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Minimum fuel round trip from a L2 Earth-Moon
Halo orbit to Asteroid 2006 RH120

M. Chyba and T. Haberkorn and R. Jedicke

Abstract The goal of this paper is to design a spacecraft round trip transfer from
a parking orbit to Asteroid 2006 RH120 , during its capture time by Earth’s gravity,
while maximizing the final mass or equivalently minimizing the delta-v. The parking
orbit is chosen as a Halo orbit around the Earth-Moon L2 libration point. The round-
trip transfer is composed of three portions: a rendezvous transfer departing from the
parking orbit to reach 2006 RH120, a lock-in portion with the spacecraft following
the asteroid orbit, and finally a return transfer to L2. An indirect method based on
the maximum principle is used for our numerical calculations. To partially address
the issue of local minima, we restrict the control strategy to reflect an actuation
corresponding to up to three constant thrust arcs during each portion of the transfer.
The model considered here is the circular restricted four-body problem (CR4BP)
with the Sun considered as a perturbation of the Earth-Moon circular restricted three
body problem. A shooting method is applied to solve numerically this problem, and
the rendezvous point to and departure point from 2006 RH120 are optimized using a
time discretization of the trajectory of 2006 RH120.

Key words: Asteroid 2006 RH120, Sun perturbed Earth-Moon Bicircular Restricted
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1 Introduction

In [1], the authors analyze statistically a new population of near Earth asteroids,
namely the Temporarily Captured Orbiters (TCOs). They are classified by the fol-
lowing simultaneous conditions:

1. the geocentric Keplerian energy Eplanet is negative;
2. the geocentric distance is less than three Earth’s Hill radii (3RH,⊕ ∼ 0.03 AU);
3. the TCO makes at least one full revolution around the Earth in the Sun-Earth

rotating frame.

In some of the literature they are also referred to as minimoons but we will use the
terminology TCO here. The authors generated, pruned and integrated a very large
random sample of ”test-particles” from the Near Earth Object (NEO) population
to calculate, among other statistics, the steady-state orbit distribution of the TCO
population. Of the 10 million integrated test-particles, it was found that over 16,000
became TCOs. A consequence is that statistically, at any moment there is a one
meter diameter TCO orbiting the Earth. The advantages presented by the TCOs for
space missions have been discussed in several papers [1, 2, 3, 4] and we will not
repeat the arguments here, but clearly it is what motivates our work. In particular,
their vicinity to the Earth-Moon system is very attractive and their energy typically
will help minimize the amount of thrust required by the spacecraft to reach them.

The orbits of the TCOs presented in [1] exhibit a wide range of behaviors, with
capture duration going from a few weeks to a few months. In this paper, we focus
on the only known TCO, namely 2006 RH120. It is a few meters diameter wide
asteroid and was discovered by the Catalina Sky Survey on September 2006. Its orbit
from June 1st 2006 to July 31st 2007 is represented on Figures 1 (in E-M rotating
frame) and 2 (in inertial frame), generated using the Jet Propulsion Laboratory’s
HORIZONS database which gives ephemerides for solar-system bodies. The period
June 2006 to July 2007 was chosen to include the portion of the orbit during which
the asteroid is considered as captured by the Earth’s gravitation. We can observe
that 2006 RH120 comes as close as 0.72 Earth-Moon distance from the Earth-Moon
barycenter. This paper focuses on the design of a round trip minimum fuel transfer
to 2006 RH120.

We first assume the spacecraft hibernating on a periodic orbit awaiting detection
of a TCO. Motivated by the successful Artemis mission and prior numerical simula-
tions on the rendezvous transfer [5], we chose the hibernating orbit to be a Halo orbit
around the Earth-Moon L2 libration point with a z-excursion of 5000 km. This orbit
is similar to the ones successfully used for the Artemis mission [6, 7]. The highest
point in z-coordinate of this Halo orbit is qHaloL2 ≈ (1.119,0,0.013,0,0.180,0) and
its period is tHaloL2 ≈ 3.413 normalized time units or 14.84 days. Figure 3 shows
this Halo orbit in the EM rotating frame.

The round trip is composed of a rendezvous transfer to bring the spacecraft to
2006 RH120, followed by a lock-in phase where the spacecraft travels with the as-
teroid and finally a return transfer to the hibernating orbit. Clearly, this optimization
problem presents a very large set of variables including the departure time, the tar-
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get rendezvous point, the lock-in duration on the asteroid and the return transfer
duration. To simplify our approach we first decompose the round trip into a ren-
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dezvous transfer and a return transfer that we address separately. Once these two
optimization sub-problems are solved we will consider the global mission.

The first transfer is a rendezvous to a point on the 2006 RH120 orbit from a Halo
orbit around the Earth-Moon L2 libration point. The departing time of the spacecraft
from the hibernating orbit depends on the detection time of the TCO, and even
though it is a fixed value for 2006 RH120 since it was officially detected we will
vary this parameter to analyze its impact on the fuel consumption. Additionally to
a discretization of transfer duration, a discretization of the TCO orbit will be used
to optimize the rendezvous point which will results in more than 5000 optimization
problems to be solved.

The second optimization problem is the return transfer from 2006 RH120 to the
L2 libration point of the Earth-Moon system (rather than to the Halo orbit to reduce
the number of calculations, it can be expanded easily). This problem will be solved
with fixed transfer durations and we will study the influence of the departing point
on the 2006 RH120 orbit and of the transfer duration on the fuel consumption. As
for the rendezvous transfer, this produces more than 5000 return transfers to be
calculated.

The global round trip will be analyzed based on the two sub-problems, the ren-
dezvous transfer and the return transfer. We can connect the best transfers together
in order to minimize the fuel consumption with the additional constraint that the
return trip has to start after the forward trip ended. This will provide us informa-
tion about the lock-in phase as well and its optimal duration for mission planning
purpose.

In order to solve the optimization problems associated with our mission, we use
indirect shooting methods [3, 4, 5, 12]. The main difficulty of these methods is the
initialization of the algorithm and existence of numerous local minima. To partially
reduce the number of local minima, we fix the control structure to be composed of
at most three constant thrust arcs with 2 ballistic arcs in between. The reason to
impose this control structure is twofold. First, preliminary calculations on a set of
random TCOs with a free control structure for a similar control problem in [5] pro-
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vided results mimicking impulse transfers with at most three impulses. In extremely
rare instances adding a fourth switching or more would reduce the cost. Second,
since the parking orbit is not a periodic orbit of the CR4BP we have to impose an
initial impulse to leave the Halo orbit. Indeed, starting the transfer with a ballistic
arc is extremely unlikely to be efficient or even possible since the time duration
of the transfer is fixed. This very strongly suggests a strategy with one impulse to
leave the hibernating orbit, a second one to redirect the spacecraft toward the ren-
dezvous point and a final one to match the position and the velocity of the asteroid
at rendezvous. We consider a chemical propulsion spacecraft with maximum thrust
Tmax = 22 N, specific impulse Isp = 230s, and initial mass m0 = 350 kg.

The novelty of this work is at least threefold. First, the target object is a TCO
and differs from the typically periodic orbits considered in the literature of mini-
mum fuel transfers. Second, we consider synchronized transfers to produce a global
round trip mission and add a practical detection constraint. Notice that the exis-
tence of an efficient round trip transfer also enables the possibility of a multiple
rendezvous scenario with successives TCOs which would maximize the use of the
spacecraft. Third, the calculation of all the possible rendezvous transfers with re-
spect to departure time and rendezvous point and all possible return transfers with
respect to the departure point on the TCO trajectory, makes this study very com-
prehensive rather than focused on a given rendezvous point or departure point from
the asteroid. The trade-off of our work is the restriction to a specific three thrust arc
control strategy.

As a final comment, we would like to emphasize that the techniques presented
here can be applied to any TCOs. Asteroid 2006 RH120 was chosen as a test-bed
TCO for our work to illustrate the algorithm since it is the only discovered one at
this time. As of now exploratory work is being conducted with the synthetic TCOs
calculated in [1], but in [2] the authors predicts that the Large Synoptic Survey
Telescope (LSST) could detect about 1.5 TCOs/lunation, which amount to a dozen
per year. This would provide ample population candidates for a real asteroid space
mission.

The outline of the paper is as follows: Section 2 presents the equations of motion
used as the dynamics of the optimal control problems. Section 3 gives the exact
formulation of the two optimal control problems as well as the necessary conditions
satisfied by the solutions of the problems. This Section also presents the numerical
method used for the calculations. Section 4 provides the numerical results for the
two optimal transfers and discusses the complete round trip problem. Finally we
conclude on possible future works.

2 Equations of motion

During its mission, the spacecraft will stay in some vicinity of the Earth and Moon
gravitational fields which suggests that the Earth-Moon circular restricted three
body problem (CR3BP), see [8], for the equations of motion might provide a good
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approximation. In the CR3BP setting, the spacecraft is assumed to move in the grav-
itational fields of 2 primaries P1 and P2, of respective masses M1 and M2. In addition,
the two primaries are assumed to follow a circular orbit around their barycenter and
the spacecraft is considered to have negligible mass. A normalization to obtain a
dimensionless system is introduced by setting the mass unit to M1 +M2, the unit
of length as the constant distance between the two primaries and the unit of time
so that the period of the primaries around their baryenter is 2π . This leads to the
introduction of µ = M1/(M1 +M2), the only parameter of the model. Table 1 gives
numerical values of some of the parameters of the CR3BP model.

CR3BP parameters Sun Perturbed parameters
µ 0.01215361914 µS 3.289 ·105

1 norm. dist. (LD) 384400 km rS 3.892 ·102

1 norm. time 104.379 h ωS −0.925 rad/norm. time

Table 1 Numerical values for the CR3BP and Sun Perturbed CR3BP.

Finally, we introduce a rotating reference frame, centered at the center of mass
and so that the x-axis is oriented from P1 to P2. The y-axis of the rotating frame is
taken orthogonal to the x-axis in the orbital plane of the 2 primaries and the z-axis
completes the frame. In this reference frame, the potential energy of a spacecraft of
position and velocity q = (x,y,z, ẋ, ẏ, ż) is given by

Ω3(x,y,z) =
x2 + y2

2
+

1−µ

ρ1
+

µ

ρ2
+

µ(1−µ)

2
,

with ρ1 (resp. ρ2) the distance from the spacecraft to the first (resp. second) primary,
that is

ρ1 =
√

(x−µ)2 + y2 + z3, ρ2 =
√
(x−1+µ)2 + y2 + z2.

The uncontrolled motion of the spacecraft is then given by

ẍ−2ẏ =
∂Ω3

∂x
, ÿ+2ẋ =

∂Ω3

∂y
, z̈ =

∂Ω3

∂ z
. (1)

It is well known that there exists 5 equilibrium points to this system, the so called
Lagrange points L1, L2, L3, L4 and L5. The points L1,2,3 are distributed along the x-
axis of the frame while L4 and L5 form an equilateral triangle with the two primaries
in the xy-plane. We will focus on the libration point L2 motivated by the existence
of periodic orbits around this point that can be used as hibernating location for the
spacecraft awaiting detection of a TCO. Notice that we could also choose L1 and L3
but preliminary computation suggested that L2 is a better choice. Halo orbits around
L2 are periodic orbits that are isomorphic to circles, see [8] for the existence of and
how to compute them.

Even though the TCO’s orbit is in a vicinity of the Earth-Moon system during its
capture it can be as far as 5 normalized distance from the CR3BP origin and prelim-
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inary calculations showed that efficient transfers might require for the spacecraft to
go to an even further distance from the CR3BP origin to maximize the thrust impact
on the spacecraft’s motion. For this reason, to make our model more accurate, we use
an extension of CR3BP as in [9]. We consider a Sun perturbed Earth-Moon CR3BP
in which the Sun is assumed to follow a circular orbit around the Earth-Moon center
of mass without modifying their circular orbits. In this case the potential energy of
the spacecraft is Ω4 = Ω3 +ΩS with

ΩS(x,y,z,θ) =
µS

rS
− µS

ρ2
S
(xcosθ + ysinθ), (2)

where θ is the time dependent angular position of the Sun in the rotating frame, rS is
the constant distance from the Sun to the center of the reference frame, ρS is the dis-
tance from the spacecraft to the Sun (ρS =

√
(x− rS cosθ)2 +(y− rS sinθ)2 + z2)

and µS is the Sun’s normalized mass (µS =MSun/(M1+M2)). As the Sun is assumed
to follow a circular orbit in the rotating frame, its angular position is θ(t) = θ0+tωS
with ωS the angular velocity of the circular orbit and θ0 the angular position of the
Sun at time 0. The equations of motion take the same form as in (1) but with the
perturbed potential Ω4 replacing Ω3. The values of the new parameters are given in
Table 1.

Since the spacecraft is equipped with thrusters, we assume they can produce a
thrust of at most Tmax Newton in any direction of R3. We introduce u= (u1,u2,u3)∈
B̄(0,1)⊂R3 the thrust direction, and m(·) the mass of the spacecraft, the controlled
equations of motion is an affine control system

q̇(t) = F0(q(t))+
T̃max

m(t)

3

∑
i=1

Fiui(t) (3)

where the drift is given by:

F0(q) =



ẋ
ẏ
ż

2ẏ+ x− (1−µ)(x+µ)

ρ3
1

− µ(x−1+µ)

ρ3
2
− (x−rS cosθ)µS

ρ3
S

− µS cosθ

r2
S

−2ẋ+ y− (1−µ)y
ρ3

1
− µy

ρ3
2
− (y−rS sinθ)µS

ρ3
S

− µS sinθ

r2
S

− (1−µ)z
ρ3

1
− µz

ρ3
2
− zµS

ρ3
S


, (4)

and the vector field F1 (resp. F2 and F3) is the vector of the canonical base e4 (resp.
e5 and e6) of R6. Here T̃max is the maximum thrust expressed in normalized units.
To complete the model, the mass decreases proportionally to the delivered thrust

ṁ(t) =− T̃max

Ispg0
‖u(t)‖, (5)
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where Isp, the specific impulse, and g0, the gravitational acceleration at Earth’s sea
level, are parameters dependent on the considered thruster. For our numerical tests,
we use

Tmax = 22 N, Isp = 230 s, g0 = 9.80665 m/s2, m0 = 350 kg.

Note however that with our fixed control structure, it is actually quite easy to change
those parameters using a continuation to consider for instance a solar electric propul-
sion with a smaller Tmax but a higher Isp. Indeed, the main obstacle to a continuation
that is based solely on the thruster parameters would be the possible change in the
control structure since there is no smooth continuation path between a minimum
fuel transfer with n switchings and another with n±1 switchings.

3 Problem statement

The aim of this paper is to design minimum fuel transfer to 2006 RH120 from and
back to an hibernating location of the spacecraft including a rendezvous period dur-
ing which the spacecraft travels with the TCO. Since we want this round trip to take
into account various synchronization constraints, it becomes complex when written
as a single optimal control problem. To avoid this issue and obtain more general
results on each portion of the global transfer, we decide first to decouple the ren-
dezvous and return transfers. With our choice to solve these two problems for var-
ious departure times, rendezvous points, return departure times and return transfer
durations, it then becomes straightforward to pair the rendezvous and return transfer
using a lock-in phase between the spacecraft and the asteroid into a complete round
transfer.

In this section, we introduce the rendezvous and return transfers as optimal con-
trol problems. We consider a synchronized rendezvous from a parking orbit to
2006 RH120, whose orbit is shown in Figures 1 and 2. The second problem is the
return transfer from 2006 RH120 to the Earth-Moon L2 libration point. We also pro-
vide the necessary conditions for a control strategy and its associated trajectory to
be optimal.

3.1 Rendezvous transfer

The objective of the first portion of the spacecraft round trip transfer is to rendezvous
with 2006 RH120. We introduce tc to represent the capture time of the asteroid, cor-
responding to June 1st 2006, and fix it as the origin of our mission time frame: tc = 0.
We make some assumptions for our calculations.

Assumption 3.1 At the capture time tc of asteroid 2006 RH120 the spacecraft is
hibernating on a CR3BP-periodic Halo orbit around the Earth-Moon L2 libration
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point, with a z-excursion of 5000 km. We fix the position and velocity of the space-
craft at tc to be qHaloL2 ≈ (1.119,0,0.013,0,0.180,0) which corresponds to the z-
highest point of the Halo orbit. This is an arbitrary choice and can be altered in
future work.

We denote by tstart the departing time of the spacecraft from the hibernating orbit.
The position and velocity qstart of the spacecraft at tstart are determined as the re-
sult of the CR3BP uncontrolled dynamic, see eqs. (1), integrating from qHaloL2 at
tc = 0 to tstart to guarantee the spacecraft departs from its correct location on the
L2-Halo periodic orbit. Our algorithm treats tstart as an optimization variable of the
rendezvous problem and will discretize the departure time of the spacecraft to an-
alyze its impact on the final mass. The detection time tRH

d is a practical mission
constraint and in section 4 we discuss how our results provide information regard-
ing ideal windows of detection for 2006 RH120 corresponding to the best transfers.
2006 RH120 was actually discovered on September 14th, 2006 but to gain insights
on future studies with other TCOs we consider it as a possible parameter of the
problem associated to the starting time of the mission.

The rendezvous point between the spacecraft and the asteroid is a position and
velocity qrdv

f on the 2006 RH120 orbit corresponding to a time tRH
rdv > tstart. Our algo-

rithm treats the rendezvous point as an optimization variable as well and includes
a discretization of the 2006 RH120 orbit to analyze the impact of the rendezvous
point on the fuel consumption. We also add as a constraint that tRH

rdv ≤ July 31st 2007
which is equivalent to say that the rendezvous must take place before the asteroid
leaves the Earth gravitational field.

To reduce the complexity of the optimization problem we fix the structure of the
thrust for the candidates trajectories to optimality. Our choice is motivated by the
desire to mimic an impulse strategy with at most three boosts. One to depart from
the Halo orbit, one to redirect the spacecraft to the rendezvous point on 2006 RH120
orbit and one to match the position and velocity of the spacecraft and asteroid at the
end. Prior numerical calculations have shown that such strategy provides good fuel
efficient transfers. This structure will be assume for the return portion of the round
trip transfer as well.

Assumption 3.2 For our transfers, we restrict the thrust strategy u(·) : [tstart, tRH
rdv ]→

B̄(0,1)⊂ R3, i.e. the control, to have a piecewise constant norm with at most three
switchings:

‖u(t)‖=
{

1 if t ∈ [tstart, t1]∪ [t2, t3]∪ [t4, tRH
rdv ]

0 if t ∈ (t1, t2)∪ (t3, t4) , (6)

where t1, t2, t3, t4 are called the switching times and satisfy tstart < t1 < t2 ≤ t3 <
t4 < tRH

rdv . We denote by U the set of measurable functions u : [tstart, tRH
rdv ]→ B3(0,1)

satisfying (6) for some switching times (tstart, t1, t2, t3, t4, tRH
rdv ).

In other words, we impose a control strategy with at most three thrust arcs and two
ballistic arcs.

We denote by ξ = (q,m) the state and by f (t,ξ ,u) the controlled Sun perturbed
CR3BP dynamics (3) including the mass evolution (5). The optimal control problem
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is now written as follows:

(OCP)rdv
tstart,tRH

rdv



mint1,t2,t3,t4,u(·)
∫ tRH

rdv
tstart ‖u(t)‖dt

s.t. ξ̇ (t) = f (t,ξ (t),u(t)), a.e. t ∈ [tstart, tRH
rdv ]

ξ (tstart) = (qstart,m0)
q(tRH

rdv ) = qRH
rdv

tstart < t1 < t2 ≤ t3 < t4 < tRH
rdv

u(.) ∈U

(7)

To analyze the impact of our variables on the fuel consumption a direct optimiza-
tion with respect to (tstart, tRH

rdv ) in addition to the other parameters (t1, t2, t3, t4,u(·))
would produce a large number of local extrema since our approach is a variational
one. To address this issue, we discretize the set of departure and duration time of
the rendezvous transfer (tstart, tRH

rdv ) and solve (OCP)rdv
tstart,tRH

rdv
for the finite number of

discretized combinations. This produces an approximation of the optimal transfer
with respect to (tstart, tRH

rdv ) and (t1, t2, t3, t4,u(·)) that becomes more accurate as the
discretization on (tstart, tRH

rdv ) is refined. We use a 15 days discretization of tstart, from
June 1st 2006 to 360 days later and a one day discretization on tRH

rdv from June 1st

2006 to July 31st 2007, with the additional constraint that tRH
rdv > tstart. Note that by

fixing the departure and duration time we fix the rendezvous point qRH
rdv . Finally, as it

seems unlikely that a very short transfer would produce a reasonable fuel consump-
tion, we add a constraint for the transfer duration tRH

rdv −tstart to be greater than 7 days.
Our choice of discretization leads to 5975 different (OCP)rdv

tstart,tRH
rdv

to be solved.

To summarize our optimization algorithm, here is an example of how we would
chose the best rendezvous transfer based on a given detection time tRH

d , say Septem-
ber 14th 2006. Notice that after the discovery of the TCO, the calculation of its orbit
to obtain a high enough accuracy to permit a rendezvous is not immediate and re-
quire some period of time. In other words, practically we have a constraint that is
expressed as tstart > tRH

d + tcalc where tcalc is the time to run the TCO’s orbit calcula-
tion. However, preliminary orbits obtained rapidly after detection are interesting to
produce preliminary mission scenarios and therefore should not be neglected. For
this reason, our algorithm allows to merge the detection time and the departure of
the spacecraft from the hibernating orbit.

Step 1: Solve (OCP)rdv
tstart,tRH

rdv
for all tstart and tRH

rdv satisfying:

(i) tstart ∈ Jtc, tc +360 days K by step of 15 days
(ii) tRH

rdv ∈ Jtstart+ 7 days, July 31st 2007 K by step of one day.

Step 2: Select the (OCP)rdv
tstart,tRH

rdv
with the best final mass among the ones with

tstart ≥ September 14th 2006.

The first step is done without any consideration for the detection time and therefore
is only performed once. Step 2 is an instantaneous step as it only needs to do a direct
comparison of the results of Step 1. Moreover, note that once Step 2 is performed,
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it is always possible to locally refine the discretization of tstart and tRH
rdv around the

selected values, in order to improve the final mass.

3.2 Return transfer

After the rendezvous transfer, the spacecraft will drift with the asteroid in a lock-in
configuration. The optimal duration of this drift will be determined as we combine
the rendezvous transfer with the return one. In this section we focus on the return
transfer, it is the portion of the transfer that see the spacecraft departing from the
2006 RH120 orbit to return to a neighborhood of the Earth-Moon system. For sim-
plicity, we chose to aim directly at the Earth-Moon L2 libration point rather than the
Halo orbit. Returning to the Halo orbit will involve a very significant higher num-
ber of calculations and the difference in fuel consumption would be minimal but
it should be a topic for further study. The position and velocity of the L2 point are
given by qL2 ≈ (1.15569383,0,0,0,0,0).

We denote by qRH
start the departing point of the return transfer on the 2006 RH120

orbit. It is associated to a departure time that we introduce as tRH
start. Clearly, the

spacecraft can depart the asteroid orbit only after its rendezvous which implies that
qRH

start > qRH
rdv . Here again we assume the control u(.) to be admissible if it consists of

three thrust arcs and two ballistic ones, i.e. u(.) ∈ U . The final time of the return
transfer is denoted by t f and satisfies t f > tRH

start. The optimal control for the return
transfer is now:

(OCP)return
tRH
start,t f



mint1,t2,t3,t4,u(·)
∫ t f

tRH
start
‖u(t)‖dt

s.t. ξ̇ (t) = f (t,ξ (t),u(t)), a.e. t ∈ [tRH
start, t f ]

ξ (tRH
start) = (qRH

start,m
RH
0 )

q(t f ) = qL2
tstart < t1 < t2 ≤ t3 < t4 < t f
u(.) ∈U

(8)

Remark 3.1 The initial mass mRH
0 is obtained from the final mass mrdv

f of the ren-
dezvous transfer portion. Depending on the specifics of the mission when the space-
craft is locked-in with the asteroid, we have that mRH

0 is equal to, less than (if the
mission leaves some equipment or consumes some fuel) or greater than (if the mis-
sion brings back samples for example) mrdv

f . We don’t expect mRH
0 to play a large

role in the fuel consumption, therefore for simplicity we chose to set it to 300 kg, that
is 50 kg less than the mass m0 of the spacecraft at the beginning of the rendezvous
transfer.

As for the rendezvous transfer, we discretize the optimization variables to study their
impact on the fuel consumption. We also use a discretization of (tRH

start, t f − tRH
start) and

solve (OCP)return
tRH
start,t f

for all the pairs of this discretization. The discretization on tRH
start is

the same as on tRH
rdv , so a step of one day from June 1st 2006 to July 31st 2007, while
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the discretization on the transfer duration t f − tRH
start is with a step of 30 days from 30

to 360 days. This leads to 5112 different (OCP)return
tRH
start,t f

. At the end, when analyzing

the complete round transfer there will be a constraint on the relation between the
rendezvous time and the departing time for the return mission but to gain insight on
the problem we proposed to decouple them completely at first.

Figure 4 gives a schematic explanation of the whole round trip.

RH120 capture

Halo L2

Drift on RH120 detection Drift on

Halo L2 Craft on Halo L2

Rdv transfer start
time tstart

Craft at qHaloL2

time tc
Craft on Halo L2

time tRH
d

C
ra

ft

Rdv with RH120
time tRH

rdv

C
o
n
tr
o
ll
e
d

Craft at qRH
rdv

RH120

Return transfer start
Craft with

time tRHstart
Craft at qRH

start

Controlled

Craft

Return transfer end

time tf
Craft at qL2

ROUND T RIP

Fig. 4 Schematic explanation of the chronology of the round trip transfer.

3.3 Necessary conditions for optimality

The maximum principle, see [11], provides first order necessary conditions for a
control and associated trajectory to be optimal. In this section we apply the maxi-
mum principle to our optimization problems.

Let us first focus on the rendezvous transfer. We denote by ξ (t) = (q(t),m(t)) ∈
R6×R+ the state of (OCP)rdv

tstart,tRH
rdv

, with q(t) = (r(t),v(t)) the position and velocity

of the vehicle and m(t) its mass, at time t. For (OCP)rdv
tstart,tRH

rdv
, the maximum prin-

ciple introduces an adjoint state (p0, pξ (·)) defined on [tstart, tRH
rdv ] and the so called

Hamiltonian H defined by

H(t,ξ (t), p0, pξ (t),u(t)) = p0‖u(t)‖+
〈

pξ (t), ξ̇ (t)
〉
, for a.e. t ∈ [tstart, tRH

rdv ], (9)

where 〈,〉 is the standard inner product. One of the condition of the maximum prin-
ciple is that the optimal control maximizes the Hamiltonian. This maximization
gives directly that the optimal control must be a multiple of the vector pv(·) which
translates into the following condition:

u(t) = ‖u(t)‖ pv(t)
‖pv(t)‖

, for a.e. t.
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Without any constraint on the structure of the control, the maximization of the
Hamiltonian leads to the definition of the switching function ψ

ψ(t) = p0 +Tmax

(‖pv(t)‖
m(t)

− 1
Ispg0

pm(t)
)
, (10)

and the sign of ψ(t) would give either ‖u(t)‖ = 1 if ψ(t) > 0 or ‖u(t)‖ = 0 is
ψ(t) < 0. However, since in (OCP)rdv

tstart,tRH
rdv

the control structure is constrained to

have at most three maximum thrust arcs, a rewriting of the optimal control problem
following a similar approach than in [13], implies that the switching function can-
cels at the constrained switching times but does not prescribe ‖u(t)‖ anymore. The
following theorem gives all the necessary conditions obtained from the maximum
principle applied to (OCP)rdv

tstart,tRH
rdv

.

Theorem 3.1 If (q(·),m(·),u(·)) : [tstart, tRH
rdv ]→ R7×B3(0,1) and (t1, t2, t3 , t4) ∈

R4
+ is an optimal solution of (OCP)rdv

tstart,tRH
rdv

, then there exists an absolutely con-

tinuous adjoint state (p0, pξ (·)) = (p0, pr(·), pv(·), pm(·)) ∈ R− ×R7 defined on
[tstart, tRH

rdv ] and such that:

(a) (p0, pξ (·)) 6= 0, ∀t ∈ [tstart, tRH
rdv ], and p0 ≤ 0 is constant.

(b) The state and adjoint state satisfy the Hamiltonian dynamics:

ξ̇ (t) = ∂H
∂ pξ

(t,ξ (t), p0, pξ (t),u(t)), for a.e. t ∈ [tstart, tRH
rdv ]

ṗξ (t) = − ∂H
∂ξ

(t,ξ (t), p0, pξ (t),u(t)), for a.e. t ∈ [tstart, tRH
rdv ]

(11)

(c)

u(t) =
pv(t)
‖pv(t)‖

, ∀t ∈ [tstart, t1]∪ [t2, t3]∪ [t4, tRH
rdv ] (12)

(d) ψ(t1) = ψ(t2) = ψ(t3) = ψ(t4) = 0
(e) pm(tRH

rdv ) = 0

Condition (e) is the final transversality condition and comes from the fact that
the final mass is free. In case we would also consider a free initial time tstart, we
would obtain an initial transversality condition of the form〈

pq(tstart),FCR3BP
0 (q(tstart))

〉
= 0,

where FCR3BP
0 (·) is the uncontrolled dynamics of the vehicle in the CR3BP model

(without the Sun perturbation).

Remark 3.2 Notice that transversality conditions at the rendezvous with asteroid
2006 RH120 cannot be used because we do not have an analytic expression for its
orbit. In case there is an analytic expression for the rendezvous orbit it would imply
that the Hamiltonian must be zero at the rendezvous, as well as pq(tRH

rdv ) should be
orthogonal to q̇RH

rdv .
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Remark 3.3 A state, control and adjoint state (ξ (·),u(·), p0, pξ (·)) satisfying the
conditions of Theorem 3.1 is called and extremal of (OCP)rdv

tstart,tRH
rdv

. We assume here

that the extremals of (OCP)rdv
tstart,tRH

rdv
are normal, that is p0 6= 0.

For the return transfer, the maximum principle applied to (OCP)return
tRH
start,t f

gives the

same necessary conditions as in Theorem 3.1, with tstart and tRH
rdv replaced by tRH

start
and t f .

3.4 Numerical method

For our numerical calculations we assume than the extremals are normal, i.e. p0 6= 0
and we can normalize it to −1. A study of the existence of abnormal extremals is
out of the scope of this paper since it is mainly oriented towards giving an example
of fuel efficient round trips to a TCO, here 2006 RH120.

Both optimal control problems are solved using a shooting method, based on
the necessary conditions. The shooting method consists in rewriting the necessary
conditions of the maximum principle as the zero of a nonlinear function, namely
the shooting function. Using the necessary conditions, in particular the Hamiltonian
dynamics (11) and the maximization of the control (12), (ξ (t), pξ (t)) is completely
defined by its initial value (ξ0, pξ ,0) at times tstart (respectively tstart,rdv for the return
transfer) and by the switching times (t1, t2, t3, t4). Then, fixing ξ0, we denote by S
the shooting function:

S(pξ ,0, t1, t2, t3, t4) =

 q(tRH
rdv )−qrdv

ψ(ti), i = 1,2,3,4
pm(tRH

rdv )
S ∈ R11, (13)

replacing for the transfer return problem (OCP)return
tRH
start,t f

respectively tRH
rdv by t f and qrdv

by qL2 . It follows that if we find (pξ ,0, t1, t2, t3, t4) such that S(pξ ,0, t1, t2, t3, t4) = 0 ∈
R11, then the associated (ξ (·),u(·),−1, pξ (·)) satisfies the necessary conditions of
Theorem 3.1.

In this paper, the numerical results have been obtained by computing the shoot-
ing function using the adaptative step integrator DOP853, see [14]. To find a zero
of S, we used the quasi-Newton solver HYBRD of the Fortran minpack package.
Since S(·) is nonlinear, the Newton method is very sensitive to the initial guess and
seldom converges. To address this initialization sensitivity, we use two initialization
techniques, described below.

The first initialization technique is a direct approach, see [10], consisting in dis-
cretizing the state ξ and control u in order to rewrite the optimal control problem as a
nonlinear parametric optimization problem (NLP). In (NLP) the dynamic has been
discretized using a fixed step fourth order Runge-Kutta scheme. The size of (NLP)
depends on the size of the discretization. This (NLP) is solved using the modeling
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language Ampl, see [15], and the optimization solver IpOpt, see [16]. Once a solu-
tion of (NLP) is obtained, we use the value of the Lagarange multipliers associated
to the discretization of the dynamic at initial time, as initial guess for pξ ,0. The other
unknowns are directly transcribable from (NLP). This approach cannot be used to
solve our optimal control problems because in order to have a sufficiently accurate
solution, each (NLP) should be solved with a very refined time discretization which
would yield very long execution times of a few hours. We thus use this initialization
technique when the second one fails.

The second initialization technique is a continuation from the known solution of
one optimal control problem to another. For instance, let’s say that we know the
solution of a (OCP)rdv

tstart,tRH
rdv

, then we can reasonably hope that in some, if not most,

of the cases, this solution is connected to the solution of a nearby (OCP)rdv
tstart,tRH

rdv +δ t
.

To follow the connection between these two problems, we can use elaborate contin-
uation methods, like in [17] or [12]. Here, we chose to use a linear prediction con-
tinuation, which doesn’t require the computation of the sensitivity of the shooting
function but is nevertheless enough for our purpose. A solving with the continuation
method usually takes a few seconds on a standard laptop, which explains why we
prefer this method to the direct one.

Typically, the direct approach is used on one case and the continuation method
enables us to solve tens or hundreds of other close cases. If the continuation method
fails for a case, we then use the direct approach on it to be able to initiate again the
continuation. In order to limit the number of local minima we add direct approach
solvings and continuations from other neighbors to try to improve the solution in
terms of final mass. This local minima trimming is based on two heuristics. The first
one is a selection of locally optimal cases with the assumption that the evolution
of the final mass should be more or less continuous with respect to the rendezvous
point on 2006 RH120 (for the forward trip) or to the departure point on 2006 RH120
(for the return trip). For instance, for the forward trip, if two transfers with a compa-
rable duration and neighbor rendezvous points exhibit a large final mass difference
(say more than 10 kg), we launch a direct approach with the rendezvous point cor-
responding to the lower final mass. The second heuristic is a random selection of
transfers and is used sparsely. This second round of calculations is essential and
allowed us to greatly improve the solutions computed on the first solving round.
Considering the large number of optimal control problems we need to solve and the
trimming of local minima, this process takes several days of computation.

4 Numerical results

In this section, we provide results for the rendezvous and return transfers in the form
of the best transfer and the evolution of the criterion with respect to the discretization
of the initial and final times. We then provide a discussion on how these results can
be combined to design a global round trip mission.
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Notice that since our numerical approach is a variational one, and despite the
restriction of the control structure, it is not possible to guarantee that the proposed
trajectories are indeed optimal. Even the use of a (second order) sufficient condition,
see [18], would only gives a proof of local optimality. It is thus likely that among
the 5945 rendezvous trips and the 5112 return trips, there are some local minima
that can still be improved by finding other better local or ideally global minima.

4.1 Rendezvous transfer

As mentioned in the prior section, we use a discretization on the starting time and
the duration of the mission. tstart is discretized from 0 to 360 days by step of 15 days.
For tRH

rdv , we use a 1 day discretization of 2006 RH120 trajectory from June 1st 2006
to July 31st 2007 while satisfying the constraint that tRH

rdv ≥ tstart +7 days. This gives
a total of 5975 combinations and thus solving for (tstart, tRH

rdv ). We leave from a Halo
Orbit around L2 with a z-excursion of 5000 km and a position qHaloL2 on June 1st

2006 .
The best rendezvous transfer using the restricted thrust structure we imposed is

represented on Figures 5 and 6. Table 2 summarizes the main features of this best
rendezvous transfer.
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Fig. 5 Best rendezvous transfer to 2006 RH120 in a geocentric inertial frame.

This transfer is obtained from a departure time for the spacecraft from the hi-
bernating orbit of 15 days, i.e. tstart = 15 days, which implies that detection of
the asteroid should occur even before capture time to allow for a precise calcula-
tion of 2006 RH120 orbit before the mission. The rendezvous between the space-
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Fig. 6 Best rendezvous transfer to 2006 RH120 CR3BP rotating frame.

Best rendezvous to 2006 RH120
Parameter Symbol Value
Departure date tstart 06/16/2006
Arrival date tRH

rdv 10/27/2006
Final position (−1.958,0.401,−3.992)
Final velocity (0.224,1.728,−0.029)
Final Mass m f 280.855 kg
Delta-V ∆V 496.43 m/s
Max dist. to Earth 1714 Mm (4.46 LD)
Min dist. to Earth 366080 km (0.95 LD)

Table 2 Table summarizing the best rendezvous transfer to 2006 RH120.

craft and 2006 RH120 occurs on October 27th 2006 which is 148 days after cap-
ture, i.e. tRH

rdv = 148 days. The duration of the rendezvous transfers is therefore
133 days. The point on 2006 RH120 at which the rendezvous occurs is given by
qrdv

f ≈ (−1.958,0.401,−3.992,0.224,1.728,−0.029). As it can be observed, the
rendezvous point corresponding to the best transfer is far from the Earth and Moon
orbital plane and is not the closest one to the departure point as it is 5.08 LD from
the L2 libration point. A possible explanation is that as the spacecraft moves away
from the influence of the two primaries, the thrusters have a larger impact on the
motion of the vehicle. It is also important to note that this rendezvous point is not
simply the closest one in terms of distance or energy. Figure 7 illustrates this fact ,
it represents the best final mass obtained for each rendezvous point on 2006 RH120
and the distance from these rendezvous point to the L2 libration point. It can be
observed that there is first a step increase in the final mass for the rendezvous with
2006 RH120 that occur near capture time, the reason is that these transfers corre-
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spond by design to rendezvous transfers with a short duration. The best transfers
are obtained between 120 and 170 days, then the final mass is rather constant with
some fluctuations most likely due to the existence of local minima. This observation
is good in terms of the design of a real mission, it provides us with a lot of flexibility
over the departure times for the spacecraft from its hibernating orbit.
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Best mf (kg) for given rendezvous point/time

Scaled distance from RH120 to L2

Absolute best mf

Fig. 7 Best final mass among all tstart with respect to the rendezvous time. Also pictured is the
distance from the rendezvous point to L2, this distance has been scaled.

The final mass of the spaceraft for the best overall rendezvous is m f ≈ 280.855 kg
which corresponds to a ∆V ≈ 496.43m/s, where we compute ∆V such that m f =

m0e−
∆V

Ispg0 . Notice that in [5] we have obtained a better transfer corresponding to a
∆V of 203.6m/s, however for this mission the rendezvous would take place on June
26th 2006 and the duration would be about 415 days which requires to detect and
launch the mission about 14 months before June 1st 2006 creating an unrrealistic
scenario. Note that the spacecraft performs only one revolution around the Earth in
the inertial reference frame.

Finally, let us comment on the thrust strategy for this best rendezvous transfer.
The norm of the control is shown on Figure 8. The three thrust arcs last respectively
16.44 min, 1.62 hours and 4.23 min and the two ballistic arcs last 68.70 and 64.25
days. The second thrust takes place approximatively in the middle of the transfer,
but notice that it is typically not the case (see the best return transfer below). It can
also be observed that the position and velocity of the spacecraft at the beginning of
the second thrust arc is q(t2) = (3.286,−0.141,−0.012,−0.476, −3.185,0.012),
which is at 3.29 lunar distance from the EM barycenter, that is 1.26 million km.

Figure 9 gives the evolution of the final mass with respect to tRH
rdv and tstart. To

read the graph, notice that the scale for the tstart need to be multiplied by 15 (the
discretization rate) to justify the void region for which no rendezvous transfer are
associated. It also reflects the fact that tRH

rdv ≥ tstart +7days.
Figure 10 is a selection of the evolution of the final mass and ∆V with respect

to the rendezvous time tRH
rdv for various starting dates tstart. So it represent a sectional

view of 3D Figure 9.
From Figures 9 and 10, we can see that there is a first gradual increase of the

final mass with respect to the transfer duration tRH
rdv − tstart. However, this increased
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efficiency of the transfer stops after 30 to 120 days, depending on the starting date. It
suggests that after a period of about 2 months, the final mass is typically less sensi-
tive to an increase in transfer duration and depends more heavily on the rendezvous
point.



20 M. Chyba and T. Haberkorn and R. Jedicke

Figure 11 provides the number of rendezvous transfers corresponding to a given
final mass range, as a histogram. We can observe that the majority of transfers pro-
vide a final mass above 200kg, this is very good to design an actual mission since it
implies that there is flexibility with respect to the departure time and duration of the
transfer to produce an efficient transfer.
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Fig. 11 Number of rendezvous transfers per final mass range. Most rendezvous transfers provide
a final mass above 200kg with a pick at around 230kg.

Based on our discretization, we considered 25 departure times for the spacecraft
for its hibernating location. Table 3 gives a quick overview of the best rendezvous
transfers for each of those departure time tstart. Officially, 2006 RH120 has been de-
tected on September 14th 2006 which is 105 days after its capture by Earth grav-
ity, that is tRH

d = 105. Using Table 3, we see that this gives that the best departure
time tstart satisfying tstart ≥ tRH

d is tstart = 180 days after June 1st 2006. Notice that
under this scenario, the 75 days between the detection time and the departure of
the spacecraft for the rendezvous mission ensure that the celestial mechanic com-
putations required to predict 2006 RH120’s orbit with enough precision can be com-
pleted. This rendezvous transfer provides a final mass of 267.037 kg, or equivalently
∆V = 610.224 m/s, and a rendezvous date 312 days after capture, that is April 9th
2007. In particular, we will see that this rendezvous transfer could be combined with
the best return transfer given in the following section. If in case of practical consid-
eration the departure of the spacecraft should be delayed, it can be observed from
Table 3 that the mass loss can be minimized since for instance for tstart = 285 days
we have that the final mass is 266.525 kg which is not even a one kilo difference
from a departure 180 days after capture. However, this late rendezvous time might
seriously compromise the efficiency of the return transfer. Clearly, an early detec-
tion of the TCO or timely departure of the spacecraft once the asteroid orbit has
been determined is much preferable for a fuel efficient round trip transfer.
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tstart (d.) tRH
rdv (d.) m f (kg.) tstart (d.) tRH

rdv (d.) m f (kg.)
0 141 265.831 195 392 255.172
15 148 280.855 210 363 262.025
30 111 234.909 225 425 263.304
45 138 251.379 240 359 240.076
60 146 231.103 255 425 260.92
75 414 250.772 270 416 256.618
90 273 250.608 285 425 266.525
105 414 250.02 300 425 241.721
120 290 252.547 315 425 246.111
135 390 245.707 330 407 254.773
150 380 258.222 345 425 251.158
165 314 244.521 360 425 245.369
180 312 267.037
Avg - 253.091 σ - 11.136

Table 3 Best rendezvous dates and final mass for the 25 different tstart. Notice that the average
final mass is 253.091±11.136.

4.2 Return transfer from 2006 RH120 to L2

To get a global idea of the impact of the choice of departure time from asteroid
2006 RH120 and duration of the transfer we study at first the return transfer as com-
pletely decoupled from the rendezvous transfer. In an unrealistic way we will as-
sume the spacecraft can depart 2006 RH120 as soon as June 1st 2006 and we use a 1
day discretization of the 2006 RH120 orbit. However, to keep the number of calcula-
tions under control we use a 30 days discretization for the transfer duration t f −tRH

start,
from 30 to 360 days. This gives a total of 5112 combinations for (tRH

start, t f − tRH
start).

Since the mass at the departure from 2006 RH120 is unknown before hand, in order
to be able compare all the return trips we choose arbitrarily to set the initial mass of
the return trip to 300 kg, which is 50 kg less than the initial mass of the rendezvous
transfer.

The best return transfer to L2 under our thrust restrictions is shown on Figure 12
and Table 4 summarizes the main features of the best return transfer.

Best return trip from 2006 RH120
Parameter Symbol Value
Departure date tRH

start 06/01/2007
Arrival date t f 01/27/2008
Initial position (0.238,−0.598,−2.228)
Initial velocity (−0.947,−0.477,0.496)
Final Mass m f 250.712 kg
Delta-V ∆V 404.815 m/s
Max dist. to Earth 2031 Mm (5.28 LD)
Min dist. to Earth 265520 km (0.69 LD)

Table 4 Table summarizing the best return transfer from 2006 RH120 to L2.
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Fig. 12 Best return transfer from 2006 RH120 to Earth-Moon L2 in a geocentric inertial frame.

The starting date of the best return transfer is 365 days after June 1st 2006, which
corresponds to June 1st 2007, and the transfer duration is 240 days. Notice that this
departure date occurs shortly before 2006 RH120 escape Earth gravity and after the
best rendezvous transfer found previously which makes it an ideal candidate for a
complete round trip. The final mass for this transfer is m f ≈ 250.712 kg, which is
equivalent to ∆V ≈ 404.815 m/s which is comparable (slightly better) to the ∆V of
the best rendezvous transfer.

Figure 13 gives the norm of the control associated to the best return transfer.
This thrust strategy has three thrust arcs lasting respectively 2.15 min, 1.32 hours
and 3.06 min. The two ballistic arcs durations are respectively 213.788 and 26.15
days, and contrary to the best rendezvous transfer the second thrust arc does not
occur in the middle of the transfer but rather near the end. However, as it was the
case for the rendezvous transfer the second thrust arc is the longest one.
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Fig. 13 Norm of control for the best return transfer from 2006 RH120.

Figure 14 gives the evolution of the final mass with respect to tRH
rdv for various

choices of tRH
start. We can see that for the return trip, there is not a large difference

of final mass with respect to neither the different possible starting dates nor the
different transfer times.
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Fig. 14 Evolution of final mass for (OCP)return
tRH
start,t f

with respect to the starting date and transfer time.

Figure 15 is a selection of the evolution of the final mass and ∆V with respect
to the departure date tRH

start for various transfer durations t f − tRH
start. So it represent a

sectional view of 3D Figure 14.
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Fig. 15 Evolution of ∆V (left) and final mass (right) for (OCP)return
tRH
start,t f

with respect to the starting

date and various transfer durations t f − tRH
start ∈ {120,240,360} days

From the evolution of the final mass with respect to the transfer duration, it seems
that allowing more time for the transfer does not always gives a more efficient return
transfer. It is however possible the optimal control problem from a fixed duration
one to one with a maximum allowed duration would give better results. Indeed, for
the return transfer, it would make sense to be more lax with respect to the trans-
fer duration than for the synchronized rendezvous transfer. This remark is partially
illustrated by the results from [5] where the transfer duration is free, albeit these
results are for a rendezvous type transfer.

Figure 16 gives the number of rendezvous transfers corresponding to a give final
mass range, as a histogram. Contrary to the rendezvous transfers, it reflects more a
density with standard normal distribution and most of the return transfers give an
average final mass of around 160 kg. This distribution does not provide us with as
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much flexibility regarding which transfer to use as it was the case for the rendezvous
transfers since we then had many more transfers with a final mass close to the best
one.
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Fig. 16 Number of return transfers per final mass range. Notice the similar shape to a density of a
standard normal distribution. The largest pick is at around 170kg.

Table 5 gives a quick overview of the best return trips for each transfer duration
∆ t f = t f − tRH

start. It can be observed that the best transfers take place for durations
between 120 and 240 days, but that augmenting the duration beyond 240 days does
not provide more fuel efficiency. It also seems like that except for the return transfers
lasting less than 150 days, all the others depart from a late date on 2006 RH120.
That is good because we cannot hope that a rendezvous transfer arrives to early on
2006 RH120.

∆ t f (d.) tRH
start (d.) m f (kg.) ∆ t f (d.) tRH

start (d.) m f (kg.)
30 37 211.681 210 271 231.035
60 18 225.091 240 365 250.712
90 149 220.053 270 221 205.216
120 25 232.328 300 271 207.765
150 154 236.009 330 218 201.274
180 236 233.768 360 236 231.093

Table 5 Best starting date for return trip for the 12 different transfert duration ∆ t f = t f − tRH
start.

Mean value of final mass is 223.835 kg and standard deviation is 14.843 kg.
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4.3 Complete round trip mission

Since the aim of this paper is to design a round trip mission to 2006 RH120, we
need to combine a rendezvous transfer with a return transfer in a realistic way. This
implies that we need to take into account some practical constraints such that the
fact that the return transfer has to start after the end of the rendezvous transfer,
that is tRH

rdv < tRH
start. This means that the spacecraft stays with 2006 RH120 for tRH

start−
tR
rdvH days. We prefer to think of the lock-in duration between the spacecraft and

2006 RH120 to be a consequence of our calculation rather than a fixed value by
the user. Our calculations determine what the ideal lock-in duration should be and
the only constraint would be to check that it corresponds to a realistic time for the
science part of the mission.

From our prior calculations, it can be observed that the best rendezvous and re-
turn transfers satisfy the time constraint, therefore we only need to modify the initial
mass of the return transfer to match our desired scenario. We chose to simply impose
that the mass at the end of the rendezvous transfer equals the mass at the departure
of the return transfer, in other word there is no loss or addition of mass during the
lock-in phase. This is an arbitrary choice, and we could for instance also decide that
some equipment was left on the asteroid or some material collected form the aster-
oid that would alter the departure mass in a different way. Based on our choice, the
return transfer must starts with an initial mass of 280.855 kg instead of the 300kg
prescribed previously. This modification is addressed easily through a continuation
on the previous best return transfer. It provides a return transfer that is nearly the
same as the one with the higher mass. Table 6 gives the main features of the re-
turn trip, while Table 2 of the rendezvous section still gives the main features of the
rendezvous transfer. Figure 17 shows the entire round trip transfer in a Geocentric
inertial reference frame.

Best return trip from 2006 RH120 for the round trip mission
Parameter Symbol Value
Stay on 2006 RH120 tRH

start− tRH
rdv 217 days

Departure date tRH
start 06/01/2007

Arrival date t f 01/27/2008
Initial position (0.238,−0.598,−2.228)
Initial velocity (−0.947,−0.477,0.496)
Final Mass m f 234.713 kg
Delta-V ∆V 404.814 m/s
Max dist. to Earth 2031 Mm (5.28 LD)
Min dist. to Earth 265519 km (0.69 LD)

Table 6 Table summarizing the best return transfer from 2006 RH120 to L2, after pairing with the
rendezvous transfer (so m0 = 280.855 kg).

As mentioned in section 4.1, the best round trip transfer requires to detect
2006 RH120 at or almost immediately after capture which is not an ideal scenario
especially given the fact that 2006 RH120 was actual detected 105 days after June
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Fig. 17 Best round trip transfer from 2006 RH120 to Earth-Moon L2 in a geocentric inertial frame

1st 2006. This suggests that additional scenarii should be analyzed. Moreover, the
round trip transfer should also allow for the spacecraft ample time to perform its
mission on the TCO. We denote by δ tmission the minimum time the spacecraft need
to stay on 2006 RH120 to complete the science aspect of the mission. This constraint
can be expressed as tRH

start ≥ tRH
rdv +δ tmission. Table 7 gives a sample of the best round

trip transfers for various tRH
d and δ tmission. Since the best return transfer departs one

year after June 1st 2006 it can be used in almost all scenarii but the last one when
the rendezvous portion ends 395 days after June 1st 2006. For instance if we assume
that the detection occurs only 210 days after June 1st 2006 , and that we need only
30 days for the lock-in phase, the rendezvous transfer can be chosen as taking 102
days to be combined with the best overall return transfer. However, if we impose a
60 days lock-in constraint for the spacecraft and the asteroid we need to chose a dif-
ferent rendezvous transfer reaching 2006 RH120 in 95 days. We can observe that the
longer the lock-in phase the more expensive the round trip transfer becomes. An-
other way to look at our calculations would be to design efficient round trip transfers
and deduce from these data the ideal windows for detection and lock-in phases. This
would provide additional information for the overall design of a mission to TCOs.
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tRH
d δ tmission

rendezvous transfer return transfer round trip
tstart tRH

rdv ∆V (m/s) tRH
start t f − tRH

start ∆V (m/s) Total δV (m/s) Duration
0 30 15 148 496.43 365 240 404.82 901.25 373
30 30 180 312 610.22 365 240 404.82 1.01504 372
30 60 180 305 684.66 365 240 404.82 1089.48 365
210 30 210 312 732.23 365 240 404.82 1137.05 342
210 60 210 305 809.61 365 240 404.82 1214.43 335
240 30 255 319 892.82 365 240 404.82 1297.63 304
240 60 240 305 1010.88 365 240 404.82 1415.70 305
270 30 270 335 1034.27 365 240 404.82 1439.09 305
300 30 330 395 936.80 425 120 704.06 1640.85 185

Table 7 Table summarizing the best round trips with detection and mission duration constraints,
with m0 = 350 kg and mRH

0 = 300 kg. All times are expressed in days.
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