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Paris-Saclay, Orsay, France.

Abstract

This paper proposes a statistical analysis of movement data in ecology using partially
observed stochastic differential equations. Usually, in movement ecology, parameters of
these models are estimated using approximate maximum likelihood procedures based on
the Euler-Maruyama discretization. However, GPS sampling rate in ecology might not
be large enough to ensure the stability and convergence of the Euler based estimates.
To our best knowledge, there is no practical study to assess the performance of the
Euler Maruyama method to estimate movement ecology models compared to other
inference procedures for stochastic differential equations. In this paper, we propose
such a practical study by comparing the Euler method with the Ozaki linearization
method of [27, 30], an adaptive Kessler high order Gaussian approximation method
introduced in [24, 25, 34], and the Exact Algorithm based Monte Carlo Expectation
Maximization approach of [4]. The performance of these methods are assessed using
a new potential based stochastic differential equation where the drift is given as the
gradient of a mixture of attractive zones, which are of main interest in ecology and
fisheries science. It is shown both on simulated data and actual fishing vessels data
that the Euler method performs worse than the other procedures for non high frequency
sampling schemes. We also show, on this model, that Kessler and Ozaki methods are
quite robust and perform in a similar way as the exact method.

Keywords: Movement model; GPS data; Stochastic differential equation; Exact simulation;
Local linearization; Pseudo Likelihood Methods.

1 Introduction

In ecology, statistical inference of animal movement models provide many insights on the eco-
logical features that explain population-level dynamics. These analyses are crucial to wildlife
managers to understand complex animal behaviors [17]. In fisheries science, understanding
the underlying patterns responsible for spatial use of the ocean is a key aspect of a sustain-
able management [16]. Both fields promote now large programs to deploy Global Positioning
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System (GPS) device. For instance, we might mention, among others, the Tagging of Pelagic
Predators program (TOPP, www.gtopp.org) or the TORSOOI (www.torsooi.com) program
for marine animals and the WOLF GPS (www.wolfgps.com) or Elephant without Borders
(www.elephantswithoutborders.org/tracking.php) programs for terrestrial wildlife. In
the European Union, since the 1st of January 2012, fishing vessels above 12m are mandatory
equipped with a Vessel Monitoring System which has become a standard tool of fisheries
monitoring worldwide. As a result such programs produce large amount of trajectory data.
These data sets have been largely used to understand, explain and potentially predict ani-
mals/vessels movements. The GPS-type loggers can be set with several acquisition frequen-
cies which should be adjusted to the experimental setting. The chosen frequency is a crucial
parameter to monitor animal behaviors over a given time horizon since GPS batteries highly
depends on the number of recorded relocations. Relocations recordings are mostly set up at
regular time steps between observations but real life experiments in complex environments
(water for marine mammals for instance) might result in potentially strongly irregular time
step acquisitions.

In many cases, the temporal resolution and the number of observations are sufficiently
high to propose statistical learning procedures and to consider complex models estimation
problems [8]. In the last few years, growing attention has been dedicated to continuous
time and continuous space Markovian models as a realistic and flexible framework to model
such data, [9, 12, 28]. These papers introduced stochastic differential equations (SDE) to
describe and analyze animal trajectories. Since the model based on a pure diffusion process
introduced in [32], a large variety of SDE have been proposed to model wildlife behavior,
see [28] for references about elephant-seal migrations or trajectories of birds heading to a
target for instance. This paper focuses on SDE based on a potential surface to capture the
directional bias in animal patterns. As discussed in [13] this potential function is assumed
to reflect the attractiveness of the environment and regions where species are likely to travel
to. In the framework proposed by [11], the drift of the SDE is given by the gradient of a
potential map Pη which depends on an unknown parameter η while the diffusion coefficient
is a smooth function. This flexible framework has been widely used in movement ecology for
the last 20 years, [9, 12, 13, 15, 21, 28, 29]. In [9, 10, 21] the authors introduced a quadratic
potential function which means that the animal position is modeled by a bivariate Ornstein
Uhlenbeck process. This is a convenient framework to represent attractiveness of a given area
but it remains restrictive as animals are not prone to revert to a single attractive zone. The
Ornstein Uhlenbeck process has also been used in movement ecology to model the velocity
of an individual [23]. The popularity of such processes is explained by the fact that in this
case the position is a Gaussian process with an explicit transition density and, therefore,
the computation of the maximum likelihood estimator of η and the diffusion coefficient is
straightforward. More complex potential functions have been proposed to model different
animal behaviors [29] (including multiple attractive regions).

In this paper, we propose a model where the potential function is a mixture of Gaussian
shaped functions. Potentials given by a mixture of parametric functions have been proposed
in [29] but the model introduced in this paper is more general. Each attractive region is
modeled by a mean location and an information matrix characterizing its dispersion while in
[29] Gaussian potentials do not include correlation between coordinates. Therefore, the drift
of the SDE is a mixture of Gaussian shaped functions, with unknown weights, centers and
information matrices and represents the attractive regions where the species/fishing vessels
are likely to travel. Designing efficient procedures to estimate the parameter η and the
diffusion coefficient is a very challenging task in this setting as some basic properties of such
models, such as transition probabilities, are usually not available in closed form.

Different statistical methods have been proposed to perform maximum likelihood esti-
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mation in this framework, [22, 25]. The most convenient procedures to estimate discretely
observed diffusion processes rely on discretization schemes to approximate the SDE between
two observations and use a surrogate of the likelihood function to compute an approximate
maximum likelihood estimator of η. The simplest likelihood approximation is obtained by
the Euler-Maruyama method which replaces the drift and diffusion coefficients by their initial
values on each interval. This may obviously be refined using a second order Milstein scheme
for instance. A particularly interesting higher order scheme is given by the Ozaki discretiza-
tion which proposes a linear approximation of the drift coefficient combined with a constant
approximation of the diffusion term [27, 30]. More recently, [24], [25] and [34] introduced
another Gaussian based approximation of the transition density between two consecutive ob-
servations using higher order expansions of the posterior mean and variance of an observation
given the observation at the previous time step. Another approach for likelihood approxi-
mation based on Hermite polynomials expansion was introduced by [1, 2, 3] and extended
in several directions recently, see [26] and all the references therein. To avoid the systematic
bias associated with every discretization procedure which vanishes only when the number
of discretization steps grows to infinity, [4] and [7] proposed to draw samples from finite-
dimensional distributions of potential based diffusion processes. This sampling procedure is
based on a rejection sampling procedure and may be used to sample from any finite dimen-
sional distribution of the target SDE. This is a pivotal step to obtain an unbiased estimate
of the intermediate quantity involved in an Expectation Maximization algorithm developed
by these authors. As a by product this allows to sample trajectories exactly distributed
according to the estimated model which is not possible with the three other methods.

To the best of our knowledge, in all published articles about movement ecology, the Euler-
Maruyama method is used to estimate all parameters. The maximum likelihood estimator
associated with this method and other discretization schemes may be proved to be consistent
under some assumptions on the total number of observations n and the timestep ∆n between
observations (which is assumed to vanish to zero as n goes to infinity). However, as pointed
out before, there is no guarantee that using GPS tagging is ecology would provide observations
at a sufficiently high sampling rate which might result in an estimator suffering from a
large bias, in particular with sparse observations. This bias may be reduced using higher
order schemes as described above with an increasing computational complexity. On the
other hand, Monte Carlo based exact algorithms introduced in [4, 7] may be used to obtain
unbiased likelihood estimation so that the estimation error depends only on the number of
simulations. However, the acceptance rejection step of these exact algorithms required to
sample skeletons between each pair of observations has a computational complexity which
grows with the timestep between observations. There is no theoretical nor practical studies to
choose the method which achieves the best trade off between fast convergence and accuracy
in movement ecology. In this work, we investigate the performance of four different methods,
namely:

- the Euler-Maruyama method, described before, that is used in movement ecology ;

- the Ozaki local linearization method, proposed in [27] and [30] ;

- the Kessler high order Gaussian approximation method, proposed in [24] and refined using
an adaptive procedure in [34] ;

- the Exact Algorithm based Monte Carlo EM method, proposed in [6].

The first three methods rely on a pseudo likelihood approach while the last method uses an
Expectation Maximization (EM) algorithm to maximise the likelihood [18].
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The paper is organized as follows. In Section 1, the potential based model framework of
[11] is introduced along with the data this paper focuses on. This section also explains the
maximum likelihood framework considered and the aforementioned methods used to produce
parameter estimates. In section 3, a new movement ecology model which links attractive
zones and trajectories is presented. Section 3.2 presents a simulation study to evaluate the
robustness of the presented statistical methods with the specific potential function proposed
here. In order to evaluate the impact of the sampling rate, three sampling scenarios are
considered, high frequency, intermediate frequency, and low frequency. Finally, section 3.2
present an application of these three methods in order to estimate, from their positions, the
attractive zones for two different French fishing vessels.

2 Presentation of the competing methods

In this paper, the animal or vessel position is assumed to be a stochastic process (Xt)0≤t≤T
defined on a probability space (Ω,F ,P) and taking values in R2 where T is a fixed time
horizon. C denotes the Wiener space defined as the set of continuous maps from [0, T ] to R2

endowed with the usual σ-algebra C generated by cylinders. Let WT be the unique measure
on the Wiener space such that the coordinate process (Wt)0≤t≤T is a standard Brownian
motion on R2 associated with its natural filtration {Ft}0≤t≤T . (Xt)0≤t≤T is assumed to be a
solution to the following homogeneous SDE:

X0 = xg0 and dXt = bη(Xt)dt+ σγ(Xt)dWt , (1)

where η ∈ Rd and γ ∈ Rm are unknown parameters and bη : R2 → R2 and σγ : R2 → R2×R2

are respectively the drift and the diffusion functions. Following [9, 13, 12, 28, 11, 14, 29, 21],
it is assumed that the drift function bη is defined as the gradient of a potential function
Pη : R2 → R and that σγ is constant: γ ∈ R and for all x ∈ R2,

bη := ∇Pη and σγ(x) = γ . (2)

Those gradient based movement models have been widely studied in ecology for the last 20
years. Two popular SDE based models in movement ecology are:

- the Brownian motion, with or without drift, corresponding to a constant bη (that is a linear
potential Pη), as in [32] ;

- the Ornstein Uhlenbeck process, corresponding to a linear drift function bη (i.e a quadratic
form for the potential Pη), as in [9].

These two models are appealing as their transition density function is available explicitly
but lead to a very restricted class of potential functions Pη that might be unrealistic in
real life learning applications. As an alternative to such popular models, a potential based
on a mixture of Gaussian shaped functions is proposed and analyzed in Section 3.2. This
mixture model is very flexible and can describe a wide range of situations by increasing
the number of mixture components. The aim of this paper is to compare several maximum
likelihood inference procedures to estimate the parameter θ = (η, γ) using a set of discrete
time observations. These observations are given by G independent trajectories of an individ-
ual x = (xg)g=1,...,G where each trajectory xg is made of ng + 1 exact observations at times
tg0 = 0 < tg1 < · · · < tgng = T g and starting at xg0. The probability density of the distribution
of X∆ given X0 is denoted by q∆

θ when the model is parameterized by θ: for all bounded
measurable function h on R2:

Eθ [h(X∆)|X0] =

∫
h(y)q∆

θ (X0, y)dy ,
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where Eθ is the expectation when the model is driven by θ. As the G trajectories (xg)g=1,...,G

are independent, the likelihood function may be written:

L(θ; x) =
G∏
g=1

ng−1∏
i=0

q
∆g
i

θ (xgi , x
g
i+1) , (3)

where ∆g
i := tgi+1 − t

g
i . The maximum likelihood estimator of θ is defined as:

θ̂ := argmaxθ L(θ; x) .

In the cases of the Brownian motion and Ornstein Uhlenbeck processes, the function q∆
θ is the

probability density function of a Gaussian random variable with known mean and covariance
so that direct computation of θ̂ is an easy task. However, in more general settings such as in
the model considered in Section 3.2, q∆

θ is unknown, making impossible the direct computa-

tion of θ̂. While many statistical methods have been proposed to compute approximations
of θ̂, to our best knowledge, the only statistical method used in movement ecology is the
Euler-Maruyama discretization procedure. It is known that the quality of this approxima-
tion highly depends on the sampling rate which means that this method might therefore not
be well suited to real life animal GPS tags. Therefore, several alternatives are investigated in
the following to compute approximations of θ̂. Since all g trajectories are exchangeable, for
the sake of clarity, the aforementioned approximation methods will be detailed for a given
trajectory and the reference to g is omitted.

Euler-Maruyama method The Euler-Maruyama discretization is an order 0 Taylor ex-
pansion of the drift function (as the diffusion coefficient is constant no expansion is re-
quired). The drift is therefore assumed to be constant between two observations. For any
0 ≤ i ≤ n − 1 the target process is approximated by the process (Xeul

t )ti≤t<ti+1
, solution to

the SDE: Xeul
ti

= xi and, for ti ≤ t ≤ ti+1,

dXeul
t = ∇Pη(xi)dt+ γdWt .

For all 0 ≤ i ≤ n − 1, the transition density q∆i
θ (xi, xi+1) is therefore approximated by

the transition density of (Xeul
t ) between ti and ti+1 denoted by q∆i,eul

θ (xi, xi+1). This is the
probability density of a Gaussian random variable with mean µeul

i variance Σeul
i :

µeul
i = xi + ∆i∇Pη(xi) ,

Σeul
i =

(
γ2∆i 0

0 γ2∆i

)
.

Hence, the Euler-Maruyama estimate is given by:

θ̂eul = argmaxθ

G∏
g=1

ng−1∏
i=0

q
∆g
i ,eul

θ (xgi , x
g
i+1) . (4)

Ozaki method The Ozaki method, proposed in [27] and [30], provides a local linearization
of the drift term in order to improve the Euler scheme. For any 0 ≤ i ≤ n − 1 the target
process is approximated by the process (Xoz

t )ti≤t<ti+1
, solution to the SDE: Xoz

ti
= xi and, for

ti ≤ t ≤ ti+1,
dXoz

t = [Ji,η (Xoz
t − xi) + bη(xi)] dt+ γdWt ,
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where Ji,η is the 2 × 2 Jacobian matrix of the drift function bη at xi. Therefore, the target
process is now approximated between each pair of observations by a two-dimensionnal Orn-
stein Uhlenbeck process. Then, for all 0 ≤ i ≤ n − 1, the transition density q∆i

θ (xi, xi+1) is
replaced by the transition density of (Xoz

t ) between ti and ti+1 denoted by q∆i,oz
θ (xi, xi+1). If

the potential function is such that, for all 0 ≤ i ≤ n − 1 and all θ, Ji,θ is nonsingular and
symmetric (as it is the case of the potential introduced in Section 3.2), following [31], this
transition density corresponds to a Gaussian probability density with mean µoz

i variance Σoz
i :

µoz
i = xi + (exp (Ji,η)− I2)(Ji,η)

−1bη(xi) ,

vec(Σoz
i ) = (Ji,η ⊕ Ji,η)−1

(
e(Ji,η⊕Ji,η)∆i − I2

)
vec
(
γ2I2

)
,

where I2 denotes the 2× 2 identity matrix, vec is the stack operator and ⊕ is the Kronecker
sum. The local linearization estimate is then given by:

θ̂oz = argmaxθ

G∏
g=1

ng−1∏
i=0

q
∆g
i ,oz

θ (xgi , x
g
i+1) . (5)

Adaptive Kessler method This procedure, proposed in [24], generalizes the Euler-Maruyama
method using a higher order approximation of the transition density. Following the same
steps as Euler or Ozaki discretizations, [24] proposed to consider a Gaussian approximation
of the transition density between consecutive observations. The procedure aims at replacing
q∆i
θ (xi, xi+1) by a Gaussian probability density function with mean and variance given by the

posterior mean µtarget
i and variance Σtarget

i of the target process at time ti+1 conditionally on
the value of the target process at time ti. This would lead to an approximation with the
same two first moments as the target transition density. This approximation can be written
similarly to the previous discretization schemes by defining, for any 0 ≤ i ≤ n−1, the process
(Xtarget

t )ti≤t<ti+1
as the solution to the SDE: Xtarget

ti = xi and, for ti ≤ t ≤ ti+1,

dXtarget
t =

µtarget
i − xi

∆i

dt+

(
Σtarget
i

∆i

)1/2

dWt .

However, the transition density of the target process being unknown, the conditional expec-
tations µtarget

i and Σtarget
i are not available in closed form so that [24] proposed to replace these

quantities by approximations based on Taylor expansions of these two conditionnal moments
(see [19], [24] or [34] for the multidimensionnal case). The transition density q∆i

θ (xi, xi+1) is
therefore approximated by the transition density of (Xkes

t ) between ti and ti+1 obtained by
this expansion and denoted by q∆i,kes

θ (xi, xi+1). These expansions can be computed directly
from the drift and diffusion functions and their partial derivatives. The order of the expan-
sion of the true conditional moments is left to the user and the performance of the estimator
highly depends on this parameter, order one being the Euler-Maruyama method. In this
paper, it was performed up to the second order. In this case, and for the process defined
by (1) and (2), the function q∆i,kes

θ (xi, xi+1) is the probability density function of a Gaussian
random variable with mean µkes

i variance Σkes
i (see Proposition 1 of [34] for general formulas):

µkes
i = xi + ∆i∇Pη(xi) ,

Σkes
i = γ2∆i(I2 + ∆iJi,η) . (6)

One can note here that µkes
i = µeul

i . A drawback of this method is the fact that (6) does
not necessarily define a positive semi-definite matrix. For instance, if Tr(Ji,η) < −2/∆i, then
Tr(Σkes

i ) < 0, which is likely to occur when ∆i is large. In the following applications, whenever
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Σkes
i is not positive definite, the associated observation is thrown out from the computation

of the likelihood, as proposed in [22]. The Kessler estimate is given by:

θ̂kes = argmaxθ

G∏
g=1

ng−1∏
i=0

q
∆g
i ,kes

θ (xgi , x
g
i+1) . (7)

It is worth noting here that for numerical stability, equation (6) is not directly plugged into
(7), but is replaced by the Taylor expansion of its inverse and its determinant (the resulting
contrast function to optimize in multidimensional case is given in [34], p. 2889). In this work,
instead of performing direct optimization, the adaptative estimator proposed in [34] is used.
This adaptative method provides more numerical stability by alternatively estimating γ and
η, (see [34] for details).

Exact Algorithm based Monte Carlo EM method The exact algorithm method pro-
posed by [6] does not rely on Gaussian approximations of the transition densities to compute
the maximum likelihood estimator. Details of the method are given in [6] and the impor-
tant results for the experiments are given in the appendix. Applying the exact algorithm to
estimate θ requires the target SDE to be reducible to a unit diffusion using the Lamperti
transform which is obtained in our case by setting (Yt := γ−1Xt)0≤t≤T . Then,

dYt = αθ(Yt)dt+ dWt where αθ(·) := γ−1bη(γ ·) = γ−1∇Pη(γ ·) . (8)

Then, EA1 of [6] relies on the following assumptions.

- Conservative assumption: for all θ = (η, γ) ∈ Rd+1, there exists Hθ : R2 7→ R such that for
all x ∈ R2,

αθ(x) = ∇Hθ(x) . (9)

- Boundedness condition: for all θ ∈ Rd+1, there exist mθ,Mθ, such that for all x ∈ R2,

mθ ≤ ‖αθ(x)‖2 + ∆Hθ(x) ≤Mθ , (10)

where ∆ is the Laplace operator:

∆Hθ : x 7→ ∂αθ,1
∂x1

(x) +
∂αθ,2
∂x2

(x) .

Both conditions are somehow restrictive in general, however, the first one turns out to be
satisfied automatically for potential based models studied in ecology, which actually rely on
this assumption. The second condition can be relaxed at the cost of additional computations,
which is the point of EA2 and EA3 [6]. These algorithms are not studied in this paper as
the potential function introduced in Section 3.2 satisfies the boundedness condition. In the
case where (9) and (10) hold, we briefly recall the outline of the method.

Let Qθ
T be the law of (Yt)0≤t≤T on (C, C) when the SDE is parameterized by θ. By the

Girsanov formula, Qθ
T is absolutely continuous with respect to the Wiener measure WT on

(C, C) and its Radon-Nikodym derivative is given by:

`(ω, θ) := log
dQθ

T

dWT

(ω) = Hθ(ωT )−Hθ(ω0)− 1

2

∫ T

0

[
∆Hθ(ωs) + ‖αθ(ωs)‖2

]
ds . (11)

The integral in this likelihood ratio cannot be computed as Z = {(Yt)0≤t≤T} is not available,
only discrete time observations are known. The Expectation Maximization algorithm pro-
vides a solution to maximize the likelihood in this incomplete data framework. Starting with
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an initial estimate θ0, the EM algorithm produces iteratively a sequence (θp)p≥0 such that
the observed likelihood increases at every iteration. Under mild assumptions on the model,
(θp)p≥0 converges to a critical point of the likelihood function [18]. Each iteration of the EM
algorithm proceeds in two steps when γ is known:

- E-step: compute the intermediate quantity θ 7→ Q(θ, θp) = Eθp [`(Y, θ)|Y0, . . .Yn], where
Eθp is the conditional expectation under the law of the process (Yt)0≤t≤T given (Y0, . . . ,Yn)
when the SDE is parameterized by θp.

- M-step: set θp+1 as one maximizer of θ 7→ Q(θ, θp).

The procedure when γ is unknown follows similar steps with additional technicalities and is
given in [6]. The intermediate quantity θ 7→ Q(θ, θp) of the EM algorithm might be written
as a sum over all segments [tj−1, tj] of the following expectations:

Eθp

[∫ tj

tj−1

[
∆Hθ(Ys) + ‖αθ(Ys)‖2

]
ds

∣∣∣∣∣Yj−1,Yj

]
.

As noted by [6], a nice property is that this quantity reduces to the expectation of the form:∫ tj

tj−1

[
∆Hθ(Ys) + ‖αθ(Ys)‖2

]
ds = (tj − tj−1)Eθp

[
∆Hθ(YUj) + ‖αθ(YUj)‖2

∣∣(Yt)tj−1≤t≤tj
]
,

where U j is independent of (Yt)tj−1≤t≤tj and uniformly distributed on [tj−1, tj]. Then, the
quantity Q(θ, θp) may be rewritten as

Q(θ, θp) = Eθp
[
Eθp
{

∆Hθ(YUj) + ‖αθ(YUj)‖2
∣∣(Yt)tj−1≤t≤tj

}∣∣Yj−1,Yj

]
,

and may be approximated using Monte Carlo simulations using Nj simulations for the expec-
tation over all possible trajectories between Yj−1 and Yj and Mj terms for the expectation
over the random times Uj.
For all 1 ≤ j ≤ n and all 1 ≤ i ≤ Nj,

(i) simulate (U j,i
k )1≤k≤Mj

independently and uniformly on [tj−1, tj] ;

(ii) conditional on Yj−1 and Yj, sample a skeleton Yj,i at time instances (U j,i
k )1≤k≤Mj

.

Then, Q(θ, θp) is estimated by QN(θ, θp) where

QN(θ, θp) := Hθ(Yn)−Hθ(Y0)−1

2

n∑
j=1

tj − tj−1

MjNj

Nj∑
i=1

Mj∑
k=1

{
∆Hθ

(
Yj,i

Uj,ik

)
+
∥∥∥αθ (Yj,i

Uj,ik

)∥∥∥2
}

.

The procedure to sample each instances of Yj,i given Yj−1 and Yj is the Exact Algorithm
EA1 of [6]. This EM based method offers the advantage of avoiding approximation error due
to time discretization of the SDE. The only error comes from the Monte Carlo simulations
based on Mj, Nj, 1 ≤ j ≤ n, used to approximate the expectation in the E-step. In theory,
if the conditions (9) and (10) are satisfied, it is always possible to simulate a point Yt at any
time ti ≤ t ≤ ti+1 conditionally on the observations Yi and Yi+1. However, the simulation
algorithm is based on rejection sampling and the acceptance probability is equal to:

exp

{
−1

2
(Mθ −mθ)

∫ ti+1

ti

φθ(Ys)ds

}
, (12)

where mθ and Mθ are defined as in (10), and φθ(x) := (‖ αθ(x) ‖2 +4Hθ(x) −mθ)/2 ≥ 0.
Then, the integral in (12) increases with the sampling step, and the acceptance probability
decreases to 0. Therefore, the computational complexity of the EA algorithm highly depends
on the sampling step.
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Approximating the log likelihood The associated loglikelihood of two given estimates
θ̂1 and θ̂2 cannot be computed exactly. However, in the case where equations (9) and (10)
hold, and following [5], an unbiased estimator `EA of the loglikelihood based on Monte Carlo
simulations may be computed. This estimator has no intrinsic bias as the error only comes
from the Monte Carlo procedure. This allows allows to choose between two given estimates
θ̂1 and θ̂2 the one with the greatest likelihood.

3 Estimation of a movement model in ecology

3.1 Form of the potential function

The potential based model proposed in this section is an extension of the models proposed by
[29]. The position process of an individual is assumed to satisfy (1) and (2), with a Gaussian
shaped potential function of the form:

Pη(x) =
K∑
i=1

πk ϕ
η
k(x) where ϕηk(x) := exp

{
−1

2
(x− µk)TCk(x− µk)

}
, (13)

where:

- K is the number of components of the mixture.

- πk ∈ R+ is the relative weight of the k-th component, with
∑K

k=1 πk = 1.

- µk ∈ R2 is the center of the k-th component.

- Ck ∈ S+
2 is the the information matrix of the k-th component, where S+

2 is the set of 2× 2
symmetric positive definite matrices.

In this work, K is assumed to be known and

η = {(πk)k=1,...,K−1, (µk)k=1,...,K , (Ck)k=1,...,K} ∈ R6K .

The process solution to the SDE (1) and (2) with the potential function (13) has no explicit
transition density so that approximate maximum likelihood procedures such as the methods
presented in Section 1 may be considered. This specific parametric form of Pη ensures that
equations (9) and (10) hold (see the appendix) and therefore, the EA1 algorithm may be
used with:

Hθ : x 7→
K∑
k=1

πkϕ
η
k(γx)/γ , (14)

with θ = (η, γ).

3.2 Simulation study

Simulation design The performance of the four estimation methods presented in this
paper is evaluated on a given set of parameters θ and different sampling schemes. The
hidden potential map have K = 2 components, leading to 12 parameters to estimate, and is
represented on Figure 1a. All simulated trajectories start from a common starting point x0

and are sampled from the true distribution of the process (Xt)t≥0 using the accept rejection
procedure proposed in [7]. G = 10 independent trajectories are simulated with ng = 500
recorded points. Three different sampling time steps are considered, respectively with high
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frequency (∆ = 0.1), intermediate frequency (∆ = 1) and low frequency (∆ = 10). In an
actual sampling design, this would correspond to three different GPS tags settings with a
limited number of emissions (here, 500). In order to evaluate uncertainty of estimation for
each method in each scenarios, this procedure is repeated independently with 30 different
data sets. For each sampling time step, a 10 trajectory data set is presented on Figure 1.
All techniques require a maximization procedure, either for a direct estimation, see (4), (5)
and (7), or for the M-step of the EM algorithm. This maximization step is performed using
the CMA-ES algorithm proposed by [20]. For each estimation method, 30 initial parameters
θ0 are used and the parameter estimate with the maximum objective function is therefore
considered as the estimator θ̂.

Results Figures 2, 3 and 4 provide the estimation of the parameters for the three sampling
cases. The best estimation for all parameters and techniques is obtained with the intermediate
frequency sampling rate. As illustrated by Figure 1, this frequency allows a good exploration
of the map by the process with 500 observations and the different gaussian approximations
are satisfactory while the acceptance rate for the EA method remains reasonable. Indeed,
the acceptation rate for the three samplings decrease for conditionnal simulation (using the
MLE) decreases from 99.6% (∆ = 0.1) to 97.6 (∆ = 1) and 67.5%(∆ = 10) respectively. On
the other hand, when ∆ = 0.1 with only 500 observations per trajectory, the time horizon 50
might be insufficient for a good parameter estimation using this model. When ∆ = 10, there
is a strong bias in the estimation of the shape parameters Ck, k = 1, 2, and the diffusion
coefficient for all methods.

Overall, the quality of the estimation using Euler method seems to decrease drastically
with the time step, whereas the three other methods are more robust, for this model and this
data set, to the sampling frequency. The Ozaki and Adaptive Kessler method provide similar
results to the EA MCEM method, and therefore, in this case, give a good approximation of
the maximum likelihood estimator. It is worth noting that the computation cost of the EA
MCEM method is much larger, and therefore, might not be recommended in this case.

Figure 5 displays the absolute estimation errors |Pθ̂(x)− Pθtrue(x)| for each method. The
map is produced using the median off all estimated values as a set of parameters. The Euler
method performs much poorly than the other methods when ∆ = 1 and ∆ = 10. Figure
6 shows the distribution of the integrated squared error

∫
R2 |Pη̂(x) − Pηtrue(x)|2dx for each

method, which is consistent with the results of Figure 5. According to this simulation study,
we recommend not to use the Euler method and to prefer one of the three others presented
in this paper.

3.3 Infering fishing zones

Delimiting fishing zones of high potential represents a key step in fisheries management,
potentially to set up some marine protected areas. In order to illustrate the performance of
each method to define such zones using actual GPS data, the model presented in Section 3.1
is fitted on two set of trajectories of two French fishing vessels named V1 and V2. The two
sets of trajectories are represented in Figure 7:

V1 (Black on Figure 7) The data set of vessel 1 is composed of 15 short trajectories with a
total of 724 GPS locations and a sampling time step of around 12 minutes, with some
irregularities up to 1 hour.

V2 (Grey on Figure 7) The data set of vessel 2 is composed of 25 trajectories with a total
of 3111 GPS locations and an irregular sampling time step mostly between 15 and 50
minutes, with some irregularities up to 4 hours.

10
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(a) Hidden potential map (b) ∆ = 0.1

(c) ∆ = 1 (d) ∆ = 10

Figure 1: Simulation of the process solution to (1). The potential map driving the movement
is shown on Figure 1a. Dark zones present high potential whereas white zones have low
potential. The 10 simulated trajectories are sampled 500 times, at three different time steps
∆. The white dot represents the starting point x0 of each trajectory.
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Figure 2: Estimation of the parameters in the case where ∆ = 0.1. The dot represents the
median, the whiskers provide the 95% range of estimations.
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Figure 3: Estimation of the parameters in the case where ∆ = 1. The dot represents the
median, the whiskers provide the 95% range of estimations.
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Figure 4: Estimation of the parameters in the case where ∆ = 10. The dot represents the
median, the whiskers provide the 95% range of estimations.

Figure 5: Error between the median map estimate and the true map. Results are presented
for each method with ∆ = 0.1 (left), 1 (center) and 10 (right).
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Figure 6: Distribution of the integrated squared error between the estimated map and the
true one. Results are presented for each method with ∆ = 0.1 (left), 1 (center) and 10 (right).

Figure 7: Left : The two sets of trajectories are presented with a different color, grey or black,
depending on the vessel. Right : Distribution of sampling time step for GPS tags are presented
for both data sets. Both data set present irregular sampling time step. For confidentiality
reason, the actual recorded positions may not be shown and therefore no labels are presented
on the axes.
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For each data set, the four methods presented above were used to estimate θ. In the model
presented in Section 3.1, the number of components K is assumed to be known. In the
case of actual data, K has to be estimated. In the presented examples, we do not focus on
this problem which has already been addressed in the case of discretely observed SDE (see
[33], for instance) and assume K1 = 1 (respectively K2 = 3) for V1 (resp. V2). However,
it is worth noting that any model selection based on a penalized likelihood criterion might
be approximated as an unbiased approximation of the likelihood has been proposed in [5,
Theorem 1]. In the following, this approximation of the likelihood is used to choose which
estimation method provides the best estimated map.

Results for V1 Results for the vessel 1 are presented in Figure 8. The best estimate in
the sense of the greatest approximated log-likelihood is given by the map estimated with the
MCEM EA method, followed by Ozaki, Kessler and Euler (see Table 1 for the values of each
log-likelihood, for each estimated parameter). θ̂kes is quite unstable, as the correction term
for the variance (given in equation (6)) leads to a non positive semi-definite matrix for 28%
of the observations. However, the estimated map is similar to the one given by Ozaki and
EA MCEM methods although less concentrated around the data. The EA MCEM method
provides the best estimate in terms of likelihood. The acceptation rate for conditionnal
simulation is of 1.4%. Euler discretization method estimates a potential map with a much
more spread attractive zone than the three other methods. Moreover, the orientation of this
zone does not follow what seems to be the main axis of trawling (mainly East-West, here).
Both Ozaki and MCEM EA methods provide a similar estimated map (it terms of parameters
and of likelihood): a Gaussian form wrapping what appears to be the main trawling zone.
The axis of the resulting Gaussian form are conform to the trawling directions of the vessels.

Results for V2 Results for the vessel 2 are presented in Figure 9. As in the case of V1,
the best estimate in the sense of the greatest approximated loglikelihood is given by the map
estimated with the MCEM EA method, followed by Ozaki, Kessler and Euler (see Table 1
for the values of each log-likelihood, for each estimated parameter). Again, θ̂kes is unstable,
as the correction term for the variance leads to a non positive semi-definite matrix for 48%
of observations. The EA MCEM method provides the best estimate in terms of likelihood.
The acceptation rate for conditionnal simulation is of 6.2%.
As for vessel 1, Euler method results in a smooth estimated map, where attractive zones are
connected, and wrap almost all observed points. Kessler, Ozaki and MCEM EA methods
lead to maps where zones are disconnected: one close to to the harbour and an offshore zone.
In the case of the Adaptive Kessler method, the extension and the relative weight of this first
zone is larger than for the two other methods. For the three methods, the second offshore
zone is a mixture of a general attractive zone with an East-West orientation, and a smaller
hot spot that gathers a large amount of observed points. Here, a natural extension would be
to use larger values for K.

The Gaussian model proposed by [29] would have imposed a potential function whose
orientation is given by the x and y axis, with circular contour lines as a consequence of the
independence between directions. The generalization proposed in this paper model more
complex attractive zones. The contour lines of the potential might be used to define more
realistic high potential fishing zones.
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(a) Euler (b) Kessler

(c) Ozaki (d) EA MCEM

Figure 8: Estimated map for the data set of the vessel 1 (see Figure 7, using four different
estimation methods. The cross in the bottom right of each map is the departure harbour.
The darker a zone is, the more attractive it is for the given vessel. Observed points, in white,
are plotted in order to see the superposition between maps and trajectories.

V1 V2
Estimate \ Criterion `Eul `Oza `Kes `EA `Eul `Oza `Kes `EA

θEul -1.29 -0.37 -1.29 -1.32 -2.17 -2.16 -1.07 -2.15
θOza -1.50 -0.91 0.39 -0.93 -2.21 -2.09 -0.90 -2.07
θKes -1.50 -0.96 0.70 -0.99 -2.26 -2.18 -0.67 -2.09
θEA -1.49 -0.92 0.06 -0.92 -2.21 -2.11 -0.98 -2.06

Table 1: Value of the function to optimize for each estimated parameter, for each data set.
Highest value for each column is on the diagonal. Values are normalized contrasts (divided
by the number of segments of trajectories).
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(a) Euler (b) Kessler

(c) Ozaki (d) EA MCEM

Figure 9: Estimated map for the data set of the vessel 2 (see Figure 7,) using four different
estimation methods. The cross in the bottom right of each map is the departure harbour.
The darker a zone is, the more attractive it is for the given vessel. Observed points, in white,
are plotted in order to see the superposition between maps and trajectories.
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4 Conclusions

This paper explores the performance of four inference methods to estimate parameters of a
new movement model based on a stochastic differential equation. The drift of this SDE is
defined as the gradient of a mixture of smooth potential functions while its diffusion term
is constant but unknown. Numerical experiments with simulated and real data illustrate
that the Euler discretization method is not robust to low sampling rates, which is a common
situation in movement ecology, and that the three other approximate maximum likelihood
methods perform better. Two estimation procedures are based on a Gaussian approximation
of the likelihood similar to and as easy to implement as the Euler approach. The last method
based on a Monte Carlo EM using the Exact Algorithm requires additional mathematical
assumptions on the model and is more technically and computationally intensive.

These four methods were compared to estimate potential maps (from a specific model)
using actual movement data issued from fishing vessels. Overall, it is clear here that the dif-
ferent methods can lead to different maps with various interpretations. In the case presented
here, among the three pseudo likelihood methods, the Ozaki method seems to provide the
closest estimate to the one given by the EA MCEM method, which is the best in terms of
likelihood. It is worth noting here that this last method is way more difficult to implement,
more computationally intensive and its applications are restricted to a specific kind of poten-
tial functions. The Ozaki method as presented in this paper is restricted to potentials with
invertible Jacobian matrices at observed data points, which is a weaker assumption. The
Adpative Kessler approximate method was more unstable than the Ozaki discretization as
the proposed approximation of the covariance matrix can be non positive semi-definite for
some observed points. However, the estimation procedure was robust to those points and
provided estimates close to the EA MCEM and Ozaki methods. The method is only used
in this work with an expansion of conditional moments up to order two and higher order
expansions could lead to more robust estimates. Although the Euler method is the most
widely used in movement ecology, the two other approximate likelihood procedures exhibit
better performances and are as easy to implement. The EA MCEM based method seems the
most appealing as it does not introduce any bias but the difficulty of its implementation and
the computation cost might reduce its interest.

In addition, several extensions of the proposed potential based model could be considered.
If some part of the trajectories can hardly be modeled using SDE (for fishing vessels) we could
use a Markov switching SDE where the state might follow several dynamics depending on
a regime indicator given by a finite state space hidden Markov chain. The trajectories are
not likely to be independent but could also be modeled as the solution to a 2G dimensional
SDE with interactions in the drift function and the diffusion matrix. As the individuals
are not observed at the same time, a partially observed SDE can be defined which implies
additional challenges to estimate model parameters using algorithms designed for hidden
Markov models. Finally, an undesirable property of the potential introduced in the paper is
that, far from the attractive zones, the process behaves like a Brownian motion. This can
be easily overcome for instance by adding another component in the mixture proportional to
−‖x − µG‖1/2, where G is a fixed attractive point. This ensures that even if an individual
is far from the attractive zones, he is likely to revert around G. We used this potential and
obtained very similar numerical results. We decided not to add this component in the model
as it seemed artificial to ensure stationarity for theoretical reasons.
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A Applying EA1 to Hθ

Lemma A.1. For all θ and all x ∈ R2,

0 ≤ ‖αθ(x)‖2 ≤ ᾱθ ,

where αθ is given by (9) and (14), with λ
(k)
1 and λ

(k)
2 the eigenvalues of Ck, 1 ≤ k ≤ K,

ᾱθ := e−1γ−2π̄
K∑
k=1

πk max
1≤j≤2

λ
(k)
j and π̄ :=

K∑
k=1

πk . (15)

Proof. For all θ and all x ∈ R2, by convexity of ‖ · ‖2,

‖αθ(x)‖2 =

∥∥∥∥∥
K∑
k=1

πkϕk(γx)γ−1Ck(γx− µk)

∥∥∥∥∥
2

,

≤ π̄
K∑
k=1

πkϕ
2
k(γx)

∥∥γ−1Ck(γx− µk)
∥∥2

,

≤ π̄
K∑
k=1

πkγ
−2 ‖Ck(γx− µk)‖2 exp

(
−(γx− µk)TCk(γx− µk)

)
.

Let Λk be defined by Ck = P−1
k ΛkPk where Λk is the diagonal matrix with diagonal given

by
(
λ

(k)
1 , λ

(k)
2

)
and where PkP

T
k = I2. If zk := Pk(γx− µk) then,

‖αθ(x)‖2 ≤ π̄γ−2

K∑
k=1

πk z
T
k Λ2

kzk exp
(
−
[
zTk Λkzk

])︸ ︷︷ ︸
f(zk)

,

where we used
∥∥P T

k zk
∥∥2

= ‖zk‖2 as Pk is orthogonal. The proof is concluded upon noting
that for all x ∈ R2,

f(x) ≤ e−1 max
1≤j≤2

λ
(k)
j .

Lemma A.2. For all θ and all x ∈ R2,

∆−θ ≤ ∆Hθ(x) ≤ ∆+
θ ,

where Hθ is given by (14) and, with λ
(k)
1 and λ

(k)
2 the eigenvalues of Ck, 1 ≤ k ≤ K,

∆−θ := −
K∑
k=1

πkTr(Ck) , (16)

∆+
θ := 2e−1

K∑
k=1

πk max
1≤j≤2

λ
(k)
j . (17)
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Proof. By equation (14), if Tr denotes the Trace operator,

4Hθ(X) = Tr [∇αθ(x)] ,

= −Tr

[
∇

(
K∑
k=1

πkϕk(γx)γ−1Ck(γx− µk)

)]
,

= −Tr

[
K∑
k=1

(
πk∇ϕk(γx)γ−1 [Ck(γx− µk)]T + πk ϕk(γx)γ−1Ckγ

)]
,

= −
K∑
k=1

πkϕk(γx)
{
−Tr([Ck(γx− µk)] [Ck(γx− µk)]T ) + Tr(Ck)

}
,

=
K∑
k=1

πkϕk(γx)‖Ck(γx− µk)‖2

︸ ︷︷ ︸
I(x)

−
K∑
k=1

πkϕk(γx)Tr(Ck)︸ ︷︷ ︸
J(x)

.

By definition of ϕk, for all 1 ≤ k ≤ K,

0 ≤ J(x) ≤
K∑
k=1

πkTr(Ck) .︸ ︷︷ ︸
−4−

θ

Following the same steps as for the proof of Lemma A.1,

0 ≤ I(x) ≤ 2e−1

K∑
k=1

πk max
1≤j≤2

λ
(k)
j︸ ︷︷ ︸

4+
θ

.
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