen-
dation. We consider a standard neighborhood-based
collaborative filtering approach in which (3) will be
used only to estimate the movie ratings from the sub-
population of users that belong to each neighborhood.
The baseline approach usually considered in the litera-
ture consists in using the empirical averages of the rat-
ings in the sub-population, that is, LS (Least Squares)
following the terminology of Section 4. To allow for a
meaningful comparison between the proposed estima-
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tor (termed SB) and LS, we will use the exact same
algorithm to define the relevant sub-population of users
that belong to the neighborhood of the user for which
we want to discover new relevant movies.

For the baseline to be significant we will use a state-
of-the-art approach for defining neighborhoods based
on data-driven features of reduced dimension. Dimen-
sionality reduction is a popular method in recommenda-
tion. Among the numerous algorithms that have been
proposed to perform matrix factorization, the Singular
Value Decomposition (SVD) was shown quite early to
provide good performance (see for example [4]). For
the experiments, we used an incremental implementa-
tion of SVD for the Julia language that can handle large
sparse data matrices 5. Considering the MovieLens 10M
dataset, we first split randomly the data into a training
set containing 75 % of the ratings of each user and a
test set with the remaining 25 %. A rank-25 SVD of
the rating matrix (considering unobserved values as ze-
roes) corresponding to training data was computed so
as to determine a representation of each user as a vector
of features in a 25-dimensional space.

To define the neighborhood of a user whose feature
vector is denoted by u, we used the cosine similarity
defined, for another vector v, by c = 〈u, v〉 /‖u‖‖v‖.
The size of the neighborhoods was set to 100 and hence
the first 100 vectors v with highest cosine similarity with
u are included in the neighborhood of u. The typical
size of these neighborhoods is comparable to that of
the random subsets considered in Section 2, that is, K
(number of movies viewed in the neighborhood) and n
(number of ratings) of the order of a few thousands.

Note that it would be very easy to use the similarity
ct corresponding to each item as a weight in (3): simply
redefining Nk and Sk as

Nk =

n
∑

t=1

ct1{Xt=k}

Sk =

n
∑

t=1

ctYt × 1{Xt=k}

is equivalent to weighting each observation (Xt, Yt) in
the likelihoods L1 and L2 by ct rather than 1. For r = 0,
the solution of (3) when using this weighting will be the
similarity-weighed average of each item’s ratings rather
than the simple average. In our case however, the re-
sults obtained with these similarity-weighted versions
of the SB and LS estimators were not significantly dif-
ferent from those obtained with the basic (unweighted)
versions and are not reported here.

5This library can be found at
https://github.com/aaw/IncrementalSVD.jl
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Figure 7: RMSE as a function of r, computed on the
first 100 users of the base.

5.2 Choice of the parameters

The slope parameter a was set to the value estimated in
Section 2 on random subsets of 100 users and was kept
fixed through the experiments.
For the regularization parameter r, some tuning is

necessary as observed in Section 4.3. Here again, the
value of r is fixed globally, using a common value for
all neighborhoods, as tuning r on small populations is
definitely not advisable and would require validation
data for each user. For that purpose, we conducted a
preliminary experiment on a subset of 100 users of the
base and computed the averaged RMSE (see below) for
different values of r between 0.1 and 2.5. The results
are displayed on Figure 7. Similarly to the graph of
Fig. 5 computed on simulated data, we observe that
the quality of the recommendations improves whenever
r > 0, with an optimum about r = 1 which was used in
the following.

5.3 Evaluation Metrics

To evaluate the results, we used various metrics focusing
on different aspects of the estimation.
The first criterion, RMSE, is aimed at quantifying

the calibration of the rating estimates provided by the
algorithms. The RMSE, is the classical metric that was
used in the Netflix Challenge. If T denotes the set of
indices featured in the test set for a given user, we define

user RMSE =

√

1

|T |

∑

t∈T

(

Yt − θ̂Xt

)2

where θ̂ denotes the rating estimates determined on the
training data for this user6. The RMSE is the average

6For a movie k that was not selected in the user neighborhood
but that is present in the user test set, we set by convention
θ̂l = 3.5, which corresponds to the empirical average of all ratings
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Table 2: Results of the experiments on the MovieLens
10M dataset.

RMSE P@N3 P@N14 P@τ4

θ̂(SB) 0.923 0.183 0.125 0.0332

θ̂(LS) 0.952 0.0022 0.0028 0.0211

Popularity Ranking - 0.239 0.160 -

of the user-level RMSE for all users. It should be noted
that, in contrast to the criterion used in Section 4 that
weighted all items equally, the RMSE as defined above
does give more weights to the error corresponding to
movies that appear frequently.

In addition, the RMSE gives as much importance to
accuracy in predicting low ratings that it does for high
ratings, whereas the latter is arguably more relevant in
the perspective of recommendation. For this reason, we
also consider the precision associated with the recom-
mendation of a few number of items that are believed
to be relevant. Relevant items are defined as the movies
actually selected by the user in the test set and that were
rated 4 or above (that is, 4, 4.5 or 5 for the MovieLens
datasets).

The first measure is the standard Precision-at-N (de-
noted P@N) that assumes that only N items are to be
recommended and counts the number of relevant items
(also called true positives) in those N recommended
items:

P@N = |relevant items|/N

In this case, it is natural to consider that the N movies
recommended by a method are those that have the high-
est estimated ratings. However, P@N is fundamentally
a ranking measure and we will see below that due to the
selection bias it is optimized by a very simple heuristic
that does not even rely on estimating the movie ratings.

To mitigate this observation, we also consider P@τ in
which the set of relevant items is determined by consid-
ering the movies for which the estimated rating is above
the threshold τ , that is,

P@τ = |relevant items|/|items with est. rating ≥ τ |

Although, this second way of proceeding does not ex-
plicitly control the size of the recommendation set that
corresponds to a given value of τ , it is appropriate to
measure the accuracy in predicting, in a calibrated way,
high values of the ratings.

5.4 Results

We present in this section the results obtained on the
MovieLens 10M dataset. We computed RMSE, P@N
and P@τ by selecting randomly and averaging results
over 1,000 users.

The first column of Table 2 shows that the SB esti-
mator improves the RMSE compared to LS. This im-
provement is significant, confirming the good behavior
of LS for rating estimation. The order of magnitude of
the improvement is limited but this is mainly due to
the weighting by the popularity of movies inherent to
the RMSE computation. For less frequent movies, the
improvement brought by SB is indeed major as will be
shown below. The remaining columns of Table 2 report
the performance in term of the P@N and P@τ metrics
defined in the previous section. The values selected for
N correspond to two realistic use cases that can be of
interest in movie recommendation: suggesting a top-3
short list (N=3) or building a recommendation page on
a website containing a human-sized list (N=14). For
P@τ , τ = 4 was selected in light of the actual threshold
used to determine relevant items in the test set7. These
results show that, when it comes to identifying highly
rated items, the SB estimator significantly outperforms
the standard empirical average (or LS) estimator.

Figure 8 gives more details by displaying the results
obtained for the P@N metric, for values of N between
3 and 30. It is important to keep in mind that the
P@N metric being a ranking criterion it does not mea-
sure the accuracy in evaluating the ratings but rather
the ability to produce a correct ordering of the movies.
The general shape of the performance curve for the SB
estimator (blue curve) in Fig. 8 suggests that it suc-
ceeds in putting at the top of the list the most relevant
items, with a precision that decreases as N increases.
In contrast, the red curve that corresponds to the per-
formance of the LS estimator shows that it largely fails
when it comes to ranking items. The fact that as N
grows, the P@N metric increases (slightly) with N for
the LS estimator suggests that the failure of LS comes
from the fact that it can attribute high ratings to irrel-
evant movies. As discussed in Section 2, a significant
fraction of movies (almost half of them) rated in each
neighborhood has been rated only once. The LS estima-
tion for these “hapax” items is extremely noisy, being
based on a single occurrence: it suffices that one of these
be rated at 5 (the maximal note) to perturb the highest
rank of the recommendation list. This interpretation
is confirmed by the green curve of Fig. 8 that corre-
sponds to the performance of the LS estimator, when
restricted to the movies that were at least select twice
in the neighborhood. By raising the threshold value
(above 2) the impact of unreliable ratings could be fur-
ther reduced and the ranking performance of the LS
estimator improved, at the price of a reduced diversity
of the recommendations. An alternative would be to
use a Bayesian mean estimate, as in [8], to shrink the
estimates towards the global mean rating for scarcely

7Note however that due to the fact that the actual observed
ratings are half integers, the value of the relevance threshold is
not precisely defined.
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observed items. It is remarkable that the SB estima-
tor does not necessitate any adjustment of this sort: as
discussed about Fig. 3, the presence of the regulariza-
tion term creates a downward bias for ratings based on
few observations, making it highly unlikely that these
unreliable ratings appear at the top of the ranking list.
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Figure 8: Precision-at-N for N varying in 3-30. The
results are averaged over 1,000 users randomly selected
among the ML10M database.

Interestingly, in terms of the P@N metric, the SB es-
timator is dominated by the simple heuristic (light blue
curve in Fig. 8) that ranks the movies in the neigh-
borhood according to their popularity and recommend
the N most popular ones. The fact that it is possible to
recommend the highly rated movies, without even using
the rating data (except for the definition of the features
used to build the neighborhoods) is a clear illustration
of the selection bias phenomenon. This “ranking by
popularity” approach is also naturally immune against
the variability due to movies with a small number of
ratings. This being said, this strategy is not calibrated
and recommends items whose value is not clearly de-
fined. It is also likely that, in terms of the diversity of
the recommendations, always recommending the most
popular items in each neighborhood is not the optimal
approach.

The alternative consists in measuring the precision at
a given threshold τ , as shown in Figure 9: for thresholds
τ between 3 and 4.5, both the LS and the SB estimators
were used to create lists of recommended items whose
estimated rating exceeded τ . The drawback of this ap-
proach is that the size of the recommendation list is
not explicitly controlled. In particular, when interpret-
ing the curves on Fig. 9 it is important to keep in mind
that the size of the recommendation lists corresponding
to the same value of τ may in fact be different for the
two methods (SB and LS) under consideration.

It is observed on Figure 9 that up to τ = 3.5, which
correspond to the overall average rating, both estima-
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Figure 9: Precision-at-τ for τ varying in 3-4.5. The
results are averaged over 1,000 users randomly selected
among the ML10M database.

tors have comparably low performance as they recom-
mended about half of the items present in the training
set for each neighborhood. When the threshold grows
up to 4, the lists of recommendations for both SB and
LS become more relevant as shown by the increase of
the P@τ metric. For the LS estimator however, the
precision values are decreasing for thresholds τ above 4,
showing that a significant fraction of the highly rated
estimates is in fact strongly contaminated by unreliable
values. In contrast, the precision of the SB estimator
keeps improving as τ increases, showing once again that
the highly rated estimates are much more reliable with
the SB approach.

6 Conclusion

In this paper, we introduced a model for the link be-
tween the probability of selecting an item and its un-
derlying rating. The corresponding optimization-based
estimator of the underlying rating effectively uses the
two available pieces of information about each item: the
empirical frequencies of selection and the empirical rat-
ing averages. The experiments performed on simulated
data showed that in the presence of a selection bias the
proposed estimator provides more reliable estimate of
the underlying rating of highly-rated items. Finally,
the approach was used for collaborative filtering on the
MovieLens data showing a large improvement in terms
of relevance of the recommendation.
We believe that the proposed approach can be incor-

porated in other types of recommendation algorithms.
A first idea would consist in using the selection bias
regularization term, or a variant of it, in matrix com-
pletion methods based on a variational criterion [15],
including the cases where a different noise model is con-
sidered [13, 14]. Another idea would be to incorporate
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the selection bias in the prior specification for methods
based on Bayesian modeling [7, 16].
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