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Stochastic differential equation based on a Gaussian potential

field to model fishing vessels trajectories

Pierre Gloaguen∗ Marie-Pierre Etienne†‡ Sylvain Le Corff§

Abstract

In this paper, a new parametric model continuous in time and space is introduced to analyze
trajectory data in ecology. This model assumes that the trajectory of an individual is a solution
to a stochastic differential equation. The drift of this equation is defined as the gradient of
a potential map which is a mixture of an unknown number of Gaussian shaped functions.
Each component of this mixture may be understood as an attractive field characterizing the
propensity of the individual to move to certain regions. The parameters of this model are
estimated using an Monte Carlo Expectation Maximization algorithm based on the exact
algorithm proposed by [BPR06] to sample trajectories exactly distributed as the solution to
the stochastic differential equation. The main advantage of this discretization free method is
to be efficient even when the data are obtained at irregular times and at a slow rate. The
performance of the proposed model and estimation procedure is illustrated using simulated
data and true GPS positions of French vessels moving in the English Channel.

1 Introduction

In ecology, studies on the movement of animals provide many insights on the ecological features that
explain population-level dynamics. These analyses are crucial to wildlife managers to understand
complex animal behaviors [CG06]. In fisheries science, understanding the underlying patterns
responsible for spatial use of the ocean is a key aspect of a sustainable management [Cha11].

Both fields promote now large programs to deploy Global Positionning System (GPS) device.
For instance we might mention, among others, the Tagging of Pelagic Predators program (TOPP)1

or the TORSOOI2 program for marine animals and the WOLF GPS3 or Elephant without Borders4

programs for terrestrial wildlife. In the European Union, since the 1st of January 2012, the fishing
vessels above 12m are mandatory equipped with a Vessel Monitoring System which has become a
standard tool of fisheries monitoring and control worldwide. As a result such programs produce
large amount of trajectory data. These data sets have been largely used to understand, explain
and potentially predict animals/vessels movements.

Those tasks require modeling and analysis of the GPS tracks data but may have different
objectives. A first objective is to segment the whole trajectory in homogeneous regions which
are to be linked with behavioural activities. This is classically addressed using Hidden Markov
Models [JBTF13, GMR+15] or change point detection approaches [BB08]. A second objective
is the construction/definition of a land/space use map, defined as Utilization Distribution (UD)
of the individual, using GPS data. Two main approaches are used to build these UD maps.
First, Nonparametric kernel methods usually require assumptions such as independent data that
depend strongly on the sampling scheme of the data (although these assumptions have been relaxed
to account for autocorrelation in some recent works [CFM+15]). Another approach, based on
Brownian Bridge techniques, assumes that the trajectory is a Brownian motion and then builds
the UD by integrating the probability of presence over time.

These two approaches rely on unrealistic assumptions regarding the movement dynamics. In
this paper, it is assumed that observed trajectories of an individual are direct consequences of the
environment attractiveness, hereafter called potential. We develop a method based on continuous
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time and continuous space stochastic modeling to estimate potential maps. The random process
of interest (Xt)t≥0 describes the position of an individual continuously in time and space but
discretely observed. This process is assumed to be a solution to a stochastic differential equation
(SDE) which depends on the environment potential. This statistical framework allows to (a)
estimate the parameters of the SDE and (b) sample trajectories of individuals to predict future
behaviors.

The use of a special form of SDE to model animal movement have been studied in [JLLD08] and
[HB13]. These papers focus on the mean-reverting Ornstein-Uhlenbeck process and its extensions.
The Ornstein Ulhenbeck process has a known distribution that facilitates parameters estimation.
However, it is a quite restrictive class of model, and its extensions make the estimation framework
more complex. [PAJK04] and [PAW13] consider the special case where the drift of the SDE is the
gradient of a potential function which is a weighted sum of different sources that define attractive
(resp. repulsive) regions where the individuals are likely (resp. unlikely) to move. As the solution
to the corresponding SDE does not have an explicit density, the drift function is estimated by
applying an Euler scheme to interpolate trajectories between two consecutive observations. This
introduces an intrinsic bias in the estimation procedure, and might not be well suited for tracking
data that can be sparsely sampled.

In this paper, a SDE based on a potential function is proposed to model the position of an
individual at each time step t. The drift of the SDE is a mixture of Gaussian shaped func-
tions, with unknown weights, centers and shapes, which represent the attractive regions where the
species/fishing vessels are likely to travel.

The aim of this paper is to find the maximum likelihood estimator (MLE) for these attractive
regions using GPS data. Although the SDE has no explicit solution, considering G independent
animal/vessel trips X1, . . . ,XG, a trip Xg being a sequence of observations Xg = (Xg

0 , . . . , X
g
ng )

sampled at times tg0, . . . , t
g
ng , the parameters of the SDE (weights, centers and shapes of the

attractive regions) can be estimated using an Expectation Maximization (EM) based algorithm.
The E step is approximated by Monte Carlo methods, using the exact algorithms introduced in
[BPR06] and [BR05] for an exact sampling of the SDE. The M step is performed using the gradient
free CMAES approach described in [HO01]. As this proposed method does not rely on a discrete
scheme to approximate the true process, the estimation error of the MLE only depends on the
quality of the Monte Carlo approximation of the E step.

The paper is organized as follows. In Section 2, the target SDE is introduced and the EM
procedure based on independent trips to estimate the parameters is displayed in Section 3. Perfor-
mance of the proposed algorithm is assessed in Section 4.1 with simulated data and in Section 4.2
using a real data set. Technical results to apply the EA algorithm of [BPR06, BR05] are postponed
to Appendix A and B.

2 Model and objectives

The goal of this paper is to propose a model which allows to identify regions of high attractiveness
for an individual using GPS tagging. Those regions may then be ecologically interpreted and
understood as feeding zones for different animals or high concentration of commercially interesting
fishes for fishing vessels. The movement is modeled using a SDE on R2. The drift is the gradient
of a potential map which value at location x represents the attractiveness. The diffusion term is
assumed to be a constant scalar matrix. This apparently quite restrictive assumption is motivated
by technical reasons but seems also quite reasonable due to a lack of biological information on the
stochastic part of the movement.

Formally, the model is defined as follows. Let (Ω,F ,P) be a probability space and let C be
the set of continuous maps from [0, T ] (T > 0 is a fixed time horizon) to R2, called the Wiener
space, endowed with the usual σ-algebra C generated by cylinders. In the following, we consider
the unique measure WT on the Wiener space such that the coordinate process (Wt)0≤t≤T is a
standard Brownian motion and the natural filtration {Ft}t≥0. Each observed trajectory Xg is
a realization of the position process (Xt)t≥0 which is assumed to be a solution to the following
homogeneous SDE:

X0 = Xg
0 and dXt = bθ(Xt)dt+ γdWt , (1)

where γ ∈ R is the diffusion coefficient and the drift function bθ is defined as follows : bθ := ∇Pθ,
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Figure 1: One example of potential map (when K = 3). Each black dot represents the position of
µk (k = 1, 2, 3), the dot size being relative to the weight πk.

where Pθ : R2 → R is given, for all x ∈ R2, by

Pθ(x) :=

K∑
k=1

πkϕ
θ
k(x) , (2)

ϕθk(x) := exp

(
−1

2
(x− µk)TCk(x− µ)

)
.

where πk ∈ R, µk ∈ R2, and Ck is a positive-definite matrix. The parameter θ contains all the
unknown quantities we wish to estimate: (µk)1≤k≤K , (Ck)1≤k≤K and (πk)1≤k≤K and we will
discuss either γ has to be estimated or not. µk, Ck and πk are respectively location, shape and
weight parameters of the k-th attractive zone. The number of attractive zones K is first assumed
to be known. Therefore, for all x ∈ R2,

bθ(x) = −
K∑
k=1

πkϕ
θ
k(x)Ck (x− µk) . (3)

Since bθ is Lipschitz and γ is constant, the solution to this SDE exists and is unique.
Figure 1 shows one possible example of map of space use, the gradient of which defining the

drift b of the proposed SDE. The model therefore captures the idea of attractive zones we aim
at identifying. The parametric form of (2) provides a smooth and flexible framework to describe
different potential maps. The potential map is chosen positive (but could be chosen negative), but
has no constraint to integrate to 1. For these reasons, the map is not a probability distribution.
However, as the potential is supposed to be bounded, it might be understood as a measure of
attractiveness.

The assumption on the diffusion parameter is quite strong. In a more general context we could
have defined the diffusion term as a matrix Γ but we would need to ensure that the proposed model
is such that the function x 7→ Γ−1b(Γx) is conservative, i.e. such that there exists

Hθ : R2 → R satisfying ∇Hθ = Γ−1bθ(Γx). (4)

In the model described by (1) and (3), the mapping x 7→ γ−1b(γx) is conservative with

Hθ : x 7→
K∑
k=1

πkϕ
θ
k(γx)/γ . (5)

This conservative property is crucial to apply the exact algorithm 1 of [BPR06], which allows to
sample skeleton of trajectories exactly distributed as the solution to (1). This assumption could
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be modified in the case of a non constant diffusion matrix x 7→ Γ(x) at the cost of a lot of technical
complications.

This model depends on the parameters γ, (πk)1≤k≤K , (µk)1≤k≤K and (Ck)1≤k≤K . We will
discuss two cases whether γ is known or not in Section 3. As the Ck’s are symmetric positive
definite matrices, 6K or 6K + 1 parameters have to be estimated. The aim of this paper is
then to estimate these parameters using a set of G independent and partially observed realizations
(Xg, g = 1, . . . , G) of the process (Xt). The ng+1 observations of the g-th realization are observed
at times (tg0, . . . , t

g
ng ) and are denoted (Xg

0 , . . . , X
g
ng ).

Parameter estimation for diffusion processes is a complicated task due to the unavailability
of the transition density of the Markov process defined by (1), see [Sor04] and the references
therein for a recent survey. Many methodologies introduce an approximation of this transition
density, mostly based on Euler scheme, see for instance [AS08] for an explicit approximation which
converges uniformly on the parameter space to the true transition density. See also [DG02, Ped95]
for methods relying on approximate Monte Carlo maximum likelihood or [ECS01, Era01, RS01]
for Markov chain Monte Carlo methods combined with data augmentation. In this paper, the
estimation procedure is based on the exact algorithm introduced in [BPR06]. This algorithm allows
to sample skeletons of trajectories exactly distributed as the finite dimensional distribution of the
target SDE (1). These skeletons can then be used to obtain unbiased Monte Carlo estimates of the
intermediate quantity of the Expectation Maximization algorithm to define maximum likelihood
estimates of θ, as described in [BPRF06].

3 Expectation Maximization based procedure

This section provides an algorithm to estimate the parameter θ using a set of G independent
trips X1, . . . ,XG. Statistical inference based on a set of observations usually requires the finite-
dimensional distributions of the process (Xt) to be available. However, in the context of this paper,
thanks to the results of [BR05, BPRF06], the likelihood of the complete path (Xt) with respect
to a reference measure on (C, C) can be obtained easily using Girsanov theorem even if the finite
dimensional distribution of (Xt0 , . . . , Xtn) is not explicitly available. This setting is conducive to
the use of the EM algorithm proposed by [DLR77] which allows to perform maximum likelihood
estimation when the joint distribution of the observations and some additional missing data is
available. Starting with an initial estimate θ0, the EM algorithm produces iteratively a sequence
(θp)p≥0 that converges toward a local maximum of the likelihood of the observations. The EM
based algorithm proposed in this paper relies on the Monte Carlo EM procedure presented in
[BPRF06].

E-step

For the sake of clarity, the E-step is first presented assuming that the diffusion γ is known, the
general case is developped in the following section.

Case where the diffusion coefficient γ is known: in this case, the parameter to be estimated
is

θ := {(πk)1≤k≤K ; (µk)1≤k≤K ; (Ck)1≤k≤K} .

For all θ, the law of the process solution to (1) is absolutely continuous with respect to the law of
the driftless diffusion γdWt. In this case, the dominating measure on (C, C) does not depend on
θ as γ is known so that maximum likelihood estimation of θ is possible. The procedure proposed
in [BPRF06] is based on rejection sampling and uses a reparametrization of the observations to
simplify the dominating measure: the process (Xt)0≤t≤T is transformed into a new diffusion process
(Yt)0≤t≤T with unit diffusion coefficient. Define the Lamperti transform η : x 7→ γ−1x. By Ito’s
formula, the process (Yt) = η(Xt))0≤t≤T satisfies Y0 = γ−1X0, YT = γ−1XT and

dYt = αθ(Yt)dt+ dWt , (6)

where αθ is given by

αθ : R2 7→ R2 (7)

x 7→ γ−1bθ(γx) = −
K∑
k=1

πkϕ
θ
k(γx)γ−1C−1

k (γx− µk) .
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Let QθT be the law of (Yt)0≤t≤T on (C, C) when the SDE is parameterized by θ. By Girsanov
formula, QθT is absolutely continuous with respect to the Wiener measure WT on (C, C) and its
Radon-Nikodym derivative is given by:

dQθT
dWT

(ω) = exp

{∫ T

0

αθ(ωs)dωs −
1

2

∫ T

0

‖αθ(ωs)‖2ds

}
.

Then, applying Ito’s formula,

dQθT
dWT

(ω) = exp

{
Hθ(ωT )−Hθ(ω0)− 1

2

∫ T

0

[
∆Hθ(ωs) + ‖αθ(ωs)‖2

]
ds

}
,

where Hθ is defined by (5) and

∆Hθ : x 7→ ∂αθ,1
∂x1

(x) +
∂αθ,2
∂x2

(x) . (8)

Therefore, the log-likelihood function of a complete path is given by:

L(ω, θ) := Hθ(ωT )−Hθ(ω0)− 1

2

∫ T

0

[
∆Hθ(ωs) + ‖αθ(ωs)‖2

]
ds .

For each trip 1 ≤ g ≤ G, the observations Xg are transformed into Y g where for all 0 ≤ k ≤ ng,
Y gk = γ−1Xg

k . Given a current estimate θp, the E-step consists in the computation of the interme-
diate quantity θ 7→ Q(θ, θp) given, as the transformed trips (Y g, g = 1, . . . , G) are independent,
by

Q(θ, θp) :=

G∑
g=1

Eθp [L(Y, θ)|Y g] ,

=

G∑
g=1

{
Hθ(Y

g
ng )−Hθ(Y

g
0 )− 1

2
Eθp

[∫ tg
ng

0

[
∆Hθ(Ys) + ‖αθ(Ys)‖2

]
ds

∣∣∣∣∣Y g

]}
,

=

G∑
g=1

Hθ(Y
g
ng )−Hθ(Y

g
0 )− 1

2

ng∑
j=1

Eθp

[∫ tgj

tgj−1

[
∆Hθ(Ys) + ‖αθ(Ys)‖2

]
ds

∣∣∣∣∣Y g

] ,

where Eθp [·|Y g] denotes the conditional expectation under the law of the process (Yt) on (C, C)
given Y g when the SDE is parameterized by θp.

The conditional expectations required to compute the intermediate quantity θ 7→ Q(θ, θp) are
not available analytically but, as noted by [BPRF06],∫ tgj

tgj−1

[
∆Hθ(Ys) + ‖αθ(Ys)‖2

]
ds =

(
tgj − t

g
j−1

)
Eθp

[
∆Hθ(YUg,j ) + ‖αθ(YUg,j )‖2

∣∣(Yt)0≤t≤T
]
,

where Ug,j is independent of (Yt)0≤t≤T and uniformly distributed on [tgj−1, t
g
j ]. Then, the quantity

Q(θ, θp) may be estimated by Monte Carlo simulations. For all 1 ≤ g ≤ G, 1 ≤ j ≤ ng and all
1 ≤ i ≤ Ng

j ,

(i) simulate (Ug,j,ik )1≤k≤Mj
independently and uniformly on [tgj−1, t

g
j ] ;

(ii) conditional on Y gj−1 and Y gj , sample a skeleton Y g,j,i at time instances (Ug,j,ik )1≤k≤Mg
j
.

Then, Q(θ, θp) is estimated by QN (θ, θp) where

QN (θ, θp) :=

G∑
g=1

Hθ(Y
g
ng )−Hθ(Y

g
0 )− 1

2

ng∑
j=1

tgj − t
g
j−1

Mg
j N

g
j

Ngj∑
i=1

Mj∑
k=1

{
∆Hθ

(
Y g,j,i
Ug,j,ik

)
+
∥∥∥αθ (Y g,j,iUg,j,ik

)∥∥∥2
} .

The procedure to sample each Y g,j,i
Ug,j,ik

given Y gj−1 and Y gj is the Exact Algorithm 1 (EA1) of [BPR06].

It is detailed in Appendix A for completeness along with technical results in Appendix B for the
specific implementation details to be applied to the model presented in this paper.
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Case where the diffusion coefficient γ is unknown: in this case, the parameter to be
estimated is

θ := {(πk)1≤k≤K ; (µk)1≤k≤K ; (Ck)1≤k≤K ; γ} .

Then, the transformation η to obtain the unitary diffusion (6) depends on θ. For all 1 ≤ g ≤ G,
the set (Y g0 (θ), . . . , Y gng (θ)) is not directly observed but is a function of the unknown parameter θ.
[BPRF06] suggested to use a second path transformation to define a dominating measure which
does not depend on θ. Define, for all 1 ≤ g ≤ G, 1 ≤ j ≤ ng and all s ∈ [tgj−1, t

g
j ],

Ẏ gs (θ) := Y gs (θ)−

(
1−

s− tgj−1

tgj − t
g
j−1

)
Y gj−1(θ)−

s− tgj
tgj − t

g
j−1

Y gj (θ) . (9)

The transformation (9) maps (Y g(θ))tgj−1≤s≤t
g
j

onto the diffusion bridge (Ẏ g)tgj−1≤s≤t
g
j

starting and

ending at 0 for all θ. The law of this transformed process (Ẏ g)tgj−1≤s≤t
g
j

is absolutely continuous

with respect to the law of the Brownian bridge on [tgj−1, t
g
j ] starting and ending at 0. The inverse

transform of (9) is given by:

fθ(Ẏ
g
s (θ′)) := Ẏ gs (θ′) +

(
1−

s− tgj−1

tgj − t
g
j−1

)
Y g
tgj−1

(θ) +
s− tgj

tgj − t
g
j−1

Y g
tgj

(θ) . (10)

The complete path used in the EM algorithm is now {(Ẏ gt )0≤t≤T ; Y g} and the intermediate
quantity of the EM algorithm is, by [BPRF06, Lemma 2],

Q(θ, θp) =

G∑
g=1

−2ng log γ +Hθ(Y
g
ng (θ))−Hθ(Y

g
0 (θ)) +

ng∑
j=1

log φtgj−t
g
j−1

(Y gj (θ)− Y gj−1(θ)))

−1

2

ng∑
j=1

Eθp

[∫ tgj

tgj−1

[
∆Hθ

(
fθ(Ẏ

g
s (θp))

)
+ ‖αθ

(
fθ(Ẏ

g
s (θp))

)
‖2
]

ds

∣∣∣∣∣Y g

] ,

where φu is the probability density function of a 2 dimensional N (0, uI) random variable. Then,
following the same steps as in the case where γ is known, the quantity Q(θ, θp) may be estimated
by Monte Carlo simulations. For all 1 ≤ g ≤ G, 1 ≤ j ≤ ng and all 1 ≤ i ≤ Ng

j ,

(i) simulate (Ug,j,ik )1≤k≤Mg
j

independently and uniformly on [tgj−1, t
g
j ] ;

(ii) conditional on Y gj−1(θp) and Y gj (θp), draw a skeleton Y g,j,i at times (Ug,j,ik )1≤k≤Mg
j

;

(iii) compute Ẏ g,j,i(θp) at time instances (Ug,j,ik )1≤k≤Mg
j

by evaluating (9) at Y g,j,i
Ug,j,ik

(θp).

Then, Q(θ, θp) is estimated by QN (θ, θp) where

QN (θ, θp) :=

G∑
g=1

−2ng log γ +

ng∑
j=1

log φtgj−t
g
j−1

(
Y gj (θ)− Y gj−1(θ)

)
+Hθ(Y

g
ng )−Hθ(Y

g
0 )

− 1

2

ng∑
j=1

tgj − t
g
j−1

Mg
j N

g
j

Ngj∑
i=1

Mg
j∑

k=1

{
∆Hθ

(
fθ

(
Ẏ g,j,i
Ug,j,ik

))
+
∥∥∥αθ (fθ (Ẏ g,j,iUg,j,ik

))∥∥∥2
}}

. (11)

M-step

In both cases (γ known or unknown), as the function θ 7→ QN (θ, θp) cannot be maximized analyti-
cally, the M-step is performed numerically. This step is based on the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) introduced in [HO01] which is a derivative-free optimization pro-
cedure. The CMA-ES is known to perform well for complex multimodal optimization problems,
see e.g. [HK04]. In our case, the constrained version of CMAES should be used but the fol-
lowing parametrization circumvents the constraints problem and the classical version of CMA-ES
algorithm is finally used:
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- each Ck is a positive definite matrix and may be written

Ck =

(
exp(2ak1) ak3 exp(ak1)
ak3 exp(ak1) exp(2ak2) + (ak3)2

)
,

where ak1 , a
k
2 , a

k
3 ∈ R ;

- for all 1 ≤ k ≤ K, πk > 0 and may be written exp(π̃k), with π̃k ∈ R;

- γ > 0 and may be written exp(γ̃), with γ̃ ∈ R.

Parameters of the CMA-ES algorithm are tuned according to the heuristics given in [HK04], except
for the initial standard deviation at each MCEM step. It is chosen to be increasing from a small to
a large value during the first iterations, and then decreasing from this large value to a smaller one
for last iterations. This method allows a good exploration of the parameter space without using
time consuming adaptative techniques.

Model selection

In the previous section, the number of mixture components K has been assumed to be known and
fixed. In the context of mixture models, following [BCG00] the number of components is classically
selected according to Integrated Completed Likelihood (ICL) criterion. Even if the shape of the
target potential function reminds this context, the missing data in the presented work are the full
trajectories and not the component identifier, therefore the ICL criterion can not be easily derived
in our context. The number of components is obtained by approximating the Akäıke Information
criterion by:

AIC(θ̂) = −2

G∑
g=1

L(Yg, θ̂) + 2dim(θ̂) ,

where L(Yg, θ̂) is the loglikelihood of the g-th observed path. The estimation approach adopted

in this paper provides, for a given estimator θ̂, a surrogate for the loglikelihood of the observed
paths by computing Q(θ̂, θ̂) using equation (11). However, we cannot compute

∑G
g=1 L(Yg, θ̂) as

G∑
g=1

L(Yg, θ̂) = Q(θ̂, θ̂)−
G∑
g=1

Eθ̂
[
log pθ̂(Y

−g|Yg)
∣∣Yg

]
,

where pθ̂(Y
−g|Yg) is the conditional distribution of the missing path given Yg when the parameter

is θ̂ which is not available analytically. Nevertheless, following [BPR09, Theorem 1], the EA1 algo-

rithm allows to use Monte Carlo simulations to obtain an estimator LN (Yg, θ̂) of the loglikelihood

L(Yg, θ̂) for all 1 ≤ g ≤ G which in turn defines an estimate of AIC(θ̂) to choose the best model.
This procedure is detailed in Appendix C.

4 Experimental results

4.1 Simulated data set

This section illustrates the performance of our procedure using simulated data in the case where
the diffusion coefficient γ is unknown. For a given set of parameters, a toy set of trips X1, . . . ,XG

satisfying (1) is simulated using the exact algorithm EA1 of [BPR06]. From this data set, the MLE
is estimated using the algorithm described in section 3. The estimation is performed with K = 1
(7 parameters to estimate) and K = 2 (14 parameters to estimate). In each case, 3 configurations
are tested:

- Scenario 1: G trajectories starting from G different Xg
0 , with n observations sampled at regular

times ;

- Scenario 2: G trajectories starting from a unique X0, with n observations sampled at regular
times (time step set at δ = 0.25);

- Scenario 3: G trajectories starting from a unique X0, with n observations sampled at irregular
times. Trajectories with 5n points are simulated with a regular time step δ = 0.05, and n
observations are drawn uniformly from these trajectories.
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The first configuration is an ”ideal case” as the exploration of the space is better with different
starting points. The second and third configurations are more likely to happen in a real context
since tagged individuals often start there trips from a unique point such as a colony or a harbor.
Moreover, in ecology, most of timesteps acquisition of GPS positions are irregular due to envi-
ronmental conditions. Examples of simulated trajectories for (K = 2, scenario 2) are shown in
Figure 2. For K = 1 and K = 2, we set G = 500, n = 31, corresponding to numerous but short
trajectories. For each sampling scheme, the MCEM algorithm is performed from 50 starting points

θ
(i)
0 , i = 1, . . . , 50 giving 50 estimates θ̂(i), i = 1, . . . , 50. Then, the final estimate is given by

θ̂ = argmaxi

G∑
g=1

LN (Yg, θ̂(i)) ,

where LN (Yg, θ̂(i)) is the estimator of the loglikelihood L(Yg, θ̂(i)) of the g-th trajectory (see
Appendix C). The number of Monte Carlo samples to approximate the expectation increases with
EM iterations (following [FM03]), up to a maximum of 100 particles per segment.

Choosing the starting point θ0 of EM algorithm A key aspect in the behaviour of the EM
algorithm deals with the initial set of parameters: choosing an appropriate θ0 is crucial to design a
time efficient estimation procedure. We consider some heuristics to pick a first guess, that would,
of course, depend on the experiment.

- First guess for µ and C may be chosen using Gaussian mixture estimators, ignoring the correlation
between successive relocations. However, this technique requires a subsampling of trajectories
to get rid of the autocorrelation of the observed processes. This method may also be used to get
the relative weight of each attractive zone.

- Choosing a good first guess for γ may be done using different estimators for diffusion process,
for instance using Brownian bridges techniques. In practice, the estimation of this parameter is
hardly sensitive to the starting point.

- A first guess for
∑
πk may be trickier to find as it is strongly related to the speed of the individuals

and thus requires expert knowledge of the experimental setting. It might be set to one.

Several values are drawn around this heuristically chosen starting set of parameters, corre-
sponding to several trajectories of convergence. Finally the best estimate is chosen by computing
the approximate log likelihood, as explained in appendix C.

Results An example of MCEM trajectories for (K = 1, scenario 3) is shown in Figure 3. Map
estimates for K = 1 and K = 2 are presented in Figures 4 and 5. Detailed values for the best
estimates are shown in Tables 1 and 2. As general comments, for all scenarios, there is a very
fast convergence for the parameter γ. In these simple scenarios, our algorithm provides efficient
estimates for the location parameters µ. The convergence is often slower for weights parameters
πk and shape parameters Ck. As expected, best estimates are obtained when the sampling is
regular and the space is well explored (Scenario 1). Good estimation behavior is still observed
when only one starting point is considered, and irregularity in sampling seems to have no impact
on the performance of the estimation. This last point might be of great importance when dealing
with actual data, as environmental conditions often lead to irregular sampling.

4.2 Real data set

GPS positions of a French fishing vessel performing in the English Channel were recorded during
one year. The data set consists of 57 trajectories (assumed to be independent). Each trajectory is
sampled regularly every 15 minutes in average, with about 40 points per trajectory, giving a total
of 2723 points. The raw data set is shown on Figure 6a. Model (1) described above is fitted to this
data set with K = 1, K = 2 and K = 3 modes5. Starting points for the EM algorithm were chosen
randomly, using uniform distributions for position parameters (µk) weight parameters (πk) and
diffusion parameter γ, and Wishart distributions for shape parameters (Ck). A hundred iterations
of the MCEM algorithm were performed for each point. For this data set, the model with three
modes was selected using the approximated AIC criterion. The estimated maps for all values of K

5The model was coded and fitted using the R software [R C14] coupled with C++, using the package Rcpp
[EF11]. All codes are available on demand.
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Figure 2: 1000 simulated trajectories for K = 2 starting from a unique X0 (blue point). Each
trajectory is sampled 30 times. Final points are colored in green. High (resp. low) potential areas
of the underlying map are represented in white (resp. red).

Scenario/Parameter π1 µ(1) C(1) γ

True Value 0.4 (1, 0)′
(

1 0
0 1

)
0.2

Scen. 1 0.394 (0.999, 0)′
(

0.974 0.017
0.017 0.951

)
0.196

Scen. 2 0.39 (1.019,−0.002)′
(

0.931 −0.015
−0.015 1.006

)
0.196

Scen. 3 0.388 (1.046,−0.008)′
(

1.013 −0.113
−0.113 1.054

)
0.197

Table 1: Best estimates for each scenario when K = 1. Results are rounded to 10−3.
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Figure 3: Example of MCEM trajectories for (K = 1, scenario 3). The red line is the best estimate
and the green dotted line is the true value.

True Map Scen. 1

Scen. 2 Scen. 3

Figure 4: Estimated map for the three scenarios when K = 1. The scale is the same on each graph.
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True Map Scen. 1

Scen. 2 Scen. 3

Figure 5: Estimated map for the three scenarios when K = 2. The scale is the same on each graph.

Scenario/Parameter π1 , π2 µ(1) , µ(2)

True Value 0.5 , 0.5 (1, 0)′ , (−1, 0)′

Scen 1. 0.498 , 0.497 (1.01, 0)′ , (−1.01, 0.002)′

Scen 2. 0.399 , 0.399 (0.969,−0.002)′ , (−0.981,−0.005)′

Scen 3. 0.434 , 0.430 (0.974,−0.005)′ , (−0.991,−0.003)′

Scenario/Parameter C(1) , C(2) γ

True Value

(
1.667 0

0 1.667

)
,

(
1.667 0

0 1.667

)
0.1

Scen 1.

(
1.644 −0.012
−0.012 1.633

)
,

(
1.628 −0.007
−0.007 1.684

)
0.098

Scen 2.

(
1.825 −0.017
−0.017 2.241

)
,

(
1.943 −0.055
−0.055 2.059

)
0.098

Scen 3.

(
1.691 −0.002
−0.002 2.004

)
,

(
1.920 −0.039
−0.039 1.829

)
0.097

Table 2: Best estimates for each scenario when K = 2. Results are rounded to 10−3.
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Harbour

(a) Raw data (b) K = 1 (c) K = 2 (d) K = 3

Figure 6: Estimated attractive zones for a French fishing vessel performing in the Channel. The
model presented above is fitted with 1, 2 and 3 modes.

are given on figure 6. Three non connected zones are identified, a highly attractive deep sea zone,
an attractive coastal zone, and an intermediate zone between two waters. The zones are oriented
East-West, reflecting the main surface currents directions in the Channel.

5 Conclusions

This work proposes a new parametric model continuous in time and continuous in space to an-
alyze trajectory data in ecology. This model assumes the trajectory process of an individual to
be the realization of the solution to a SDE. The drift of this SDE reflects the attractiveness of
the environment. More formally, the drift is defined as the gradient of a potential map. The
model is estimated using an Monte Carlo EM algorithm. The Monte Carlo aspects rely on the
exact algorithm for simulation proposed by [BPR06]. The exact simulation algorithm avoids the
estimation bias due to discretization schemes, which may be large when the sampling frequency is
not high enough. Here, the estimation of the potential map does not require any assumption on
the sampling frequency, as would require kernel methods or discrete time models. The potential
map is chosen here to be a mixture of positive Gaussian shaped functions. The parametric form
of P (·) allows a flexible form for maps, however, the number of parameters increases linearly with
the number of modes.

A minor change in this work would be to modify the parametric form of P (·) to describe other
shapes for attractive areas, keeping only the boundary and C2 properties. Such a change would only
require a new computation of technical bounds required for the simulation procedure. As in any
mixture model, the model selection problem arises and should be investigated in our framework.
As an approximation of the loglikelihood is available, a penalized likelihood based criterion can be
used. The approximation of the AIC criterion adopted here is the one proposed by [UY05] and
[Iac09]. An important point here is that the criterion assumes the process solution to the SDE to
be ergodic, as this criterion is mostly computed using one unique long realization. The process
considered in equation (1) is not ergodic and exhibits Brownian Motion like behaviour when far
from the attractive zone. Nevertheless good asymptotic properties are obtained as the number of
trajectories G considered goes to infinity and the property of ergodicity is no more required. Since
this model is intended to be used for ecological trajectory data sets and the structure of the data
will often consist in a large amount of (presumably) independent trajectories that allows the state
space to be visited. The ergodic property for the solution of our process would be satisfied at the
cost of a change in the drift adding a term which avoids the process to visit space to far from the
attractive points.

This model assumes that the diffusion coefficient is scalar, which is mainly a technical constraint.
Using the approach presented here, the diffusion must satisfy a conservative property, that is
actually the core of our model. A major limitation of our approach for ecological users might be
the time homogeneous potential map. This assumption guarantees the process solution to the SDE
(1) to have Markovian properties which greatly simplifies the estimation procedure. However, it is
known that an individual might adopt different behaviors during its trips. It might be interesting
to introduce state space models where different behaviors are considered.

Another interesting improvement would be to add interactions between individuals. An at-
traction/repulsion term could be added in the drift to indicate whether individuals are likely to
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cooperate or not. Another limitation of our process is the non existence of a stationary distribution
which is linked to the non ergodic property mentioned before. This is not a problem in practice
since the starting point is close to attractive zones but, in theory, ecologists would rather consider
an additional term to ensure the existence of a stationary distribution. This would be mandatory
if considering only one unique long trajectory. As said above, if this term still allow the function
in (7) to satisfy the conservative property, the estimation framework presented here would remain
valid.

To conclude, we believe the model presented here offers new insight for trajectory analysis. We
propose a general model continuous in time and space, that requires no assumption on sampling
frequency. We think that this gradient based model and its estimation framework could be easily
extended to answer many ecological questions.
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[GMR+15] P. Gloaguen, S. Mahévas, E. Rivot, M. Woillez, J. Guitton, Y. Vermard, and M. P.
Etienne. An autoregressive model to describe fishing vessel movement and activity.
Environmetrics, 26(1):17–28, 2015.

[HB13] K.J. Harris and P.G. Blackwell. Flexible continuous-time modelling for heterogeneous
animal movement. Ecological Modelling, 255:29–37, 2013.

[HK04] N. Hansen and S. Kern. Evaluating the CMA Evolution Strategy on Multimodal Test
Functions. Eighth International Conference on Parallel Problem Solving from Nature,
72:337–354, 2004.

[HO01] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

[Iac09] S.M. Iacus. Simulation and Inference for Stochastic Differential Equations: With R
Examples. Springer Series in Statistics. Springer, 2009.

[JBTF13] R. Joo, S. Bertrand, J. Tam, and R. Fablet. Hidden Markov Models: The Best Models
for Forager Movements? PLoS ONE, 8(8):e71246, 08 2013.

[JLLD08] D.S. Johnson, J.M. London, M.-A. Lea, and J.W. Durban. Continuous-time correlated
random walk model for animal telemetry data. Ecology, 89(5):1208–1215, 2008.

[PAJK04] H.K. Preisler, A.A Ager, B.K. Johnson, and J.G. Kie. Modeling animal movements
using stochastic differential equations. Environmetrics, 15:643–657, 2004.

[PAW13] H.K. Preisler, A.A. Ager, and M.J. Wisdom. Analyzing animal movement patterns
using potential functions. Ecosphere, 4(3), 2013.

[Ped95] A.R. Pedersen. Consistency and asymptotic normality of an approximate maximum
likelihood estimator for discretely observed diffusion processes. Bernoulli, 1:257–279,
1995.

[R C14] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2014.

[RS01] G.O. Roberts and O. Stramer. On inference for partially observed nonlinear diffusion
models using the Metropolis-Hastings algorithm. Biometrika, 88:603–621, 2001.

[Sor04] H. Sorensen. Parametric inference for diffusion processes observed at discrete points
in time: a survey. Internat. Statist. Rev., 72:337–354, 2004.

[UY05] M. Uchida and N. Yoshida. Aic for ergodic diffusion processes from discrete observa-
tions. preprint MHF, 12, 2005.

A Exact simulation of trajectories

This section details the mechanism to sample Yu conditionally on (Y0, YT ), where (Yt)0≤t≤T is
a process solution to (6). Using the exact algorithm EA1 of [BPR06], this can be done using
a rejection sampling algorithm based on Brownian bridges obtained at some random time steps.
Let Qyθ (resp. Wy) be the probability measure induced by (Yt)0≤t≤T (resp. (Wt)0≤t≤T ) on (C, C)
conditioned on hitting y at time T . By (5), Girsanov theorem implies that

dQyθ
dWy

(ω) ∝ exp

{
−1

2

∫ T

0

{
‖αθ(ωs)‖2 + ∆Hθ(ωs)

}
ds

}
. (12)

By lemmas B.1 and B.2, there exists `θ ∈ R such that for all x ∈ R2,

1

2

(
‖αθ(x)‖2 + ∆Hθ(x)

)
≥ `θ .
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Then, if φθ is given by φθ : x 7→ 1
2

(
‖αθ(x)‖2 + ∆Hθ(x)

)
− `θ, the likelihood ratio (12) can be

written:
dQyθ
dWy

(ω) ∝ exp

{
−
∫ T

0

φθ(ωs)ds

}
≤ 1 .

To draw a path with distribution Qyθ , a path (ωs)0≤s≤T is sampled from Wy and accepted with
probability pθ given by

pθ = exp

(
−
∫ T

0

φθ(ωs)ds

)
. (13)

This acceptance probability cannot be evaluated in practice but this computation can be avoided by
accepting a proposed path from Wy with the realization of an event of probability pθ. In [BPRF06],
pθ is interpreted as the probability of an event associated with an inhomogeneous Poisson process
on [0, T ] with intensity φθ(ωs). By lemmas B.1 and B.2, there exists Λ such that

sup
s∈[0,T ]

φθ(ωs) ≤ Λθ .

By [BPRF06, Theorem 1], if Φ is a Poisson process on [0, T ]× [0,Λθ] with intensity ΛθT and if NΦ

is the number of points of Φ below the graph of s 7→ φθ(ωs), then

P [NΦ = 0|(ωs)0≤s≤T ] = pθ .

The mechanism goes as follows. Let M be distributed according to a Poisson random variable with
parameter ΛθT , {τ1, . . . , τM} be uniformly distributed on [0, T ] and {Φ1, . . . ,ΦM} be uniformly
distributed on [0,Λθ]. Then, a proposed path (ωs)0≤s≤t from Wy (sampled using Brownian bridge
dynamics) is accepted as a path from Qyθ if I = 1, where

I :=

M∏
i=1

1φθ(ωτj )<ΛθΦj . (14)

If the proposed path is accepted it can then be filled at time u using brownian bridge dynamics.
This procedure is displayed in Algorithm 1.

Algorithm 1 Exact algorithm to sample Yu conditionally on (Y0 = x, YT = y)

1: repeat
2: Let Λθ be such that supx∈R2 φθ(x) ≤ Λθ .
3: Draw M , a Poisson random variable with parameter ΛθT .
4: Draw {τ1, . . . , τM} uniformly on [0, T ] and {Φ1, . . . ,ΦM} uniformly on [0,Λθ].
5: Conditionally to Y0 = x and YT = y, draw a Brownian bridge at times {τ1, . . . , τM}. The

skeleton obtained is noted ωτ1 . . . ωτM
6: Compute

I =

M∏
i=1

1φθ(ωτj )<ΛθΦj = 1 .

7: until I = 1
8: Find k ∈ {1 . . .M − 1} such that τk ≤ u < τk+1

9: Draw Yu from a Brownian Bridge, starting at ωτk and ending at ωτk+1
.

B Implementation of EA1 for a mixture of Gaussian fields

Lemma B.1. For all θ and all x ∈ R2,

0 ≤ ‖αθ(x)‖2 ≤ ᾱθ ,

where αθ is given by (7) and, with λ
(k)
1 and λ

(k)
2 the eigenvalues of Ck, 1 ≤ k ≤ K,

ᾱθ := e−1γ−2π̄

K∑
k=1

πk max
1≤j≤2

λ
(k)
j and π̄ :=

K∑
k=1

πk . (15)
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Proof. For all θ and all x ∈ R2, by convexity of ‖ · ‖2,

‖αθ(x)‖2 =

∥∥∥∥∥
K∑
k=1

πkϕk(γx)γ−1Ck(γx− µk)

∥∥∥∥∥
2

,

≤ π̄
K∑
k=1

πkϕ
2
k(γx)

∥∥γ−1Ck(γx− µk)
∥∥2

,

≤ π̄
K∑
k=1

πkγ
−2 ‖Ck(γx− µk)‖2 exp

(
−(γx− µk)TCk(γx− µk)

)
.

Let Λk be defined by Ck = P−1
k ΛkPk where Λk is the diagonal matrix with diagonal given by(

λ
(k)
1 , λ

(k)
2

)
and where PkP

t
k = I2. If zk := Pk(γx− µk) then,

‖αθ(x)‖2 ≤ π̄γ−2
K∑
k=1

πk z
T
k Λ2

kzk exp
(
−
[
zTk Λkzk

])︸ ︷︷ ︸
f(zk)

,

where we used
∥∥PTk zk∥∥2

= ‖zk‖2 as Pk is orthogonal. The proof is concluded upon noting that for
all x ∈ R2,

f(x) ≤ e−1 max
1≤j≤2

λ
(k)
j .

Lemma B.2. For all θ and all x ∈ R2,

∆−θ ≤ ∆Hθ(x) ≤ ∆+
θ ,

where ∆Hθ is given by (5) and, with λ
(k)
1 and λ

(k)
2 the eigenvalues of Ck, 1 ≤ k ≤ K,

∆−θ := −
K∑
k=1

πkTr(Ck) , (16)

∆+
θ := 2e−1

K∑
k=1

πk max
1≤j≤2

λ
(k)
j . (17)

Proof. By (5), if Tr denotes the Trace operator,

4Hθ(X) = Tr [∇αθ(x)] ,

= −Tr

[
∇

(
K∑
k=1

πkϕk(γx)γ−1Ck(γx− µk)

)]
,

= −Tr

[
K∑
k=1

(
πk∇ϕk(γx)γ−1 [Ck(γx− µk)]

T
+ πk ϕk(γx)γ−1Ckγ

)]
,

= −
K∑
k=1

πkϕk(γx)
{
−Tr([Ck(γx− µk)] [Ck(γx− µk)]

T
) + Tr(Ck)

}
,

=

K∑
k=1

πkϕk(γx)‖Ck(γx− µk)‖2︸ ︷︷ ︸
I(x)

−
K∑
k=1

πkϕk(γx)Tr(Ck)︸ ︷︷ ︸
J(x)

.

By definition of ϕk, for all 1 ≤ k ≤ K,

0 ≤ J(x) ≤
K∑
k=1

πkTr(Ck) .︸ ︷︷ ︸
−4−

θ
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Following the same steps as for the proof of Lemma B.1,

0 ≤ I(x) ≤ 2e−1
K∑
k=1

πk max
1≤j≤2

λ
(k)
j︸ ︷︷ ︸

4+
θ

.

C Unbiased likelihood estimation for model selection

In the numerical Section, we need to estimate the loglikelihood L(Yg, θ) of each path 1 ≤ g ≤ G
for a given parameter θ in order a) to choose the best estimate among the ones obtained from
different starting points in the EM procedure and b) to compute the approximate AIC criterion
for the chosen estimate to select the best number of components in our model. Note that,

L(Yg, θ) =

ng∑
j=0

log ptgj−t
g
j−1

(Y gj , Y
g
j−1, θ) ,

where ptgj−t
g
j−1

(Y gj , Y
g
j−1, θ) is the conditional distribution of Y gj (at time tgj ) given Y gj−1 (at time

tgj−1) when the parameter value is θ (with the convention that ptg0−t
g
−1

(Y g0 , Y
g
−1, θ̂) is the likelihood of

the first observation Y g0 of path g). By [BPR09, Theorem 1], using the EA1 algorithm, it is possible,
for any 1 ≤ g ≤ G and any 1 ≤ j ≤ ng, to define an unbiased estimator of ptgj−t

g
j−1

(Y gj , Y
g
j−1, θ).

Following the same steps as in [BPR09, Theorem 1], it can be proved that

ϕtgj−t
g
j−1

(Y gj − Y
g
j−1) exp

{
Hθ(Y

g
j )−Hθ(Y

g
j−1)− `θ(tgj − t

g
j−1)

}
×

Υθ∏
i=1

(1− φθ(ωUi)/Λθ)

is an unbiased estimator of ptgj−t
g
j−1

(Y gj , Y
g
j−1, θ) when ω has the law of a Brownian bridge be-

tween (tgj−1, Y
g
j−1) and (tgj , Y

g
j ), Υθ is a Poisson random variable with mean Λθ(t

g
j − t

g
j−1) and the

(Ui)1≤i≤Υ are i.i.d. uniform random variables on [0, tgj − t
g
j−1]. Then, an unbiased Monte Carlo

estimate of ptgj−t
g
j−1

(Y gj , Y
g
j−1, θ) may be obtained by N independent realizations of these random

variables. However, as the Poisson mean depends on θ, we would have to sample all the random
variables for each value of the parameter θ. Nevertheless, in our case we need to estimate the
likelihood only for a finite number of parameter values obtained at the end of the EM algorithm
for each starting point: θ ∈ {θ̂i}1≤i≤p. In this case, writing Λ̄ := max1≤i≤p Λθ̂i , the unbiased

estimator of ptgj−t
g
j−1

(Y gj , Y
g
j−1, θ) we may use is given by

ϕtgj−t
g
j−1

(Y gj − Y
g
j−1) exp

{
Hθ(Y

g
j )−Hθ(Y

g
j−1)− `θ(tgj − t

g
j−1)

}
×

Υ∏
i=1

(
1− φθ(ωUi)/Λ̄

)
,

where ω has the law of a Brownian bridge between (tgj−1, Y
g
j−1) and (tgj , Y

g
j ), Υ is a Poisson

random variable with mean Λ̄(tgj − t
g
j−1) and the (Ui)1≤i≤Υ are i.i.d. uniform random variables on

[0, tgj − t
g
j−1]. As Λ̄ is independent of θ, drawing once

- (ωk)1≤k≤N , N independent Brownian bridges between (tgj−1, Y
g
j−1) and (tgj , Y

g
j ) ;

- (Υk)1≤k≤N , N independent Poisson random variables with mean Λ̄(tgj − t
g
j−1) ;

- {(Uki )1≤i≤Υ}1≤k≤N independent uniform random variables on [0, tgj − t
g
j−1] ;

allows to define the following estimator of ptgj−t
g
j−1

(Y gj , Y
g
j−1, θ) for all values θ ∈ {θ̂i}1≤i≤p:

pNtgj−t
g
j−1

(Y gj , Y
g
j−1, θ) := ϕtgj−t

g
j−1

(Y gj − Y
g
j−1) exp

{
Hθ(Y

g
j )−Hθ(Y

g
j−1)− `θ(tgj − t

g
j−1)

}
× 1

N

N∑
k=1

Υk∏
i=1

(
1− φθ(ωkUki )/Λ̄

)
.
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