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Abstract 

Numerous decisions have to be made in early design processes. Often times they involve 

many actors, with the difficulty that they are shared across numerous parallel collaborative 

groups, for coordination and meeting scheduling reasons. This paper aims at facilitating 

collaborative decision-making process by grouping actors according to the relationships they 

have due to their assignment to decisions. Clusters of actors are proposed in order to provide 

decision-makers with a temporary and complementary organization designed for making 

efficiently simultaneous collaborative decisions. This approach has been illustrated through 

actual data in new product development project in the automotive industry. 
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1. Introduction 

Importance of early design stages decisions has been underlined for many years [1]–[3]. In 

complex system design, management of collaborative decision-making is characterized by 

many decisions impacting numerous product- and project-relatedparameters. Multi-domain 

nature of these processes needs involvement of a wide range of actors, like project manager, 

system engineer, technical engineers, purchasers, architect engineers, product planners, 

supply chain managers and quality engineers. During early complex system design stage, 

decision owners need to manage decision-making process and establish temporary decision 

teams, identifying relevant experts in the project. In many cases, these teams are not properly 

established; hence, many actors participate in a large number of meetings but fail to be 

efficiently related to the decision-making outcome and impact. This may involve loss of 

efficiency and additional risks in communication and coordination between actors [4], [5]. 

We propose in this paper complementary temporary teams mutualizing the maximum number 

of collaborative decisions to be managed in each cluster. The aim of this approach is thus to 

support the management of NPD projects by providing more consistent and fewer 

collaborative teams, to make the process more adaptive and less risky [6]. It permits to 

enhance communication and coordination in complex system design, underlined as important 

in [7], by increasing within-cluster interaction values while reducing the time load due to 

meetings. With increase of within-cluster value, actors can better follow-up on decision 

impacts and manage design results. Section 2 introduces how data are gathered using matrix-

based approach. Section 3 describes the clustering strategy. Section 4 presents results of an 

analysis based upon one actual complex system design project in automotive industry. 

Discussion about managerial implications is introduced in Section 5. Conclusions and 

perspectives are drawn in Section 6. 
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2. Modeling the relationships between actors due to the decisions they 

contribute to 

2.1 The matrix-based modeling 

The Dependency and Structure Modeling approach has proven to be a practical tool for 

representing and analyzing relations and dependencies among system components. This 

methodology has been created and developed by Steward, Eppinger and Browning [8]–[10]. 

A DSM (Design Structure Matrix) is a square matrix, representing interactions between its 

elements. A DSM is a square matrix, with the rows and columns identically labeled and 

ordered, and where the off-diagonal elements indicate relationships between the elements. 

Depending on the number and location of identified relationships, elements may be [10], [11]: 

● Dependent (e.g. sequential if temporality is a parameter of the relationship), 

● Independent (or parallel), 

● Coupled, 

● Conditionally connected (contingent relationship). 

A DSM can be binary or numerical, with qualitative or quantitative assessment.  

A DMM (Domain Mapping Matrix) is a rectangular matrix, displaying relationships between 

two types of elements of different domains [12], [13]. For instance, the Actor-Decision matrix 

(AD) is built by modeling affiliation relationships between actors and decisions. This data is 

an input of the approach.  

Actor relationships or dependencies are important because they affect the efficiency of team 

communication, thus directly influencing design process outcomes. Hepperle et al. use DSM 

principles to analyze communication dependencies between actors in product development 

[14]. They propose a Communication Grid Method based on the identification of the network 
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structure underlying the communication relationships between these actors. Finally, in this 

paper, one DSM and 4 DMM are defined and used: 

● The Actor-Decision Matrix, called AD, usually known as Responsibility Assignment 

or Affiliation Matrix (RAM), defined as a DMM. 

● The Decision-Group Matrix, called DG. DG is a way of grouping decisions 

introduced in [15], as a first attempt to take into account collaborative decision-

making processes. It is also a DMM. 

● The Actor-Group Matrix, called AG, is based on the previous collaborative decision-

making processes. AG is a DMM obtained by combining AD and DG matrices. 

● The Actor-Actor Matrix, called AA. It represents the relationships between actors, on 

which clustering will be applied. It is an organization-related DSM, which has been 

the object of several works [16]–[18]. AA is a matrix obtained from AD, as introduced 

in Sect. 2.2. 

● The Actor-Cluster Matrix (called AC) is resulting organization using our approach. It 

is the improved version of collaborative decision-making groups AG. AC is a DMM 

obtained by clustering Actor-Actor AA matrix. 
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2.2 Global approach 

The initial organization is made of 13 groups, called Gk. The 70 decisions Dj are affiliated to 

one and only group Gk, forming the DG matrix. The 64 actors Aiare assigned to decisions, 

forming the AD matrix, with the relation ADij=1 iff actor Ai is assigned to decision Dj. As a 

consequence, the AG matrix is built as the product of AD and DG. This means that AGik=0iff 

the actor Ai does not belong to the group Gk. Otherwise, AGik represents the number of 

decisions included in group Gk owned by actor Ai. The AG matrix is obtained as follows using 

Eq. (1) and (2): 

AG = AD * DG          (1) 

∀ 𝑖 ∈  1. . 𝑁𝐴 , 𝑗 ∈  1. . 𝑁𝐺 , 𝐴𝐺𝑖𝑘 =  𝐴𝐷𝑖𝑗 ∗ 𝐷𝐺𝑗𝑘
𝑁𝐷
𝑘=1      (2) 

Where NA=number of actors,  

ND = number of decisions, 

NG = number of groups. 

The existing organization AG serves as a comparison point with proposed clusters AC. AC is 

the result of the clustering of the AA matrix, itself obtained by multiplying the matrix AD by 

its transpose DA=AD
T
, using the Eq. (3): 

AA = AD*DA           (3) 

This product is obtained as follows (Eq. (4)): 

∀ 𝑖, 𝑗 ∈  1. . 𝑁𝐴 , 𝐴𝐴𝑖𝑗 =  𝐴𝐷𝑖𝑘 ∗ 𝐷𝐴𝑘𝑗
𝑁𝐷
𝑘=1       (4)  

This matrix enables direct interactions between actors to be analyzed. For instance, direct 

interactions in the US Senate have been analyzed by Bartolomeiet al[19].  
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Several proposals are obtained for AC, running simultaneously several algorithms with 

several configurations. The final recommendation is made considering the relevance of the 

clusters (within-clusters total value, cluster size, cluster density, number of clusters), in order 

to keep the algorithmic solution applicable to real-life project.  

This generation of several alternatives enables comparisons and sensitivity analysis. Finally, 

the most relevant complementary organizational configuration AC is compared to the existing 

one AG, and implemented if judged better and applicable. Details of the clustering approach 

will be given in Section 3. 

2.3 The automotive project case study 

Vehicle development projects are very long and complex, with the participation of between 

1500 and 2000 project members. Usually, this type of project can take between two to four 

years when concurrent engineering is used as a basic organizational hypothesis. Early design 

stages can be long as 8 to 10 months. The overall early design stage integrates 70 decisions 

organized into 13 collaborative decision-making processes. The data gathering process 

represents a result of several working groups integrating 30 cross-domain project members. 

Some of these processes are: innovation integration process, manufacturing and supply chain 

feasibility and scheduling, design style, economic optimization, and purchasing.  

Collaborative decisions integrate members from different domains. There are in total 64 

different actors participating in the 13 collaborative decision-making processes. Fig. 1 shows 

affiliations of actors to decisions (AD) and of decisions to groups (DG). Some of these actors 

contribute to the process, even if not assigned to collaborative decisions. Fig. 1 permits to 

simultaneously visualize the three matrices used as inputs in our approach, respectively AD, 

DG and AG. Several members, like the project manager (A51), participate in almost all groups 

(their rows in AG being almost filled), whilst some other actors participate to fewer groups 
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like A1 (the sum of non-null cells in AG first row being equal to 1). Maximum number of 

decision-makers in one group is 21 (the sum of non-null cells in AG columns). Defining the 

groups can be difficult to decide and to implement. There are two main parameters that need 

to be discussed: 1) the size of the group, i.e. the number of actors one wants to put in one 

group, and 2) the number of groups, i.e. the total number of groups that one wants to 

coordinate in one project.  Indeed, it is very time-consuming for people, with intertwined 

meetings and decisions and potential issues like meeting sequence.  

 

Fig. 1. The affiliation matrices (AD, DG and AG). 
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The network of direct connections between actors due to their assignment to their respective 

decisions, is shown hereafter in Fig. 2.  

 

Fig. 2. The network of direct relationships between actors (AA)  

Fig. 2 is a graph representation of the matrix AA calculated using Eq. (4). A graph consists of 

nodes and edges, respectively actors and relationships between pairs of actors. The weight on 

the edge between two actors represents the number of common decisions assigned to these 

two actors. The size of the node (and its color) is proportional to the number and the weight of 

its direct edges, the darkest and the biggest node corresponding to the actor whohas the 
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highest value of connected weighted edges. The network is composed of very interrelated 

parts, difficult to cut into disjunctive clusters. This is the object of the following Section to 

define an adequate algorithm to propose clusters tailored to decision-makers requirements and 

constraints. 

3. Clustering approach 

3.1. General terms 

In this section, we note G (V, E) a graph where V is the list of nodes, and E is the list of edges 

in the graph. Lines that connect two nodes and thus define a relationship between them are 

called edges.  We also note partition of the graph P=(C1, ... , Ck). Actors Ai will be assigned to 

clusters Cj, forming the matrix AC. The most common approach to this problem in the 

literature has been to ignore edge direction and apply methods developed for community 

discovery in undirected networks, but they discard potentially useful information contained in 

the edge directions. In this paper, we selected algorithms while extending clustering objective 

function and methodology to directed graph. Measures are extended by considering edge 

directionality as inherent network characteristics, like the directed version of modularity 

(clustering objective function) used by Leicht and Newman[20]. 

3.2 Resolution strategy  

A clustering approach has been developed in a similar context forming clusters of 

heterogeneous elements (project risks). The Risk-Risk Matrix (RR) had been modeled to 

capture risk interactions. Then, a risk clustering approach had been applied in order to 

enhance efficiency in risk management by capturing possible risk propagation paths [21]–

[23].  
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In this case, actors groups were formed indirectly due to the fact that they own risks within 

the same cluster. In our case, actors are directly grouped together because of the decisions 

they are contributing to.  

A cluster may contain similar elements, with a particular element called centroid [24]. On the 

opposite, some works focus on edges that are least central or most “between” clusters, and 

remove them from the original graph in order to build the strongest clusters with the 

remaining edges [25]–[27]. Newman et al. are co-authors of numerous works in the field of 

finding community structures in complex networks [20], [28]–[31]. Specific DSM-related 

clustering techniques have been developed and implemented in industrial applications like 

IGTA (Idicula-Gutierrez-Thebeau Algorithm) for clustering Component-DSM [32]–[34], or 

the DSM-based algorithm of Borjesson and Holtta-Otto [35]. In the field of product 

architecture modularity, Hsuan and Gassmann proposed a mathematical model to analyze, 

then optimize this clustering objective[36]. Moreover, several works focus on clustering 

rectangular matrices [37], [38]. An example of the applications of clustering DSM is the 

clustering of organizational units performing overlapped activities in order to reduce 

complexity of coordination in a product development project [39].  

 

Instead of selecting a single algorithm and optimizing in the space of possibilities, our 

resolution strategy will be based on 3 well-known algorithms, developed in different contexts 

[20], [27], [35]. This provides the benefits of each of these algorithms, which may offer either 

large clusters or dense clusters or balanced clusters, etc.  

An innovation of this work is thus to assembly a solution from pieces of solutions obtained in 

different ways and using different problem configurations. There is no universally optimal 

configuration of clusters, but it depends on the judgment of the decision maker. Clustering 
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aims then at defining the best data set partitioning for given parameters. The solution is 

strongly dependent upon the decision-maker. 

We have tested a wide spectrum of clustering algorithms, and we decided to use the three 

algorithms which are most adapted to our case study. These algorithms can be either 

parameterized or unsupervised, which is useful when no prior knowledge is provided. Such 

parameters can be the number of desired clusters, the maximal size of clusters, and allowance 

for clusters to overlap (to produce non-disjoint clusters). Furthermore, we have created a 

framework that allows to enter clustering parameters (forming what we call a configuration), 

then calculate and operate efficiently and ergonomically the input data. The solutions 

provided by these algorithms are automatically processed, to give local and global quality 

indicators of clusters. Moreover, it helps building the final solution from pieces of one or 

more proposed solutions to assemble the best solution corresponding to the expectations of 

the decision maker. 

We propose a 3 stage clustering process for clustering numerical DSMs.The first stage is 

information gathering, about input data and parameters definition. The second stage consists 

in running each algorithm several times with several problem configurations. Afterwards, one 

obtains a number of clustered solutions, with quality indicators for each solution and for each 

cluster in the solution.  In addition, a frequency analysis is done to indicate the number of 

times that each couple of elements (actors in our case study) were put together in a clustered 

solution. The idea is that the more often pairs of actors are proposed together in the different 

configurations, then the more robust the decision of putting them together in the final solution 

is. The third stage is the post processing of the obtained results. This is done by combining 

extractions of particular clusters or pieces of clusters from different solutions. This 

combination is based on the quality indicators and the frequency analysis of the results (the 
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number of times the couple of actors were put together). A hybrid solution, that meets best the 

needs of the decision maker, is built using a mix of clusters from all configurations. 

3.3 Cluster validity  

Cluster validation is a major issue in cluster analysis; in fact, much more attention has to be 

paid to cluster validity issues (checking the quality of clustering results). However, it must be 

emphasized that the results obtained by these methods are only tools at the disposal of the 

expert in order to evaluate the resulting clustering. 

We define INTRA(Ci) in Eq. (5) as the sum of edges included in cluster Ci (noted Wi), divided 

by the total sum of edges in the matrix AA, denoted TW (for Total Weight). 

INTRA(Ci) = Wi / TW         (5) 

The term INTRA has been chosen to reflect the notion of intra-cluster interdependencies, 

obtained as the sum of intra-cluster edges. To obtain the Wi, we create the matrix CC as the 

following product using Eq. (6): 

CC = CA * AA * AC          (6)  

This is obtained in two stepsfollowing Eq. (2) as the product of CA by the product of AA and 

AC: 

CC = CA * (AA * AC)         (7) 

The Wi are the diagonal cells of CC. 

However, the implementation of the i
-th

 cluster Ci requires the use of a certain number of 

actors. This is why we moderate the raw performance of the clustering algorithm by the 
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managerial efficiency, counting the Number of Actors involved in Ci, called NA(Ci), as 

described in Eq. (8):  

P(Ci) = INTRA (Ci) / NA(Ci)         (8) 

Moreover, we also consider the interdependency value between two clusters Ci and Cj, called 

INTER(Ci, Cj). It is defined as the sum of edges for the couples of nodes where one belongs to 

Ci and the other one belongs to Cj. This represents the amount of inter-clusters interactions. 

It corresponds to the non-diagonal cells of the matrix CA*AA*ACpreviously introduced in 

Eq. (6). For a given Ci, we define the INTER(Ci) as the total INTER(Ci, Cj) values for all the 

Cj. The meaning of INTER is to compare relatively INTER and INTRA in order to determine 

whether actors in the cluster should be leaders (if INTRA>>INTER) or guests (if 

INTRA<<INTER). 

The final performance index is then calculated as in Eq. (9): 

P’(Ci) = 1000* INTRA (Ci) / (NA(Ci)*INTER(Ci))      (9) 

The factor 1000 is added to give results in an easily readable range (to estimate and to 

compare). These indicators permit comparison between proposed clustered configurations 

against each other; and afterwards against initial configuration AG, both in terms of 

organizational efficiency (P index) and in terms of role given to the actors (P’ index). For 

instance, if a cluster is always proposed whatever the algorithm and whatever the 

configuration, then one can be confident to put it in the final proposed configuration.  

4. Results: proposing new groups of interrelated actors 

Initial organization into collaborative decision-making processes had been a proposition in 

order to enhance project management and gain time. Several previous works have accounted 
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for this organization proposition. In the follow-up of three projects the overall gain for the 

early design stages was estimated up to 20% which is an interesting improvement with regard 

to duration of this phase. This organization was based upon collaborative decision-making 

model and in particular information modelling. However, one of the aspect that was important 

and that has been discussed with design team is to take into account information propagation. 

Due to the time, these configurations have not been implemented in projects but have been 

considered as important. In view to this observation, authors have started to look into different 

clustering techniques and related organizations that are discussed henceforth.  

In this case, no constraint was initially applied on cluster size for first runs, then several 

maximal sizes have been introduced to test the sensitivity of the solutions (in a range from 7 

to 13). It showed a great stability in the proposed configurations.  

Fig. 3 shows the final clustering results for AA. Firstly, whatever the algorithm and the 

configuration, there is systematically a 9-actor cluster which is proposed. This cluster C1 is 

not only strongly connected (high INTRA within-cluster interactions) but also connected to the 

rest of the network.  

Secondly, two clusters are proposed as a discussion group with the actors of C1, for INTER-

connection reasons. Indeed, the number and strength of interdependencies are far higher 

between C2 and C1 than within C2 for instance (idem for C3). Fig. 3 shows that 21 actors are 

in this situation, respectively 11 actors in C2 and 10 in C3. These clusters C2 and C3 could also 

be implemented as working groups, but their density INTRA is judged too low.  

Thirdly, a 16-actor cluster C4 is proposed where interactions are mainly within the cluster, and 

not outside. This is a cluster built for INTRA-connection reason (called Intra-only on Fig. 3). 
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Fig. 3. The clusters for AA 

Eighteen actors are not included in any group. Of course, this does not mean that they won’t 

continue to contribute to the decisions they are assigned to, but not as a specific collaborative 

working group. Section 5 will discuss the implication of both the implementation of clusters 

and the management of the non-clustered actors. 

The performance indicators P and P’ are calculated using Eq. (8) and (9) for the clusters Ci, 

i=1 to 4 and the groups Gi, i=1 to 13, as summarized in Table 1. For memory, the groups Gi 
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form the existing configuration AG and the aim of the clustering is to propose an improved 

version AC composed of clusters Ci. 

Table 1. Comparison between proposed clusters Ci and initial groups Giin terms of 

performance indicators 

Id INTRA  NA  P  INTER  P’ 

C1 1724  9  191.5  486  394.1 

C2 58  11  5.3  412  12.8 

C3 8  10  0.8  74  10.8  

C4 126  16  7.9  25  315 

G1 1988  21  94.7  16908  5.6 

G2 1956  13  150.4  16976  8.8 

G3 2056  20  102.9  16979  6.1 

G4 1652  11  150.2  15752  9.5 

G5 896  13  68.9  11839  5.8 

G6 416  6  69.3  8667  8 

G7 1490  9  165.6  15053  11 

G8 616  6  102.7  10041  10.2 

G9 2074  13  159.5  17212  9.3 

G10 1594  12  132.8  15450  8.6 

G11 40  5  8  2909  2.7 

G12 1164  13  89.5  13442  6.7 

G13 174  6  29  5566  5.2 
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Two elements may be highlighted with these results. First, the initial organization is far from 

efficient due to multiple assignments of actors to multiple groups. They are involved in 

numerous meetings, but with many connections outside the groups, which is a factor of loss 

of time and potential loss of coordination.  

Second, clusters C1and C4 are dense enough in terms of INTRA to justify their 

implementation. C4 is less dense than C1 in terms of P indicator, but is also quite independent 

from other clusters, meaning that P’(C4) index is almost as good as P’(C1). C2 and C3 are not 

dense enough to be created as a collaborative group. However, their INTER value with C1 is 

high enough to justify the integration of their actors in some C1 meetings as guests.The 

question is now how to implement clusters C1 and C4, and particularly what to do with the rest 

of the decisions and actors. 

The clustering of actors implies grouping decisions, due to the assignments of these actors. 

For C1, there are two types of decisions: the ones when they are leaders, inviting other actors 

as guests; and the ones when they are guests. In the first type,we propose to split the 

corresponding 51 decisions associated to C1 into two subgroups. This means two series of 

meetings, but subgroups contain respectively 32 and 19 decisions; so a single group could 

also have been judged as practically intractable in view to number of decisions and number of 

participants. C4 involves a 6-decision group involving 16 actors.  

The 13 remaining decisions may be considered using three strategies:  

● A single group, with less consistence and the only advantage to propose less meetings 

to people, but knowing that their connections are lower than in the other groups, 
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● 13 singletons, meaning that each decision is managed independently with its affiliated 

actors. This increases the number of assignments but may also increase the efficiency 

of decision-making for each decision, 

● The current organizational groups, knowing that decisions of seven groups 1, 3, 4, 5, 

11, 12 and 13 are present. This means running 7 series of meetings. 

With regard to these strategies, we have the choice for the 13 remaining decisions between 1, 

7, and 13 groups. There are slight differences, but the performance of the overall 

configuration is always far better than the initial organization; hence the result is not sensitive 

to this choice.  

The most important resulting fact is that with a 9-actor group plus occasional guests, 51 

decisions (on a total of 70) can be managed in a coordinated and collaborative way; and with 

an extra 16-actor group, 6 additional decisions are grouped consistently. The managerial 

implication of implementation of one of these scenarios is discussed in Section 5. 

5. Implication of these groups on early stage new product development 

management 

Main challenge observed in industry is to manage these collaborative decision-making 

processes with regard to efficiency (especially time loss that actors have been experiencing) 

and coordination. The proposed approach highlights several strategies with the possibility of 

implementing one or more clusters, involving multiple decisions to be made with 

coordination. However, whatever the chosen scenario, it is always far more performant than 

the initial configuration AG, since the latter had the major disadvantage to assign many actors 

to almost every group. The constraint of disjunction between clusters really permits to focus 
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for a given actor on less groups, reducing drastically the number of assignments and meetings 

compared to AG. 

Comparing clustering results for AA with the initial organization AG enables interesting 

remarks to be done. First, cluster C1 is very important in terms of INTRA and INTERvalues. It 

is constituted of important members of the project (e.g. project manager, prototype design 

manager, technical project manager, design process manager). However, this 9-actor group 

was not currently formed in the existing project organization.  

Second, the other implemented cluster C4 permits to group 16 actors with less assignments, 

which is a gain compared to AG. For the rest of the actors of C2 and C3, it is not mandatory to 

make them participate to groups which would be not dense enough to deserve the effort. They 

are simply guests when some specific meetings require their presence, which can be more 

efficient and easier to coordinate. 

Third, the proposed groups are composed of permanent members and temporary guests. 

Members of C1 need to participate to other decision groups (but far less than in AG) and 

actors outside of C1 need to participate punctually to some C1 meetings. The proposed 

decision groups corresponding to actors’ clusters are as follows: a 32-decision DG1 and a 19-

decision DG2 managed by C1, a 6-decision DG3 managed by people of C4, and a last 13-

decision DG4 whose leadership has to be defined. By counting the total number of actors 

involved in each proposed decision group, we find the following results showed in Table 2. 

Table 2. Composition of decision groups within actors’ clusters 

Decision group Nb of decisions Members Guests 

DG1   32 9 (C1)  14 

DG2   19 9 (C1)  13 

DG3   6 16 (C4)  3 
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DG4   13 21  0 

We believe that this approach can effectively support management of NPD projects and 

related teams. The proposed modeling approach can also be discussed in relation to the group 

organization. Initial organization stemmed from the cultural and historical development of the 

company. That organization is built around 13 collaborative decision-making processes that 

are domain oriented. However, possible matrix-based visualizations and modeling can be a 

support to constructively decide possible organizations. Moreover, it brings flexibility and 

agility to the organization with regards to NPD objectives (for example if there is a new 

technology integration that might be extremely risky). 

Another important point is clustering and proposition of different organizations in view to 

different NPD objectives, like enhancing communication, or geographical proximity, etc. As 

the approach proposes different clustering techniques with regard to different criteria, possible 

team organizations can be examined at the very beginning of the project in order to adapt the 

organization with the objective of maximizing the possibility for project success.  

6. Conclusion 

In this paper, a methodology is introduced to propose groups of actors involved in numerous 

collaborative decisions. These groups are formed using an original approach combining 

several classical clustering algorithms. The first results show different reasons to group actors 

and different roles of these actors in the network structure and behavior. Particularly, a strong 

cluster of 9 actors has been identified. Two strategies of recommendations can be done after 

this analysis. Groups can be formed, for two main reasons, INTRA- and INTER-connections. 

Moreover, recommendations for simplifying assignments can also be proposed, with two 

main strategies: reassigning people in order to have less actors involved in decision chains, 

and reducing redundancy (the same couple of actors assigned to the same couple of 
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decisions). Future works will be done to test such reassignment strategies and their impact on 

the structure complexity. The aim is to understand the impact of a mitigation action against 

the risk of non-coordination and non-communication due to this complexity level. 
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