
HAL Id: hal-01206954
https://hal.science/hal-01206954v2

Preprint submitted on 11 Apr 2016 (v2), last revised 16 Nov 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Almost group theory
Nadja Hempel

To cite this version:

Nadja Hempel. Almost group theory. 2015. �hal-01206954v2�

https://hal.science/hal-01206954v2
https://hal.archives-ouvertes.fr


ALMOST GROUP THEORY

NADJA HEMPEL

Abstract. The notion of almost centralizer and almost commutator are intro-
duced and basic properties are established. They are used to study M̃c-groups, i.
e. groups for which every descending chain of centralizers each having infinite in-
dex in its predecessor stabilizes after finitely many steps in any definable section.
The Fitting subgroup of such groups is shown to be nilpotent and the nilpotency
criteria of Hall is generalized to almost nilpotent M̃c-groups.

1. Introduction

Groups in which every descending chain of centralizers stabilizes after finitely
many steps, so called Mc-groups, have been of great interest to both group and
model theorist. They have been studied by Altinel and Baginski [1], Bryant [4],
Bryant and Hardley [3], Derakhshan and Wagner [5], Poizat and Wagner [17]. In
the field of model theory they appear naturally as definable groups in stable and
o-minimal theories. Passing to groups definable in simple theories or even more
general rosy theories, we obtain a weaker chain condition, namely any chain of
centralizers, each having infinite index in its predecessor, stabilizes after finitely
many steps. We want to study group for which any definable section satisfies

this chain condition which we call M̃c-groups. Examples are (group theoretically)
simple pseudo-finite groups, groups definable in the theory of perfect bounded
PAC-fields, and in general groups definable in any rosy theory. A useful notion
in this context is the FC-centralizer of a subgroup: For a subgroup H of a group
G, the FC-centralizer contains all elements whose centralizer has finite index in
H . These subgroups were introduced by Haimo in [8]. Defining a suitable notion
of these objects regarding A-invariant subgroups of G and establishing their basic
properties is the main part of Section 2.

From a model theoretic point of view, one particular problem we are interested
in is given an abelian, nilpotent or solvable subgroup H , can one find a definable
envelope of H , that is a definable subgroup of G containing H with the same
algebraic properties. Finding definable sets around non-definable objects admitting
similar properties is an important result as it brings objects outside of the scope
of model theory into the category of definable sets. Furthermore, it is not only
interesting from a purely model theoretic point of view but also an important tool
for applications. In the past decades there has been remarkable progress on groups
fulfilling model theoretic properties (stable, simple, dependent, NTP2) as well as
in Mc-groups which will ensure the existence of definable envelopes. In Section 3
we prove the existence of definable envelopes “up to finite index” for any abelian,

nilpotent or solvable subgroup of an M̃c-group.
1
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Another object we are interested in is the Fitting subgroup, i. e. the group gen-
erated by all normal nilpotent subgroups. While it is always normal in the ambient
group and nilpotent for finite groups, it might not be nilpotent for infinite groups.
In the case of Mc-groups, Bryant first showed that the Fitting subgroup of any pe-
riodic Mc-group is nilpotent [4]. Using model theoretic techniques, Wagner proved
in [19] nilpotency of the Fitting subgroup of any group whose theory is stable and
later Wagner together with Derakshan obtained nilpotency of the Fitting subgroup
for arbitrary Mc-groups in [5]. Furthermore, it has been recently generalized by
Palacín and Wagner [16] to groups type-definable in simple theories. One of the
main ingredient other than the chain condition on centralizers, is that any nilpotent
subgroup has a definable envelope up to finite. As mentioned before, we establish

this result for M̃c-groups in Section 3 which enables us to prove nilpotency of the

Fitting subgroup for M̃c-groups.

In the last section, we study subgroups of M̃c-groups which are almost nilpotent
or FC-nilpotent, a notion which was also introduced by Haimo in [8]: a subgroup
H of G is FC-nilpotent, if there is a sequence {1} = H0 < H1 < · · · < Hn = H of
normal nilpotent subgroups of G such that Hi+1/Hi is in the FC-center of G/Hi.
We first introduce the notion of the “almost commutator” of two subgroups and

establish its properties. Using definability of the almost centralizer for M̃c-groups

we can express being nilpotent for M̃c-groups via the almost commutator. This
enables us to generalize the nilpotency criteria of Hall (G is nilpotent if one can
find a nilpotent subgroup N such that G modulo the derived subgroup of N is

nilpotent as well) to almost nilpotent M̃c-groups.

Notation. Let G be a group and H , K and L be three subgroups and g be an
element of G. By [H,K] we denote the subgroup generated by all commutators
[h, k] = h−1k−1hk with h in H and k in K. Second, by [H,K,L] we denote the
group [[H,K], L]. Third, we may inductively define [H,n g] and Hn for any natural
number n:

[H,1 g] = [H, g] and [H,n+1 g] = [[H,n g], g] for n >0,

H(1) = H and H(n+1) = [H(n), H(n)] for n >0.

Moreover, if K is normalized by H , we set H/K to be H/H ∩K. If g is an element
of NG(N), we let CH(g/N) the subgroup of H which contains all elements h in H
such that hg ·N = gh ·N . We say that H contains a subgroup K up to finite index,
if [K : H ∩K] is finite. For two element a and b in G, we write ab for b−1ab.

2. Almost centralizers

Let us first give the original definition of an FC-centralizer and related objects
given by Haimo.

Definition 2.1. Let G be a group and H , K and N be three subgroups of G such
that N is normalized by H . We define:

• The FC-centralizer of H in K modulo N :

FCK(H/N) = {k ∈ NK(N) : [H : CH(k/N)] is finite}
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• Suppose that N ≤ H ≤ K. Then, the nth FC-centralizer of H in K modulo
N is defined inductively on n as the following:

FC0
K(H/N) = N

FCn+1
K (H/N) = FCH(H/FCn

K(H/N)) ∩

n⋂

i=0

NK(FC
i
K(H/N))

• The nthFC-center of H :

FCn(H) = FCn
H(H)

Remark 2.2. The abbreviation FC stand for finite conjugation which is related
to the fact that every element of the FC-centralizer has finitely many conjugates.

Definition 2.3. Let H and K be two arbitrary subgroups of G. We say that H is
virtually contained in K, denoted by H ≤v K if the index of H ∩K is finite in H .
We say that H and K are commensurable, denoted by H =v K, if H is virtually
contained in K and K is virtually contained in H .

We want to generalize these notions to suitable versions of these objects and
relations regarding A-invariant subgroups of G. For two such groups H ≤ K, we
have two options regarding the index of H in K: it is either bounded, i. e. it does
not grow bigger than a certain cardinal while enlarging the ambient model, or for
any given cardinal κ we can find an ambient model such that the index is larger
than κ. Then we say that the index is unbounded. Note that if the index is bounded

it is indeed bounded by
(
2|T (A)|

)+
. This leads to the definition below.

Definition 2.4. Let H and K be two A-invariant subgroups of G. We say that H
is almost contained in K, denoted by H . K, if the index of H ∩K is bounded in
H . We say that H and K are commensurate, denoted by H ∼ K, if H is almost
contained in K and K is almost contained in H .

Let H and K be two A-invariant subgroups. Observe that H . K does not
depend on the model we choose. Thus H . K remains true in any elementary
extension. Moreover, if H and K are definable, bounded can be replaced by finite
and hence being virtually contained and being almost contained coincide. Note
also that being almost contained is a transitive relation and being commensurate is
an equivalence relation among A-invariant subgroups of G. Furthermore, we have
the following property:

Lemma 2.5. Let G be a group and let H, K, and L be three A-invariant subgroups
of G such that H normalizes K. If H . L and K . L then HK . L.

Proof. We assume that G is sufficiently saturated. By assumption, we have that the
index of L∩H in H as well as the index of L∩K in K are bounded by some cardinal
κH and κK respectively which are smaller than (2|T (A)|)+. Take IH = {hi : i < κH}
and IK = {ki : i < κK} representatives of the cosets of L∩H in H and of L∩K in
K respectively. Then the set IH · IK has at most size 2|T (A)| and as H normalizes
K, it contains a set of representatives of the cosets of L ∩ (HK) in HK. Hence
the index of L ∩ (HK) in HK is bounded in any elementary extension of G and
whence HK . L. �
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Definition 2.6. Let H , K and N be three A-invariant subgroups of G such that
N is normalized by H . We define:

• The almost centralizer of H in K modulo N :

C̃K(H/N) = {g ∈ NK(N) : H ∼ CH(g/N)}

• The almost center of H :

Z̃(H) = C̃H(H)

To prove the different properties of the almost centralizer, we make use of the
Erdős-Rado theorem. To state it, let us first introduce the following notation:

Notation. Let κ be a cardinal. Then we define inductively:

exp0(κ) = κ and expr+1(κ) = 2expr(κ) for r ≥ 0.

Moreover for cardinal κ, λ, δ and θ, we write

κ −→ (λ)θδ

if for any coloring of the subsets of cardinality θ of a set of cardinality κ, in δ
many colors, there is a homogeneous set of cardinality λ (a set, all whose subsets
of cardinality θ get the same color).

Fact 2.7 (Erdős-Rado). Let n be a natural number and κ be an infinite cardinal,
then

expn(κ)
+ −→ (κ+)n+1

κ .

Properties 2.8. Let H , H ′, K, L and L′ be A-invariant subgroups of G such that
H and H ′ normalize L and L′.

(1) C̃K(H) and Z̃(H) are A-invariant subgroup.

(2) CG(H) ≤ C̃G(H) and Z(G) ≤ Z̃(G).
(3) If H is definable, bounded can be replaced by finite and these definition

coincide with the definition of the FC-centralizer and FC-center of H .
(4) C̃H′(H/L) = C̃G(H/L) ∩H ′.

(5) C̃G(H) is fixed by all automorphism of G which fix H and thus it is normal-

ized by the normalizer of H and in particular by H . Furthermore, Z̃(H) is
a characteristic subgroup of H .

(6) If H . H ′ as well as L . L′ and NG(L) ≤ NG(L
′), we have that

C̃G(H
′/L) ≤ C̃G(H/L′)

In particular,

• C̃G(H
′) ≤ C̃G(H)

• C̃G(H/L) ≤ C̃G(H/L′)
(7) Moreover, if H ∼ H ′ as well as L ∼ L′ and NG(L) = NG(L

′), we have that

C̃G(H
′/L) = C̃G(H/L′)

In particular,

• C̃G(H
′) = C̃G(H)

• C̃G(H/L) = C̃G(H/L′)
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(8) If H is the union of A-type-definable subgroups Hα with α ∈ Ω. Then

C̃G(H) =
⋂

α∈Ω

C̃G(Hα).

(9) If L is the intersection of A-definable subgroups Lα of G with α ∈ Ω, we
have that

C̃G(H/L) ∩
⋂

α∈Ω

NG(Lα) =
⋂

α∈Ω

C̃G(H/Lα)

(10) If L is the intersection of A-definable subgroups Lα of G with α ∈ Ω all
normalized by K and H ,

H . C̃G(K/L) if and only if H . C̃G(K/Lα) for all α ∈ Ω.

Proof. 1. till 7. are obvious.

8. If the centralizer of some element g in G has unbounded index in H by Erdős-
Rado (Fact 2.7) there exists also an α in Ω such that CHα

(g) has unbounded index

in Hα. Hence g does not belong to C̃G(Hα). The converse is obvious.

9. The inclusion from left to right holds trivially. Now suppose that g ∈⋂
α∈Ω C̃G(H/Lα). Then g belongs to NG(Lα) by definition of the almost centralizer

and gH intersects only boundedly many cosets of Lα in H for all α in Ω. As the
map xL 7→ (xLα : α ∈ Ω) is injective, the conjugacy class gH of g intersects only

boundedly many cosets of L and thus g ∈ C̃G(H/L).

10. is an immediate consequence of (9). �

As for any normal subgroup N of H , we have that C̃G(H/N) is normalized by
H , the following definition of the iterated almost centralizers is well defined.

Definition 2.9. Let H and K be two A-invariant subgroup of G such that H ≤ K
and N be a normal A-invariant subgroup of H , then

• The nth almost centralizer of H in K modulo N is defined inductively on
n by:

C̃0
K(H/N) = N

C̃n+1
K (H/N) = C̃K(H/C̃n

K(H/N)) ∩
n⋂

i=0

NK(C̃
i
K(H/N))

• The nth almost center of H is defined as Z̃n(H) = C̃n
H(H).

Note that if H and N are normal subgroups of K, the definition of the nth almost
centralizer of H in K modulo N simplifies to:

C̃0
K(H/N) = N and C̃n+1

K (H/N) = C̃K(H/C̃n
K(H/N))

Properties 2.10. Let G be a group, H E K be two A-invariant subgroup of G
and let n ∈ ω. Then we have that

C̃n
K(H) = C̃n

G(H) ∩K.
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Proof. We prove this by induction on n. For n equal to 1, this is Properties 2.8
(4). So suppose that C̃n

K(H) = C̃n
G(H) ∩K. Now we have that

C̃n+1
K (H) = C̃K(H/C̃n

K(H))
ind
=
hyp

C̃K(H/C̃n
G(H) ∩K)

=
H�K

{
k ∈ K : H ∼ CH

(
k/(C̃n

G(H) ∩K)
)}

=
2.8(4)

{
k ∈ NG

(
C̃n

G(H)
)
: H ∼ CH

(
k/C̃n

G(H)
)}

∩K

= C̃G(H/C̃n
G(H)) ∩K

= C̃n+1
G (H) ∩K.

�

In the rest of the section, we show properties of the almost centralizer of ind-
definable subgroups of G. It is a model theoretic notion which generalizes type-
definable subgroups and which falls into the class of invariant subgroups.

Definition 2.11. Let G be a group and A be a parameter set. An A-ind-definable
subgroup H of G is the union of a directed system of A-type-definable subgroups
of G, i. e. there is a family {Hα : α ∈ Ω} of type-definable subgroups of G such
that for all α and β in Ω there is γ in Ω such that Hα ∪Hβ ≤ Hγ and H is equal
to
⋃

α∈Ω Hα.

2.1. Symmetry. Observe that for two subgroups H and K of a group G, we have
trivially that H ≤ CG(K) if and only if K ≤ CG(H). In the case of FC-centralizers
and virtually containment, we will see that this is not true for arbitrary subgroups in
non-saturated models. However, we obtain the same symmetry condition replacing
the centralizer by the almost centralizer and containment by almost containment
for ind-definable subgroups. In case, the ambient theory is simple, this was proven
by Palacín and Wagner in [16].

We use the following fact due to B. Neumann.

Fact 2.12. [15, Lemma 4.1] A group cannot be covered by finitely many cosets of
subgroups of infinite index.

Theorem 2.13 (Symmetry). Let G be a group, H and K be two A-ind-definable
subgroups of G and let N be a subgroup of G which is a union of A-definable sets.
Suppose N is normalized by H and by K. Then

H . C̃G(K/N) if and only if K . C̃G(H/N).

Proof. Let κ be equal to (2|T (A)|)+. Assume that G is (2κ)+-saturated. We suppose

that K is not almost contained in C̃G(H/N). We want to show that H is not

almost contained in C̃G(K/N) By assumption, there is a set of representatives

{ki : i ∈ (2κ)+} in K of different cosets of C̃K(H/N) in K as G is sufficiently
saturated. Since H is the union of type-definable subgroups Hα with α in an index
set Ω of cardinality at most κ. Then, for every i different than j in I there is
α(i,j) in Ω such that the centralizer of the element k−1

i kj/N has unbounded index
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in Hα(i,j)
. By Erdős-Rado (Fact 2.7), we can find a subset I0 of (2κ)+ of cardinality

κ+ and α in Ω such that for all distinct i and j, we have that α(i,j) is equal to α and

thus the centralizer CHα
(k−1

i kj/N) has infinite index in Hα. Hence, Hα can not be
covered by finitely many cosets of these centralizers by Fact 2.12. As additionally
the complement of N is type-definable the following partial type is consistent:

π(xn : n ∈ κ+) =
{
[x−1

n xm, k
−1
i kj] 6∈ N : n 6= m ∈ κ, i 6= j ∈ I0

}
∪{xn ∈ Hα : n ∈ κ}

As G is sufficiently saturated, one can find a tuple h̄ in G which satisfies π(x̄). Fix
two different elements n and m in κ+. Then, we have that k−1

i kj 6∈ CK(h
−1
n hm/N)

for all i 6= j in I0. Hence, the subgroup CK(h
−1
n hm/N) has unbounded index in

K witnessed by (kj : j ∈ I0), and whence the element h−1
n hm does not belong

to C̃H(K/N). So C̃H(K/N) has unboudedly many Hα-translates and therefore

unbounded index in H . Thus, the group H is not almost contained in C̃G(K/N)
which finishes the proof. �

We obtain the following useful corollary.

Corollary 2.14. Let G be an ℵ0-saturated group and H and K be two definable
subgroups of G. Then

H ≤v C̃H(K) if and only if K ≤v C̃K(H)

Proof. Since almost containment and the almost centralizer satisfies symmetry, it
is enough to show that for definable subgroups H and K of an ℵ0-saturated group,
we have that

H ≤v C̃H(K) if and only if H . C̃H(K).

So suppose first that H ≤v C̃H(K) and fix representatives h1, . . . , hn of the

distinct classes of C̃H(K) in H . Let Hd be the definable set {h ∈ H : [K :

CK(h)] < d}. As K is definable, we have that C̃H(K) =
⋃

d∈ω Hd. Thus

H =
n⋃

i=1

hi ·
⋃

d∈ω

Hd.

By ℵ0-saturation, this remains true in any elementary extension of G and so H .

C̃H(K).

On the other hand, if H 6≤v C̃H(K), then for any cardinal κ the type

π(xi : i ∈ κ) = {xi ∈ H} ∪ {x−1
i xj 6∈ Hd : i 6= j, d ∈ ω}

is consistent. Hence, H 6. C̃H(K). �

In the general context, we may ask if symmetry holds for FC-centralizers. We give
a positive answer in the case that the ambient group H is an Mc-group. Afterwards,
we give a counter-example which shows that it does not hold in general.

Proposition 2.15. Let G be an Mc-group and H and K be subgroups of G. Then

H ≤v FCG(K) if and only if K ≤v FCG(H).

Proof. Suppose that H ≤v FCG(K). So the group FCH(K) has finite index in H
and is obviously contained in FCG(K). Note that by the former the FC-centralizer
of FCH(K) in K is equal to the one of H in K. Since G is an Mc-group, we
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can find elements h0, . . . , hn in FCH(K) such that CG(FCH(K)) is equal to the
intersection of the centralizers of the hi’s. As each hi is contained in the FC-
centralizer of K in H , this intersection and hence CK(FCH(K)) has finite index in
K. In other words, K is virtually contained in CK(FCH(K)) which, on the other
hand, is trivially contained in FCK(FCH(K)). As FCK(FCH(K)) coincides with
FCK(H) as mentioned before we can conclude. �

The next example was suggested by F. Wagner.

Example 1. Let G be a finite non-commutative group, K be
∏

ω G and H be
the subgroup

⊕
ω G of K. The support of an element (ki)i∈ω in K, denoted by

supp((ki)i∈ω), is the set of indices i ∈ ω such that ki is non trivial. As any element
h̄ of H has finite support and G is finite, any element of H has finitely many
conjugates in K, namely at most |G|| supp(h̄)| many. Thus its centralizer has finite
index in K. Hence H is contained in the FC-centralizer of K. On the other hand,
fix an element g of G which is not contained in the center of G. Let k̄0 be the
neutral element of K and for n ≥ 1 we define:

k̄n = (ki)i∈ω such that

{
ki = g if i ≡ 0 (mod n)

ki = 1 else

Now fix some distinct natural numbers n and m. We have that the element
k̄−1
n k̄m is a sequence of the neutral element of G and infinitely many g’s or g−1’s.

Now, we can choose an element h in G which does not commute with g and for
any j in the support of k̄−1

n k̄m we define the following elements of H :

l̄j = (li)i∈ω such that

{
li = h if i = j

li = 1 else

These elements witness that the set of conjugates (k̄−1
n k̄m)

H is infinite and , as
the n and m were chosen arbitrary, the k̄n’s are representatives of different cosets
of FCK(H) in K. Thus K is not virtually contained in the FC-centralizer of H in
K which contradicts symmetry.

The previous example shows that symmetry does not hold for the FC-centralizer
of arbitrary subgroups in non-saturated models but the following question still
remains open:

Question 1. Let H and K be two A-invariant subgroups of a group G. Then, do
we have that

H . C̃G(K) if and only if K . C̃G(H) ?

2.2. The almost three subgroups lemma. For subgroups H , K and L of some
group G we have that

[H,K,L] = 1 and [K,L,H ] = 1 imply [L,H,K] = 1,

which is known as the three subgroups lemma. We want to generalize this result to
our framework. As we have not yet introduced an “almost” version of the commuta-
tor, observe that, if H , K, and L normalize each other, we have that [H,K,L] = 1
if and only if H ≤ CG(K/CG(L)). Thus we may state the three subgroups lemma
as follows:

H ≤ CG(K/CG(L)) and K ≤ CG(L/CG(H)) imply L ≤ CG(H/CG(K)).
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We show this statement, replacing all centralizers and containment by almost cen-
tralizers and almost containment, for ind-definable subgroups which normalize each
other in the following sense:

Definition 2.16. Let H , K and L be three A-ind-definable subgroups of G. We
say that

• H strongly normalizes L if there is a set of A-type-definable subgroups
{Lα : α ∈ Ω} of G each normalized by H such that L is equal to

⋃
α∈Ω Lα.

• H and K similtaneously strongly normalize L if there is a set of A-type-
definable subgroups {Lα : α ∈ Ω} of G each normalized by H and K such
that L is equal to

⋃
α∈Ω Lα.

• L is a strongly normal subgroup of G if G strongly normalizes L.

Note that if L is a type-definable group, it is strongly normalized by H (or
respectively simultaneously strongly normalized by H and K) if and only if H
normalizes L (respectively H and K normalize L).

The almost three subgroups lemma can be deduced from the lemma below:

Lemma 2.17. Let H, K and L be three A-ind-definable subgroups of G. If H and
K simultaneously strongly normalize L, then the following is equivalent:

• H 6. C̃G

(
K/C̃G(L)

)
.

• For any cardinal κ, there exists an extension G of G and elements (hi : i ∈
κ) in H(G), (kn : n ∈ κ) in K(G) and (ls : s ∈ κ) in L(G) such that

[[h−1
i hj , k

−1
n km], l

−1
s lt] 6= 1 ∀i, j, n,m, s, t ∈ κ, i 6= j, n 6= m, s 6= t.

Proof. Let {Lα : α ∈ ΩL} be a set of A-type-definable subgroups of G each nor-
malized by H and K such that L is equal to

⋃
α∈ΩL

Lα and {Kβ : β ∈ ΩK} be a
set of A-type-definable subgroups of G such that K is equal to

⋃
β∈ΩK

Kβ. Assume

first that H 6. C̃G(K/C̃G(L)). Note that as K and H normalize L, they normalize

as well C̃G(L). So C̃G(K/C̃G(L)) is well defined and for any h 6∈ C̃G(K/C̃G(L)),

we have that [K : CK(h/C̃G(L))] is infinite.

Let κ be a given cardinal greater than (2|T (A)|)+. Assume that G is (2(2
κ))+-

saturated. The goal is to find elements (hi : i ∈ κ) in H , (kn : n ∈ κ) in K and
(ls : s ∈ κ) in L which satisfy the second condition of the Lemma.

By saturation of G, one can find a sequence (hi : i ∈ (2(2
κ))+) of elements in

H such that for non equal ordinals i and j, the element h−1
i hj does not belong to

C̃G(K/C̃G(L)) or equivalently

K 6. CK(h
−1
i hj/C̃G(L)). (∗)

Claim. There is a subset I of (2(2
κ))+ of size κ+, β ∈ ΩK and α ∈ ΩL such that

for all distinct elements i and j in I, we have that Kβ 6. CKβ
(h−1

i hj/C̃G(Lα)).

Let i and j be two different arbitrary ordinal numbers less than (2(2
κ))+. By

(∗) there exists a sequence (k
(i,j)
n : n ∈ (2κ)+) of elements in K such that for non

identical ordinals n and m less than (2κ)+, we have
[
h−1
i hj, (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G(L).
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As K is the bounded union of A-type-definable subgroups Kβ, by the pigeon hole
principle we can find subset J of (2κ)+ of the same size and βi,j in ΩK such that

for all n in J , the element k
(i,j)
n is an element of Kβi,j

. To simplify notation we may
assume that J is equal to (2κ)+. Now, by Erdős-Rado (Fact 2.7), we can find a
subset I of (2(2

κ))+ of size (2κ)+ and β ∈ ΩK such that for non equal i and j, we
have that βi,j is equal β. Again for convenience we assume that I equals (2κ)+.

To summarize, we have now found β in ΩK , a sequence of elements (hi : i ∈ (2κ)+)

in H and for any i different than j in (2κ)+ a sequence (k
(i,j)
n : n ∈ (2κ)+) in Kβ

such that [
h−1
i hj, (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G(L).

Fix again two distinct ordinal numbers i and j in (2κ)+. By Properties 2.8 (8),
we have that the almost centralizer of L in G is the intersection of the almost
centralizers of the Lα’s in G. So for any non equal n and m in (2κ)+ one can find

α
(i,j)
(n,m) in ΩL such that

[
h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G

(
L
α
(i,j)
(n,m)

)
.

Now, we apply Erdős-Rado (Fact 2.7) to the sequences of the k
(i,j)
n ’s. Doing so, we

obtain a subset I(i,j) of (2κ)+ of cardinality at least κ+ and α(i,j) in ΩL such that
for all non identical n and m in I(i,j), we have

[
h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G

(
Lα(i,j)

)
.

Next, we apply Erdős-Rado (Fact 2.7) to the hi’s. So, there exists a subset I
of (2κ)+ of cardinality at least κ+ and α in ΩL such that α(i,j) is equal to α for i
different than j in I and thus for any such tuples we have

[
h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G (Lα) .

Thus, as for all non equal i and j in I, the index set I(i,j) is of cardinality

κ+ > (2|T (A)|)+, we conclude that the centralizer of the element h−1
i hj/C̃G(Lα) has

infinite index in Kβ (witnessed by the k
(i,j)
n ’s). Hence, for all distinct i and j in

the index set I of cardinality κ+, we have that Kβ 6. CKβ
(h−1

i hj/C̃G(Lα)) and the
claim is established. �claim

The claim together with Fact 2.12 yield that the group Kβ/C̃G(Lα) can not be
covered by finitely many translates of these centralizers.

Now, observe that since Lα is a type-definable group, any relatively definable
subgroup of Lα has either finite or unbounded index, whence the group C̃G(Lα) is
equal to the union of the following definable sets

Sφ,d =

{
g ∈ G : ∀l0, . . . , ld

d∧

i=0

φ(li) →
∨

i 6=j

l−1
i lj ∈ CG(g)

}
,

where φ(x) ranges over the formulas in the type πLα
(x) which defines Lα and d

over all natural numbers.
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By the two previous arguments, we conclude that the partial type below is con-
sistent.

π(xn : n ∈ κ) = {[h−1
i hj, x

−1
n xm] 6∈ Sφ,d : n 6= m ∈ κ, i 6= j ∈ I, d ∈ ω, φ ∈ πLα

}

∪{xn ∈ Kβ : n ∈ κ}

Take k̄ which satisfies π(x̄). By construction we have that [h−1
i hj , k

−1
n km] 6∈ C̃G(Lα).

Hence, Lα 6. CLα
([h−1

i hj , k
−1
n km]). So Lα cannot be covered by finitely many

translates of these centralizers. So the partial type below is again consistent.

π′(xs : s ∈ κ) = {[[h−1
i hj, k

−1
i kj ], x

−1
s xt] 6= 1 : s 6= t ∈ κ, n 6= m ∈ κ, i 6= j ∈ I, }

∪{xs ∈ Lα : s ∈ κ}

As Lα is a subgroup of L, a realization of this type together with the (hi : i ∈ I)
and (kn : n ∈ κ) satisfies the required properties.

On the other hand, suppose that for any cardinal κ, there exists an extension G
of G and elements (hi : i ∈ κ) in H(G), (kn : n ∈ κ) in K(G), and (ls : s ∈ κ) in
L(G) such that

[
[h−1

i hj, k
−1
n km], l

−1
s lt
]
6= 1 ∀i, j, n,m, s, t ∈ κ, i 6= j, n 6= m, s 6= t.

So let κ be greater than 2|T (A)|. If H . C̃G(K/C̃G(L)) then one can find i 6= j such

that h−1
i hj is an element of C̃G(K/C̃G(L)). So the index of CK(h

−1
i hj/C̃G(L)) in

K is bounded. Once more this implies that one can find n 6= m such that k−1
n km ∈

CG(h
−1
i hj/C̃G(L)). Thus [h−1

i hj , k
−1
n km] is an element of C̃G(L) or equivalently the

index of CL([h
−1
i hj , k

−1
n km]) has bounded index in L. Thus there exists s 6= t such

that [[h−1
i hj , k

−1
n km], l

−1
s lt] = 1 which contradicts our assumption and the Lemma

is established. �

Now we are ready to prove the almost three subgroups lemma. We use addition-
ally the Witt’s identity:

Fact 2.18 (Witt’s identity). [12, Satz 1.4] Let G be a group and x, y, z be elements
of G. Then

[x, y−1, z]y · [y, z−1, x]z · [z, x−1, y]x = 1.

Moreover, if [z, x−1, y] is non trivial then either [x, y−1, z] or [y, z−1, x] is non trivial
as well.

Theorem 2.19 (almost three subgroup lemma). Let G be a group and H, K and
L be three ind-definable subgroups of G which simultaneously strongly normalize
each other. If

H . C̃G

(
K/C̃G(L)

)
and K . C̃G

(
L/C̃G(H)

)
then L . C̃G

(
H/C̃G(K)

)
.

Proof. Assume towards a contradiction that L 6. C̃G(H/C̃G(K)) and let κ be equal
to (2|T (A)|)+. By the previous lemma we can find (ls : s ∈ exp5(κ)

+) in L, (kn : n ∈
(exp5(κ)

+) in K and (hi : i ∈ exp5(κ)
+) in H in a sufficiently saturated extension

of G such that
[
[l−1
s lt, h

−1
i hj ], k

−1
n km

]
6= 1 ∀i, j, n,m, s, t ∈ (2κ)+, i 6= j, n 6= m, s 6= t.



12 NADJA HEMPEL

By the Witt’s identity (Fact 2.18), for every tuple i < j < n < m < s < t <
exp5(κ)

+ either
[
[h−1

j hi, k
−1
m kn], l

−1
s lt
]
6= 1 or

[
[k−1

n km, l
−1
t ls], h

−1
j hi

]
6= 1.

By Erdős-Rado (Fact 2.7) we can find a subset I of cardinality κ+ such that for
all i < j < n < m < s < t in I the same inequality of the two holds, say
[[h−1

j hi, k
−1
m kn], l

−1
s lt] 6= 1. Now let λ be the order-type of I and note that it is

greater or equal to κ+. Identify I with λ. Thus
[
[h−1

j hi, k
−1
m kn], l

−1
s lt
]
6= 1 for 0 ≤ i < j ≤ κ < n < m ≤ 2κ < s < t ≤ 3κ(1)

Furthermore, by assumption we have that H . C̃G(K/C̃G(L)). Hence, we can find
two ordinal number i and j with i < j < κ and such that h−1

j hi is an element of

C̃G(K/C̃G(L)). So the index of CK(h
−1
j hi/C̃G(L)) in K is bounded. Once more

this implies that are two ordinal numbers n and m with κ < n < m ≤ 2κ and

such that k−1
m kn belongs to CG(h

−1
j hi/C̃G(L)). Thus [h−1

j hi, k
−1
m kn] is an element

of C̃G(L) or equivalently the index of CL([h
−1
j hi, k

−1
m kn]) has bounded index in L.

Thus there exists another two ordinal numbers s and t with 2κ < s < t ≤ 3κ and
such that [[h−1

j hi, k
−1
m kn], l

−1
s lt] = 1. Finally, this contradicts (1) and the theorem

is established. �

2.3. Generalized Neumann theorem. We want to generalize a classical group
theoretical result due to B. H. Neumann (Fact 2.22). To do so, let us first introduce
the some notions.

Definition 2.20. A group G is almost abelian if the centralizer of any of its element
has finite index in G. If there is a natural number d such that the index of the
centralizer of any element of G in G is smaller than d, we say that G is a bounded
almost abelian group.

Remark 2.21. If we consider a definable almost abelian subgroup of an ℵ0-
saturated group, we can always bound the index of the centralizers by some natural
number d by compactness. Hence, any definable almost abelian subgroups of any
ℵ0-saturated group is a bounded almost abelian group. Additionally, note that the
almost center of any group is always an almost abelian group.

Fact 2.22. [15, Theorem 3.1]. Let G be a bounded almost abelian group. Then its
derived group is finite and thus G is finite-by-abelian.

Analyzing and adapting the proof of the previous fact led to the following theo-
rem:

Theorem 2.23. Let G be a group and let H and K be two subgroups of G. Suppose
that

• H normalizes K;

• H ≤ C̃G(K);

• K ≤ C̃G(H), moreover there is d ∈ ω such that for all k in K the set of
conjugates kH has size at most d.

Then the group [K,H ] is finite.



ALMOST GROUP THEORY 13

In the proof, we use the following fact:

Fact 2.24. [2, 10] Let G be a group and let K and H be two subgroups of G such
that H normalizes K. If the set of commutators

{[k, h] : k ∈ K, h ∈ H}

is finite, then the group [K,H ] is finite.

Proof of Theorem 2.23. Let d be the minimal bound for the size of conjugacy
classes of elements of K by H . Fix some element k of K for which the conjugacy
class of k in H has size d and let 1, h2, . . . , hd be a set of right coset representatives
of H modulo CH(k). Thus

k1 = k, k2 = kh2, . . . , kd = khd

are the d distinct conjugates of k by H . We let C be equal to the centralizer

CK(h2, . . . , hd). As H is contained in C̃G(K), we have that the group C has finite
index in K. Choose some representatives a1, . . . , an of right cosets of K modulo
C. Note that their conjugacy classes by H are finite by assumption. Let F be the
finite set {kH , aH1 , . . . , a

H
n } and let E be the set {x0 ·x1 ·x2 ·x3 : xi ∈ F ∪F−1, i < 4}

which is finite as well. Note that K is equal to CF .

Now, we want to prove that E contains the set

D := {[g, h] : g ∈ K, h ∈ H}.

So let g ∈ K and h ∈ H be a arbitrary elements. Choose c in C, f in F , such that
g = cf . We have that

[g, h] = [cf, h] = [c, h]f [f, h] = f−1[c, h] · fh

As f−1 belongs to F−1 and fh belong to F , it remains to show that [c, h] can be
written as a product of two elements in F ∪ F−1.

Let w = ck. As c commutes with h2, . . . , hd the conjugates

w = ck, wh2 = ck2, . . . , whd = ckd

are all different. As d was chosen to be maximal, these have to be all conjugates
of w by H . So there are i and j less or equal than d, such that

h−1wh = cki and h−1kh = kj

and we have that

[c, h] = c−1h−1ch = c−1(h−1ckh)(h−1k−1h) = c−1ckik
−1
j = kik

−1
j .

As all ki’s belong to F , we can conclude that D is a subset of E and therefore
finite. Hence [K,H ] is finite by Fact 2.24. �

Corollary 2.25. Let G be an ℵ0-saturated group and let H and K be two definable
subgroups of G such that H normalizes K. Suppose that

K ≤ C̃G(H) and H ≤ C̃L(K).

Then the group [K,H ] is finite.

Proof. As G is ℵ0-saturated, the fact that K ≤ C̃G(H) implies that there is d ∈ ω
such that for all k in K the set of conjugates kH has size at most d. So all hypotheses
of Theorem 2.23 are satisfied and we can conclude. �
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2.4. M̃c-groups.

Definition 2.26. A group G is called M̃c-group if for any two definable subgroups
H and N , such that N is normalized by H , there exists natural numbers nHN and
dHN such that any chain of centralizers

CH/N(g0N) ≥ . . . ≥ CH/N(g0N, . . . , gmN) ≥ . . .

each having index at least dHN in its predecessor has length at most nHN .

Remark 2.27. Note that any definable subgroup, any definable quotient and any

elementary extension of G is again an M̃c-group.

One of the crucial property of subgroups of an M̃c-group G is that the iterated
almost centralizers are definable which we prove below.

Proposition 2.28. Let G be an M̃c-group, let H be a subgroup of G and let N be
a definable subgroup of G which is contained in and normalized by H.

(1) Then all iterated FC-centralizers FCn
G(H/N) are definable.

(2) If H is an A-invariant group, then all iterated almost centralizers C̃n
G(H/N)

are definable.

Proof. The proof for the two cases is identical just replacing the iterated almost
centralizers by the iterated FC-centralizers and bounded by finite. We give the

proof using the notion C̃n
G(H/N).

For n equals to 0 there is nothing to show as N is definable by assumption.

Now, let n ∈ ω and assume that C̃ i
G(H/N) is definable for all i ≤ n. This

yields that
⋂n

i=0NK(C̃
i
K(H/N)) is a definable subgroup of G and thus an M̃c-

group as well. Moreover, as C̃n+1
G (H/N) only contains elements which belong to

this intersection we may replace G by this intersection and assume that C̃n
G(H/N)

is a normal subgroup. Since G is an M̃c-group, there are g0, . . . , gm ∈ C̃n+1
G (H/N)

and d ∈ ω such that for all h ∈ C̃n+1
G (H/N):

[
i=m⋂

i=0

CG

(
gi/C̃

n
G(H/N)

)
:

i=m⋂

i=0

CG

(
gi/C̃

n
G(H/N)

)
∩ CG

(
h/C̃n

G(H/N)
)
]
< d

Let D be equal to the definable group
⋂i=m

i=0 CG(gi/C̃
n
G(H/N)). Then the following

set is definable.

S :=
{
g ∈ G :

[
D : CD(g/C̃

n
G(H/N))

]
< d
}

We show that S = C̃n+1
G (H/N). The inclusion C̃n+1

G (H/N) ⊂ S is obvious by
choice of the gi’s and d. So let g ∈ S. To prove the inverse inclusion, we may
compute:

[H : CH(g/C̃
n
G(H/N))] ≤ [H : H ∩D] ·

[
H ∩D : CH∩D(g/C̃

n
G(H/N))

]

≤ [H : H ∩D] ·
[
D : CD(g/C̃

n
G(H/N))

]

< ∞ (i. e. finite for 1. and bounded for 2.)
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Thus g belongs to C̃n+1
G (H/N). Hence C̃n+1

G (H/N) is equal to S, and whence
definable. �

Remark 2.29. Note that all iterated centralizers of H in G are stabilized by any
automorphism which fixes H set wise. So, if H is an A-invariant group, all its
iterated almost centralizers are indeed definable over A. Moreover, for any (type-,
ind-) definable (resp. A-invariant) subgroup H , the iterated almost centers of H
are (type-, ind-) definable (resp. A-invariant).

3. Definable envelopes in M̃c-groups

In this section, we analyze arbitrary abelian, nilpotent and (normal) solvable

subgroups of M̃c-groups. We prove the existence of definable envelopes up to finite
index, which is inspired by the result in simple theories.

As the following remark shows, it is impossible to obtain the same result on
definable envelopes as for stable groups in groups with a simple theory and thus

M̃c-groups:

Remark 3.1. Let T be the theory of an infinite vector space over Fp with p > 2
together with a non-degenerate skew symmetric bilinear form. Then T is super-
simple of SU-rank 1 and in any model of T one can define an “extraspecial p-group”
G, i. e. G is infinite, every non-trivial element of G has order p, the center of G is
cyclic of order p and is equal to the derived group of G. This group has SU-rank
1 and as any centralizer has finite index, one can find an infinite abelian subgroup
A. On the other hand, suppose that there is an abelian subgroup B of G which
has finite index in G and let g0, . . . , gn be representatives of the different cosets of
B in G. As the centralizer of any element of G has finite index in G, we conclude
that CB(g0, . . . , gn) virtually contains G. Hence CB(g0, . . . , gn) is infinite and by the
choice of B and g0, . . . , gn, it has to be contained in the center which is finite by
assumption. Thus there are no abelian subgroups of finite index in G. However, if
G had a definable abelian subgroup B which contains A, that abelian group would
have SU-rank 1, hence would be of finite index in G, a contradiction.

A model theoretic study of extra special p-groups can be found in [6].

So one has to find the modify the notion of definable envelopes which is adapted
to the new context. In the abelian case, it is the following result proven by Milliet
as [14, Proposition 5.6.].

Fact 3.2. Let G be a group definable in a simple theory and let H be an abelian
subgroup of G. Then there exists a definable finite-by-abelian subgroup of G which
contains H.

In the nilpotent and solvable case one must additionally take into account a “by
finite” phenomenon which leads to the fact below also due to Milliet [13]:

Fact 3.3. Let G be a group definable in a simple theory and let H be a nilpotent (re-
spectively solvable) subgroup of G of class n. Then one can find a definable nilpotent
(respectively solvable) subgroup of class at most 2n which virtually contains H.
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By the following theorem due the Fitting, we obtain a stronger result for normal
nilpotent subgroups:

Fact 3.4 (Fitting’s Theorem). [7] Let G be a group and H and K be two normal
nilpotent subgroups of class n and m respectively. Then HK is a normal nilpotent
subgroup of class at most n+m.

So, if we additionally assume that the nilpotent subgroup H of class n is normal
in the group G which has a simple theory, one can ask for the definable subgroup
N , which almost contains H , to be normal in G as well. Hence, the product of
these two subgroups NH is a normal nilpotent subgroup of G of class at most 3n
by Fitting’s theorem and it obviously contains H . Moreover, it is definable as it
is the finite union of translates of N by elements of H .

To find envelopes in the simple theory context, Milliet makes use of the definable
version of a result proven by Schlichting in [18], which can be found in [20, Theorem
4.2.4]. It deals with families of uniformly commensurable subgroups.

Definition 3.5. A family H of subgroups is uniformly commensurable if there
exists a natural number d such that for each pair of groups H and K from H the
index of their intersection is smaller than d in both H and K.

Fact 3.6 (Schlichting’s theorem). Let G be a group and H be a family of definable
uniformly commensurable subgroups. Then there exists a definable subgroup N of G
which is commensurable which all elements of H and which is invariant under any
automorphisms of G which stabilizes H setwise. Moreover, N is a finite extension
of a finite intersection of elements in H.

3.1. Abelian groups. We first investigate the abelian case. The proof is inspired
by the one of the corresponding theorem for simple theories in [14].

Proposition 3.7. Every almost abelian subgroup H of an M̃c-group is contained in
a definable finite-by-abelian subgroup which is additionally normalized by NG(H).

Proof. Let H be an almost abelian subgroup of the M̃c-group G. As G is an

M̃c-group there are elements h0, . . . , hn−1 in H and a natural number d such that
for every element h in H , the index [C : C ∩ CG(h)] is smaller than d for C :=⋂n−1

i=0 CG(hi). Observe additionally that H is virtually contained in C. Moreover,
the following set

F = {Ch : h ∈ NG(H)}

is a family of uniformly commensurable definable subgroups of G. Thus apply-
ing Schlichting’s theorem 3.6 to this family of subgroups, we obtain a definable
subgroup D which is normalized by NG(H) and commensurable with C. So D
virtually contains H and thus DH is a finite extension of D and thus definable.
Note that:

• Z̃(DH) is a definable almost abelian group as DH is a definable subgroup

of an M̃c-group.

• H ≤ Z̃(DH) as DH is commensurable with C and thus the centralizer of
any element of H has finite index in DH .

• Z̃(DH) is normalized by NG(H) as both D and H are.
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So the definable almost abelian (thus finite-by-abelian) group Z̃(DH) contains H
and is normalized by NG(H). �

3.2. Solvable groups. To prove the solvable case we introduce the following no-
tations:

Definition 3.8. A group G is almost solvable if there exists a normal almost abelian
series of finite length, i. e. a finite sequence

{1} = G0 E G1 E · · · E Gn = G

of normal subgroups of G such that Gi+1/Gi is an almost abelian group for all
i ∈ n. The least such natural number n ∈ ω is called the almost solvable class of
G.

Definition 3.9. Let G be a group and S be a definable almost solvable subgroup.
We say that S admits a definable almost abelian series of length n if there exists a
family of definable normal subgroups {Si : i ≤ n} of S such that S0 is the trivial
group, Sn is equal to S and Si+1/Si is almost abelian and normalized by S.

In an arbitrary group, a priori not every almost solvable group admits a definable
almost abelian series.

By the following Lemma we only need to concentrate on building a definable
almost series. The proof is analogous to the one of Corollary 4.10 in [13] (although
is done there in the context of a simple theory, the proof is exactly the same in our
context).

Lemma 3.10. Any definable almost solvable subgroup H of an ℵ0-saturated group
G which admits a definable almost series of length n

H = H0 D H1 D . . . D Hn = {1}.

Then H has a definable subgroup of finite index which is solvable of class at most
2n and which is normalized by

⋂
iNG(Hi).

Proof. As Hi are normalized by H , we may replace G by the definable
⋂

i NG(Hi)
and suppose that all Hi are normal in G. So, we need to find a definable normal
solvable subgroup of H of class at most 2n which has finite index in H .

By compactness and saturation, we have that Hi/Hi+1 are bounded almost
abelian groups. Now, add the parameters needed to define the Hi to the language.

Using Fact 2.22 we deduce that the quotient group [Hi, Hi]/Hi+1 is finite. More-
over, as all Hi’s are normal subgroups of H , the group [Hi, Hi]/Hi+1 is normalized
by H . Hence, for any h in [Hi, Hi] the quotient [h,H ]/Hi+1 is finite, i. e. the index
of CH(h/Hi+1) in H is finite. Hence, the definable group CH([Hi, Hi]/Hi+1) is the
finite intersection of centralizers which have finite index in H and whence it has
finite index in H as well. Moreover, it is normalized by NG(H). We conclude that
it contains the intersection of all definable G-normalized subgroup of H which have
finite index in H which we denote by H0. This implies that

[[Hi, Hi], H0] ≤ Hi+1.
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Now, we show by induction on k that

(H0)
(2k) ≤ Hk.

Let k be equal to 1. We obtain that

(H0)
(2) = [[H0, H0], [H0, H0]] ≤ [[H0, H0], H0] ≤ H1.

Suppose the statement is true for k. Then we compute:

(H0)
(2k+2) = [[(H0)

(2k), (H0)
(2k)], [(H0)

(2k), (H0)
(2k)]] ≤ [[Hk, Hk], H0] ≤ Hk+1

This finishes the induction.

Hence (H0)
(2n) is a subgroup of the trivial group Hn, whence it is trivial as

well and therefore H0 is solvable of class at most 2n. This can be expressed by a
formula. So it is implied by finitely many of the formulas defining H0. As H0 is
the intersection of a directed system definable subgroups, this also has to be true
in one of those groups. Thus, one can find a definable solvable group of class at
most 2n which has finite index in H and which is normal in G. �

Proposition 3.11. Let H be an almost solvable subgroup of class n of an M̃c-
group G . Then there exists a definable almost solvable subgroup of class n which is
normalized by NG(H) and admits a definable almost abelian series containing H.

Proof. Let {1} = H0 ≤ · · · ≤ Hn = H be an almost abelian series for H . We
construct recursively a definable almost abelian series

{1} = S0 ≤ · · · ≤ Sn

such that for all i ≤ n, Hi ≤ Si and Si is normalized by NG(H).

As S0 is the trivial group, we may let 0 < i < n and suppose that Si−1 has been
constructed. Since Si−1 is definable and normalized by NG(H), we can replace

G by the definable section Gi = NG(Si−1)/Si−1. Note that this is an M̃c-group
and that Hi/Si−1 is an almost abelian subgroup. Thus by the almost abelian
case (Proposition 3.7), there exists a definable almost abelian subgroup Si of Gi

which is normalized by NGi
(Hi/Si−1) containing Hi/Si−1. As Hi is a characteristic

subgroup of H and Si−1 is normalized by NG(H), the normalizer of Hi/Si−1 and
thus of Si contains NG(H)/Si−1. Now defining Si to be the pullback of Si in G, we
conclude. �

Theorem 3.12. Let G be an M̃c-group and H be an almost solvable subgroup of
class n. Then there exists a definable solvable group S of class at most 2n which is
normalized by NG(H) and virtually contains H.

Proof. Proposition 3.11 applied to H gives us a definable almost solvable group K of
class n containing H which admits a definable almost series for which each member
is normalized by NG(H). By Lemma 3.10, the group K has a definable subgroup
S of finite index which is solvable of class at most 2n and which is normalized by
NG(H). �
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3.3. Nilpotent groups.

Definition 3.13. A group H is almost nilpotent if there exists an almost central
series of finite length, i. e. a sequence of normal subgroups of H

{1} ≤ H0 ≤ H1 ≤ · · · ≤ Hn = H

such that Hi+1/Hi is a subgroup of Z̃(H/Hi) for every i ∈ {0, . . . , n− 1}. We call
the least such n ∈ ω, the almost nilpotency class of H .

Remark 3.14. The iterated almost centers of any almost nilpotent group H of
class n form an almost central series of length n.

In this section we prove that any almost nilpotent subgroup of class n is virtually
contained in a definable nilpotent group of class at most 2n. To do so, we need the
following consequences of Corollary 2.25 and Theorem 2.13.

Proposition 3.15. Let G be an M̃c-group. Then the commutator [Z̃(G), C̃G(Z̃(G))]
is finite.

Proof. We may assume that G is ℵ0-saturated. As G is an M̃c-group, the normal

subgroups Z̃(G) and C̃G(Z̃(G)) are definable. As trivially C̃G(Z̃(G)) is contained
in itself and

Z̃(G) = C̃G(G) ≤ C̃G(C̃G(Z̃(G))),

we may apply Corollary 2.25 to these two subgroups and obtain the result. �

Corollary 3.16. Let G be an M̃c-group and H be an A-ind-definable subgroup of
G. Then

H . C̃G(C̃G(H))

Proof. Trivially, we have that C̃G(H) ≤ C̃G(H). Since G is an M̃c-group, the almost

centralizer C̃G(H) is definable and thus by symmetry, we obtain the result. �

Theorem 3.17. Let G be an M̃c-group and let H be an almost nilpotent subgroup
of G of class n. Then there exists a definable nilpotent subgroup N of G of class at
most 2n which is normalized by NG(H) and virtually contains H.

Proof. We construct inductively on i ≤ n the following subgroups of G: In the
ith step we find a definable subgroup Gi of G and two definable normal subgroups
N2i−1 and N2i of Gi all normalized by NG(H) such that:

• H ≤v Gi;
• FCi(H) ∩Gi ≤ N2i;
• [N2i−1, Gi] ≤ N2(i−1);
• [N2i, Gi] ≤ N2i−1;
• Gi ≤ Gi−1.

Once the construction is done, letting N be equal to N2n gives a definable nilpo-
tent subgroup normalized by NG(H) and of class at most 2n which is witnessed by
the sequence

{1} = N0 ∩Gn ≤ N1 ∩Gn ≤ · · · ≤ N2n ∩Gn.

So, let N0 be the trivial group and G0 be equal to G.
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Now, assume that i > 0 and that for j < i and k < 2i − 1 the groups Nk and
Gj have been constructed. We work in the quotient G = Gi−1/N2(i−1) which is

an M̃c-group and we let H = (H ∩Gi−1)/N2(i−1) which is obviously normalized by
NG(H). The first step is to replace G by a definable subgroup C which virtually

contains H and such that FCG(H) = Z̃(G). Observe that the preimage of FCG(H)
in Gi−1 contains FCi(H) ∩Gi−1 as FCi−1(H) ∩Gi−1 is contained in N2(i−1).

If there is g0/N2(i−1) ∈ FCG(H) \ Z̃(G), we consider the family

H = {CG(g
h
0/N2(i−1)) : h ∈ NG(H)}

Note that as H is normalized by NG(H) all members of H virtually contain H.

Moreover, as G is an M̃c-group there exists a finite intersection F of groups in H
such that any K in H we have that the index [F : F ∩ K] is at most d. Thus the
family

{Fh : h ∈ NG(H)}

is uniformly commensurable. So, by Schlichting’s theorem (Fact 3.6) there is a
definable subgroup C0 of G which is invariant under all automorphisms which
stabilizes the family setwise, thus normalized by NG(H), and commensurable with
F. Moreover F∩H is commensurable with CH(g0/N2(i−1)) as g0/N2(i−1) belongs to
FCG(H). Over all we obtain that

C0 ∩ H =v H and C0 ≤v CG(g0/N2(i−1)). (∗)

If now, there is g1/N2(i−1) ∈ C̃C0(H ∩ C0) \ Z̃(C0), we can redo the same con-

struction and obtain a C1. By (∗) and g1 not belonging to Z̃(C0), we have that
CG(g0/N2(i−1), g1/N2(i−1)) has infinite index in CG(g0/N2(i−1)). Then we can it-
erated this process. It has to stop after finitely many steps, as for every j the
index of CG(g0/N2(i−1), . . . , gj+1/N2(i−1)) in CG(g0/N2(i−1), . . . , gj/N2(i−1)) is infi-

nite by construction, contradicting the fact that G is an M̃c-group. Letting C be

equal to
⋂

i Ci, we found a definable subgroup of G (thus an M̃c-group), such that

FCC(H) = Z̃(C), which is normalized by NG(H) and whose intersection with H

has finite index in H.

The next step is to define Gi, N2i−1 and N2i. As C is an M̃c-group, Proposition

3.15 yields that the commutator Z = [Z̃(C), C̃C(Z̃(C))] is finite. Since Z̃(C) and

C̃C(Z̃(C)) are characteristic subgroups of C, we have that Z is normalized by

NG(H) and contained in Z̃(C). Note additionally that the group C̃C(Z̃(C)) has

finite index in C by Corollary 3.16. Thus Gi = C̃C(Z̃(C)) ∩ CC(Z) has finite
index in C. We let N1 = Z ∩ Gi, a finite subgroup of the center of Gi, and

N2 = Z̃(C) ∩ Gi = Z̃(Gi), which is contained in Z(Gi/N1). Note that all groups
used to define Gi, N1 and N2 are all characteristic subgroups of C and thus Gi, N1

and N2 are normalized NG(H). Moreover, N1 and N2 are normal subgroups of Gi.
Let Gi, N2i−1 and N2i be the preimages of Gi, N1 and N2 in G respectively. They
satisfy all requirements, finishing the construction and therefore the proof. �

Corollary 3.18. If H is a normal nilpotent subgroup of G of class n, there is a
definable normal nilpotent subgroup of G that contains H of class at most 3n.
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Proof. By the previous proposition, we can find a definable normal nilpotent sub-
group N of G of class at most 2n that virtually contains H . Thus, the group HN is
a finite union of cosets of the definable subgroup N in G. Therefore, we have that
HN contains H and is a definable normal nilpotent subgroup which has nilpotency
class at most 3n by Fitting’s theorem (Fact 3.4). �

4. Fitting subgroup of M̃c-groups

In this section we analyze the Fitting subgroup F (G) (Definition 4.1) and the

almost Fitting subgroup of an M̃c-group. Note that F (G) is always normal in G.
Moreover, as the product of any two normal nilpotent subgroups is again nilpotent
by Fitting’s Theorem (Fact 3.4), we can conclude that F (G) is locally nilpotent.
It is even nilpotent if G is finite. On the other hand, if G is infinite its Fitting
subgroup might not be nilpotent.

For Mc-groups, nilpotency of F (G) was shown by Bryant [4] for G periodic,
by Wagner [19] in the stable case and in general by Derakhshan and Wagner [5].
Furthermore, it has been recently generalized by Palacín and Wagner [16] to groups
type-definable in simple theories. One of the main ingredients, other than the chain
condition on centralizers, is that any nilpotent subgroup has a definable envelope

up to finite index. As we establish this result for M̃c-groups in Section 3.3 we

are able to prove nilpotency of the Fitting subgroup for M̃c-groups in this section.
Afterwards, we analyze the approximate version of the Fitting group, which is
the group generated by all normal almost nilpotent subgroups. We show that for

M̃c-groups, this group is almost solvable. In the end, we analyze locally nilpotent

M̃c-groups.

Let us first give the precise definition of the Fitting subgroup:

Definition 4.1. Let G be a group. The Fitting subgroup of G, denoted by F (G),
is the group generated by all normal nilpotent subgroups of G.

We make use of the following fact due to Ould Houchine:

Fact 4.2. [11] For any ℵ0-saturated group, nilpotency of the Fitting subgroup im-
plies its definability.

The first step is to show that any locally nilpotent subgroup of an M̃c-group,
thus in particular the Fitting subgroup, is solvable.

Proposition 4.3. Any locally nilpotent subgroup of an M̃c-group is solvable.

The proof is inspired by the corresponding result for type-definable groups in
simple theories [16, Lemma 3.6]. For sake of completeness we give a detailed proof.

Proof. Let K be a locally nilpotent subgroup of an M̃c-group G. Let m be the
minimal natural number such that each descending chain of intersection of central-
izers in G with infinite indexes has length at most m. We consider all sequences of
the form

G = CG(g1) > · · · > CG(g1, . . . gn)
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such that each centralizer has infinite index in its predecessor and let S be the
collection of such tuples ḡ = (g1, . . . , gn). Note that n is at most m and that the
first element of any tuple in S is an element of the center of G. We prove that
CK(g1, . . . gm−i) is solvable for any tuple ḡ = (g1, . . . gm−i) in S of length m− i by
induction on i.

For i = 0, the group CG(g1, . . . gm) is a definable almost abelian group. Using
Fact 2.22 we obtain that its derived group is finite. As CK(g1, . . . gm) is a subgroup
of CG(g1, . . . gm), its derived group is a finite as well and additionally a subgroup
of the locally nilpotent group K. Hence it is nilpotent and whence CK(g1, . . . gm)
is solvable.

Now we assume that for any tuple in S of length at least m − i the induction
hypothesis holds. Let ḡ = (g1, . . . gm−i−1) be a tuple in S of length m − (i + 1).
We consider the group CK(g1, . . . gm−i−1). By the induction hypothesis, we know
that for any g in G for which CG(g) has infinite index in CG(g1, . . . gm−i−1), the
group CK(g1, . . . gm−i−1, g) is solvable. Therefore, letting H be equal to the locally
nilpotent group CK(g1, . . . gm−i−1) and replacing G by CG(g1, . . . gm−i−1) (which is

still an M̃c-group as it is a definable subgroup of an M̃c-group) yields that for any
g such that CG(g) has infinite index in G, the centralizer CH(g) is solvable.

As Z̃(G) is a definable normal subgroup of the M̃c-group G, we can find some
natural numbers n and d such that each descending chain of centralizer in G modulo

Z̃(G) with index greater than d has length at most n.

If H is contained in the definable almost abelian group Z̃(G), the same argument
as for i equal to 1 shows that H is solvable. Thus, we may suppose that H
is not contained in the almost center of G. As H is locally nilpotent, we can

find a nilpotent subgroup H0 of H for which this holds, i. e. the group H0/Z̃(G)

is non-trivial. As H0 is nilpotent, the subgroup CH0(H0/Z̃(G)) strictly contains

Z̃(G) ∩ H0. Take an element h0 in their difference. If CH(h0/Z̃(G)) has index
greater than d in H , one can find a nilpotent subgroup H1 of H which contains

H0 such that CH1(h0/Z̃(G)) has index greater than d in H1 as well. Choose again

an element h1 in CH1(H1/Z̃(G))\Z̃(G), so CH(h1/Z̃(G)) contains H1 and thus

CH(h0/Z̃(G), h1/Z̃(G)) has index greater than d in CH(h1/Z̃(G)). If CH(h1/Z̃(G))
has as well index greater than d in H we can iterate this process. By the choice of
n and d this has to stop after at most n times and so we may find an element h in

H \ Z̃(G) for which the group CH(h/Z̃(G)) has index at most d in H . As h does
not belong to the almost center of G, we have that CG(h) has infinite index in G
and therefore CH(h) is solvable by assumption.

Let N be equal to the derived group of C̃H(G) ≤ Z̃(G). Since it is finite and
contained in H it is nilpotent. Consider the map from CH(h/N) to N sending x
to [h, x]. This map has as kernel the solvable subgroup CH(h) and as image the
nilpotent group N . So the subgroup CH(h/N) is solvable as well. The second step

is to consider the map from CH(h/C̃H(G)) to C̃H(G)/N which maps x to [h, x]/N .

Note that again the kernel CH(h/N) is solvable and the image C̃H(G)/N is abelian.

So CH(h/C̃H(G)) is a solvable subgroup of finite index in H . It therefore contains



ALMOST GROUP THEORY 23

a normal subgroup N of finite index in H . As any finite quotient of a locally
nilpotent group is nilpotent, the group H are solvable. This finishes the induction.

Taking a maximal tuple (g1, . . . , gm) in S and letting i be equal to m − 1, we
obtain that CK(g1) is solvable. As K is equal to CK(g1), this finishes the proof. �

Corollary 4.4. The Fitting subgroup of an M̃c-group is solvable.

In the next lemma we deal with a definable section of some M̃c-group acting via
conjugation on another definable section. We recall and introduce some facts and
notations:

Let G be a group that acts on an abelian group A by automorphisms. Then, one
can naturally extend the action to the group ring Z[G], namely for an arbitrary
element

∑
i<n zigi of Z[G] and a in A, we set

(
∑

i<n

zigi

)
· a =

∏

i<n

(gi · a)
zi.

Moreover, we use the following notation:
If B is a subgroup of A and g an element of G we denote by CB(g) the group
of elements b in B on which g acts trivially, i. e. gb = b. Furthermore, if H is a
subgroup of G and a an element of A, we denote by CH(a) all elements h in H
which act trivially on a. This yields the natural definition of an almost centralizer
via this group action, namely for any subgroup B of A and H of G, we have that

C̃B(H) = {b ∈ B : [H : CH(b)] is finite}

C̃H(B) = {h ∈ H : [B : CA(h)] is finite}

Note that this group action defines a semidirect product A⋊G. Within this group,

the above defined almost commutator C̃B(H) (respectively C̃H(B)) corresponds to

the projection of C̃B⋊1(1⋊H) to its first coordinate (respectively C̃1⋊H(B ⋊ 1) to
its second coordinate). So one obtains immediately the following symmetry for the
above almost commutators using Theorem 2.13 for A⋊G.

Lemma 4.5. Let G be a group that acts on an abelian group A by automorphisms.
Let H be a definable subgroup of G and B be a definable subgroup of A, then we
have that

H . C̃G(B) if and only if B . C̃A(H).

Remark 4.6. Let G be a group and K, A, N and M be subgroups of G such that:

M E K and N E A.

We say that the quotient K/M acts by conjugation on A/N if the action by K/M
on A/N via conjugation is well-defined, i. e.

• K ≤ NG(A) ∩NG(N);
• M ≤ CG(A/N).

Lemma 4.7. Let K and A be quotients of definable subgroups of an M̃c-group G

such that K acts by conjugation on A. Then the C̃K(A) and C̃A(K) are definable.

Proof. The lemma is an immediate consequence of the following claim:
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Claim. There are natural numbers n and d (respectively n′ and d′) such that any
descending chain of centralizers

CA(k0) ≥ CA(k0, k1) ≥ · · · ≥ CA(k0, . . . , km) ≥ . . . (ki ∈ K)
(
resp. CK(a0) ≥ CK(a0,a1) ≥ · · · ≥ CK(a0, . . . ,am) ≥ . . . (ai ∈ A)

)

each of index greater than d (resp. d′) in its predecessor is of length at most n
(resp. n′).

Proof of the claim. Suppose that the claim is false. Then, by compactness there
exists an infinite descending chains of centralizer

CA(k0) ≥ CA(k0,k1) ≥ · · · ≥ CA(k0, . . . ,kn) ≥ . . . (ki ∈ K)

and

CK(a0) ≥ CK(a0, a1) ≥ · · · ≥ CK(a0, . . . , am) ≥ . . . (ai ∈ A)

each of infinite index its predecessor. Let A, N , L and M be definable subgroups
of G such that

A = A/N and K = K/M

and ki in K such that ki is equal to ki/M as well as ai in A such that ai is equal
to ai/N . Then

CA(ki) = {a/N ∈ A/N : ki/M · a/N = a/N}

= {a/N ∈ A/N : aki/N = a/N}

= {a ∈ A : aki/N = kia/N}/N

= CA(ki/N)/N

CK(ai) = {k/M ∈ K/M : k/M · ai/N = ai/N}

= {k ∈ K : aki /N = ai/N}/M

= CK(ai/N)/M

Thus the above infinite descending chains of centralizer each of infinite index its
predecessor translates to

CA(k0/N) ≥ CA(k0/N, k1/N) ≥ · · · ≥ CA(k0/N, . . . , kn/N) ≥ . . .

and

CK(a0/N) ≥ CK(a0/N, a1/N) ≥ · · · ≥ CA(a0/N, . . . , an/N) ≥ . . . .

These are infinite descending chains of centralizer each of infinite index its pre-

decessor in the definable section NG(N)/N of the M̃c-group G which is impossi-
ble. �claim

So, we can choose k0, . . . ,kn in C̃K(A) and a0, . . . , an′ in C̃A(K) such that for

all k in C̃K(A) and a in C̃A(K),

[CA(k0, . . . ,kn) : CA(k0, . . . ,kn, k) < d]

and

[CK(a0, . . . , an) : CK(a0, . . . , an, a) < d′].

Thus,

C̃K(A) = {k ∈ K : [CA(k0, . . . ,kn) : CA(k0, . . . ,kn, k) < d]}
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and
C̃A(K) = {a ∈ A : [CK(a0, . . . , an) : CK(a0, . . . , an, a) < d′]}

�

The proof of [16, Lemma 3.8] which is stated for groups type-definable in a simple
theory uses only symmetry of the almost centralizer and that they are definable.

Hence it remains true for M̃c-groups.

Lemma 4.8. Let K and A be definable sections of an M̃c-group G such that A is
abelian and K acts by conjugation on A. Suppose that H is an arbitrary abelian
subgroup of K and that there are a tuple h̄ = (hi : i < ℓ) in H and natural numbers
(mi : i < ℓ) s. t.

• (hi − 1)miA is finite ∀i < ℓ;
• for any h in H the index of CA(h̄,h) in CA(h̄) is finite.

Then there is a definable subgroup L of K which contains H and a natural number

m such that C̃m
A
(L) has finite index in A.

Proof. Let

L = C̃CK(h̄)(CA(h̄)) = {k ∈ CK(h̄) : [CA(h̄) : CA(h̄,k)] < ∞}

with h̄ given by the statement (note that CK(h̄) denotes the centralizer within the
group K and CA(h̄) denotes the centralizer given by the group action of K on A).
Observe that L contains H by assumption and that it is definable by Lemma 4.7.

Let m be equal to 1+
∑ℓ−1

i=0(mi−1) and fix an arbitrary tuple n̄ = (n0, . . . , nm−1)
in ℓ×m. By the pigeonhole principle and the choice of m there is at least one i less
than ℓ such that at least mi many coordinates of n̄ are equal to i. As the group ring
Z(H) is commutative and (hi − 1)miA is finite for all i less than ℓ by assumption,
we have that

(hn0 − 1)(hn1 − 1) . . . (hnm−1 − 1)A

is finite.

Claim. Let k be an element of K and B be a subgroup of A. Then we have that
the set (k− 1)B is finite if and only if B . CA(k).

Proof. Suppose that B 6. CA(k). Then there is a set of representatives {bi : i ∈ ω}
of cosets of B modulo CA(k), i. e. for i different than j we have that bi − bj does
not belong to CA(k). Thus

(k − 1)bi 6= (k − 1)bj

which contradicts that (k − 1)B is finite.

On the other hand if B . CA(k) then there exists elements b0, . . . ,bp in B such
that for all b in B there exists i less or equal to p such that b−bi belongs to CA(k),
i. e. (k− 1)b = (k− 1)bi. Hence the set (k− 1)B is equal to (k− 1){b0, . . . ,bp},
whence finite. �

So, applying the claim to B = (hn1 − 1) . . . (hnm−1 − 1)A, for all i ≤ n we obtain
that

(hn1 − 1) . . . (hnm−1 − 1)A . CA(hi).
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Thus
(hn1 − 1) . . . (hnm−1 − 1)A . CA(h̄).

Since for all k0 in L, we have that CA(h̄) . CA(k0), we have as well that

(hn1 − 1) . . . (hnm−1 − 1)A . CA(k0)

and again by the claim we deduce that

(k0 − 1)(hn1 − 1) . . . (hnm−1 − 1)A

is finite. As L is contained in the centralizer of h̄, the previous line is equal to

(hn1 − 1) . . . (hnm−1 − 1)(k0 − 1)A.

We repeat the previous process m times and we obtain that for any m-tuple
(k0, . . .km−1) in L we have that the set

(km−1 − 1) . . . (k1 − 1)(k0 − 1)A

is finite. As the tuple is arbitrary, we have that for any k in L the group

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A

is almost contained in the centralizer CA(k), i. e.

L ≤ C̃K((km−2 − 1) . . . (k1 − 1)(k0 − 1)A)

By symmetry we have that

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A . C̃A(L)

By Lemma 4.7, we have that C̃A(L) is definable. Thus we may work modulo this
group as A is abelian and obtain that

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A/C̃A(L)

is finite for all choices of an (m− 1)-tuple (k0, . . . ,km−2) in L. Thus as before we
obtain by the claim and symmetry that

(km−3 − 1) . . . (k1 − 1)(k0 − 1)A . C̃A(L/C̃A(L)) = C̃2
A
(L)

Repeating this process m times yields that A . C̃m
A
(L). �

Theorem 4.9. The Fitting subgroup of an M̃c-group is nilpotent and definable.

Proof. Note first, that the Fitting subgroup F (G) of G is solvable by Corollary 4.4.
So there exists a natural number r such that the rth derived subgroup F (G)(r) of
F (G) is trivial, hence nilpotent. Now we will show that if F (G)(n+1) is nilpotent,
then so is F (G)(n). So, suppose that F (G)(n+1) is nilpotent. As it is additionally
normal in G, using Corollary 3.18 we can find a definable normal nilpotent subgroup
N of G containing F (G)(n+1). Note additionally that the central series

{1} = N0 < N1 < · · · < Nk = N

with Ni = Zi(N) consists of definable normal subgroups of G such that [N,Ni+1] ≤
Ni.

Observe that it is enough to show that F (G)(n) is almost nilpotent: If F (G)(n)

is almost nilpotent it has a normal nilpotent subgroup F of finite index by The-
orem 3.17. As F (G)(n) is a subgroup of the Fitting subgroup, any finite subset is
contained in a normal nilpotent subgroup of G. Thus, there is a normal nilpotent
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subgroup that contains a set of representatives of cosets of F in F (G)(n). Hence the
group F (G)(n) is a product of two normal nilpotent subgroups, whence nilpotent
by Fitting’s Theorem (Fact 3.4).

As F (G)(n)/N is abelian and G/N is an M̃c-group, by Proposition 3.7 one can
find a definable subgroup A′ of G which contains F (G)(n) such that A′/N is an

FC-group, i. e. A′ ≤ C̃G(A
′/N). Moreover, the group A′/N is normalized by the

normalizer of F (G)(n)/N and thus A′ is normal in G. The next step is to find a
definable subgroup A of A′ which still contains F (G)(n) and a natural number m

for which N ≤ C̃m
G (A). This will imply that A ≤ C̃G(A/N) ≤ C̃G(A/C̃

m
G (A)) =

C̃m+1
G (A). As A contains F (G)(n), the group F (G)(n) would be nilpotent by the

above.

Fix now some i > 0. For any g in F (G)(n) there is some normal nilpotent
subgroup Hg which contains g. So NiHg is nilpotent by Fitting’s theorem (Fact
3.4). Therefore, we can find a natural number mg such that [Ni ,mg

g] ≤ {1} or
seen with the group action as in Lemma 4.8

(g − 1)mgNi = {1}.

Additionally, as G is an M̃c-group, we can find a finite tuple ḡ in F (G)(n) such
that for any g ∈ F (G)(n) the index [CNi

(ḡ/Ni−1) : CNi
(ḡ/Ni−1, g/Ni−1)] is finite.

So we may apply Lemma 4.8 to G/N acting on Ni/Ni−1 and the abelian subgroup
F (G)(n)/N . Thus, there is a natural number mi and a definable group Ki that

contains F (G)(n) such that Ni . C̃mi

G (Ki/Ni−1). Then the finite intersection A =
A′ ∩

⋂
iKi is a definable subgroup of G which still contains F (G)(n). As for A′, we

have that A ≤ C̃G(A/N). Additionally:

Ni . C̃mi

G (Ki/Ni−1) ≤ C̃mi

G (A/Ni−1)

and inductively

N . C̃mk

G (A/Nk−1)

≤ C̃mk

G (A/(C
mk−1

G (A/Nk−2))) = C
mk+mk−1

G (A/Nk−2)

≤ . . . ≤ Cmk+···+m1

G (A)

Using that A ≤ C̃G(A/N), we obtain that A ≤ C̃m
G (A) for m = mk + · · ·+m1 + 1.

Overall, we get that F (G)(n) is nilpotent for all n. In particular, the Fitting
subgroup F (G) of G is nilpotent. And finally by Fact 4.2 we deduce that it is
definable as well. �

Now, we want to study the almost Fitting subgroup:

Definition 4.10. The almost Fitting subgroup of a group G is the group generated

by all its normal almost nilpotent subgroups. We denote this subgroup by F̃ (G).

Hickin and Wenzel show in [10] that the product of two normal almost nilpotent
subgroups is again normal almost nilpotent. Hence the almost Fitting subgroup of
any group G is locally almost nilpotent but it might not be almost nilpotent. For

M̃c-groups we show the following:

Proposition 4.11. The almost Fitting subgroup of an M̃c-group is almost solvable.
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Proof. Let G be an M̃c-group and g be an element of its almost Fitting subgroup.
Then there is a normal almost nilpotent subgroup H of G which contains g. By
Theorem 3.17, we deduce that H has a nilpotent subgroup of finite index which
is normal in G. Thus, the quotient H/F (G) is finite. Since additionally H is
a normal subgroup of G, we deduce that any element of H has finitely many

conjugates modulo F (G). Hence the group H and therefore F̃ (G) are contained

in C̃G(G/F (G)). As F (G) is nilpotent by Theorem 4.9 and C̃G(G/F (G))/F (G) is

almost abelian, we deduce that C̃G(G/F (G)) is almost solvable. As any subgroup

of an almost solvable group is almost solvable, we conclude that F̃ (G) is almost
solvable which finishes the proof. �

We finish this section with two proposition about locally nilpotent M̃c-group.

Proposition 4.12. Let G be a locally nilpotent ℵ0-saturated M̃c-group. Then G is
nilpotent-by-finite.

Proof. Note first of all, that it is enough to show that G is almost nilpotent as any

almost nilpotent subgroup of an M̃c-group is nilpotent-by-finite by Theorem 3.17.

As G is locally nilpotent, it is solvable by Proposition 4.3. So, we may inductively
assume that G′ is almost nilpotent. Thus G′ is virtually contained in a definable
normal nilpotent subgroup N of G by Theorem 3.17. We claim that it is enough

to show that for some natural number n, the group N is contained in Z̃n(G): If

so, we have that G/Z̃n(G) is an almost abelian group and thus G is contained in

Z̃n+1(G).

Observe additionally that G/N is an almost abelian group.

Now, we prove inductively that for every natural number i ≤ m, we can find a

natural number j such that Zi(N) is contained in Z̃j(G).

For i equals 0 this is trivially true. Thus, suppose that for Zi(N) we have found

j such that Zi(N) is contained in Z̃j(G). We work in G = G/Z̃j(G) which is again

an M̃c-group. We set

N := NZ̃j(G)/Z̃j(G) and Ni+1 := Zi+1(N)Z̃j(G)/Z̃j(G).

As

[Zi+1(N), N ] ≤ Zi(N) ≤ Z̃j(G),

we have that [Ni+1,N] = 1. Moreover, since G/N is an almost abelian group, so
is G/N. We fix additionally the following notation:
For any subgroup H of G, by H∗ we denote H/N and for any element h of H we
write h∗ for its class modulo N. So, the group G∗ acts on Ni+1 by conjugation and
we may regard Ni+1 as an G∗-module as [Ni+1, N ] = 1.

Since G is an M̃c-group, we can find a finite tuple ḡ = (g0, . . . , gm) of elements in
G such that for any g in G the index [CG(ḡ) : CG(ḡ, g)] is finite. Let K be equal to
CG(ḡ/N) which has finite index in G as G/N is almost abelian. For any a ∈ Ni+1,
we have that the group generated by a and ḡ is a finitely generated subgroup of a
locally nilpotent group and must be nilpotent. Thus for a given a in Ni+1 there is
a choice h0, . . . , hda of elements all belonging to the tuple ḡ such that in the right
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module notation

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
da − 1)a = 0.

As Ni+1 is definable and G is ℵ0-saturated, there is an upper bound for the
choice of da which we denote by d.

Thus, for any choice of h0, . . . , hd each being an element of the tuple ḡ and any
element a of Ni+1 we have in the right module notation

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)a = 0.

As a was arbitrary in Ni+1, we obtain that

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)Ni+1 = 0.

Moreover, since h0 is an arbitrary element of ḡ, the previous equation yields that

(h∗
1 − 1) . . . (h∗

d − 1)Ni+1 ≤ CG(ḡ).

Let k0 be any element of K, by the choice of ḡ, we obtain that

(h∗
1 − 1) . . . (h∗

d − 1)Ni+1 . CG(k0)

or in other words

(k∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)Ni+1 is finite.

As k0 is an element of CG(ḡ/N) and Ni+1 is commutative, this finite set equals

(h∗
1 − 1) . . . (h∗

d − 1)(k∗
0 − 1)Ni+1

Iterating this process, we obtain that for any tuple of elements (k0, . . . , kd) in K

we have that

(k∗
d − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1 is finite.

Since the tuple was taken arbitrary, we have that for any k in K the group

(k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1

is almost contained in the centralizer CNi+1
(k), i. e.

K ≤ C̃G((k
∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1)

By symmetry we have that

(k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1 . C̃Ni+1

(K)

As Ni+1 is an M̃c-group, the group C̃Ni+1
(K) is definable, thus we may work modulo

C̃Ni+1
(K) and obtain that

(k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1/C̃Ni+1

(K)

is finite for all choices of an d − 1 tuple (k0, . . . , km−2) in K. Thus as before we
obtain by symmetry that

(k∗
d−2 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1 . C̃Ni+1

(K/C̃Ni+1
(K)) = C̃2

Ni+1
(K).

Repeating this process m many times yields that Ni+1 . C̃d
Ni+1

(K) = C̃d
Ni+1

(G) ≤

Z̃d(G). Thus Zi+1(N) . C̃d
G(G/Z̃j(G)) = Z̃d+j(G). As N and thus Zi+1(N) are

normal in G, this yields immediately that Zi+1(N) ≤ Z̃d+j+1(G) which finishes the
proof. �
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Proposition 4.13. Let G be a locally nilpotent M̃c-group such that G/Z̃k(G) has
finite exponent for some natural number k. Then G is nilpotent-by-finite.

Proof. First of all note, that it is enough to show that G/Z̃k(G) is almost nilpotent,
as this implies that G is almost nilpotent and any almost nilpotent subgroup of an

M̃c-group is nilpotent-by-finite by Theorem 3.17. So let us replace G by G/Z̃k(G)

which is as well an M̃c-group by definition, locally nilpotent and of finite exponent.

The rest of the proof is analogous to the previous one. Using the same notation
as before, the only difference is the way to find the bound d such that for any choice
of h0, . . . , hd each being an element of the tuple ḡ and any element of Ni+1 we have
in the right module notation that

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)a = 0.

In this context, we know that G has finite exponent, say e. Thus, the group
generated by ḡ has finite order, say f . So for any a ∈ Ni+1, the group generated
by a and ḡ has order at most d = ef · f and as it is a finitely generated subgroup
of a locally nilpotent group, it is nilpotent. Thus it is nilpotent of class at most d
which gives the bound. �

5. Almost nilpotent subgroups of M̃c-groups

In section 2 we introduced the almost centralizer which is a centralizer “up to
finite index”. Thus one might ask, if there exists a corresponding notion of an
“almost commutator”. In this section we introduce such a notion and establish its
basic properties. Even though, this notion might not have the desired properties in

the general context, it has once we work in M̃c-groups. This allows us to generalize

result on nilpotent group to almost nilpotent M̃c-groups.

For the rest of the section we fix a parameter set A and let G be an

|A|+-saturated and |A|+-homogeneous group.

5.1. Almost commutator. To simplify the notation in the next definition, we
let G be family of all A-definable subgroups of G. Note that this family is stable
under finite intersections.

Definition 5.1. For two A-ind-definable subgroups H and K of G, we define:

[̃H,K ]̃A :=
⋂

{L ∈ G : L = LNG(H) = LNG(K), H . C̃G(K/L)}

and call it the almost A-commutator of H and K. If A is the empty set we omit
the index and just say the almost commutator.

By Theorem 2.13 the almost commutator is symmetric, i. e. for two A-ind-

definable subgroups H and K, we have [̃H,K ]̃A = [̃K,H ]̃A. Moreover, it is the
intersection of definable subgroups of G. Note that the ordinary commutator of two
A-ind-definable groups is not necessary definable nor the intersection of definable
subgroups, and hence one cannot compare it with its approximate version, contrary
to the almost centralizer.
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As the final results on almost nilpotent subgroups of M̃c-groups we obtain only
deals with normal subgroups, we restrict our framework from now on to nor-

mal subgroups. In this case, the subgroup [̃H,K ]̃ is the intersection of normal
subgroups in G which simplifies not only the definition but also many arguments
and ambiguities in numerous proofs. Note anyhow that all results in this section
could be generalized to arbitrary subgroups.

So let from now on F be the family of all A-definable normal subgroups

of G. Note that this family is still stable under finite intersections and additionally
under finite products.

Then the definition of the almost commutator of two ind-definable normal sub-
groups H and K of G simplifies to:

[̃H,K ]̃A :=
⋂

{L ∈ F : H . C̃G(K/L)}.

As H . C̃G(K/L) does not depend on the model we choose, the almost commu-
tator does not depend on G. In other words, in any elementary extension of G, it
will correspond to the intersection of the same A-definable groups.

In the rest of this section, we establish basic properties of the almost commutator
of ind-definable normal subgroups in arbitrary groups. To simplify notation, we

add A as constants to the language and thus for any two A-ind-definable

subgroups H and K of G, the almost commutator [̃H,K ]̃ and the A-almost

commutator [̃H,K ]̃A in the new language coincide. Therefore, we may omit
A in the index in the rest of the section.

For two A-ind-definable normal subgroups H and K of G and L the intersection
of A-definable subgroups of G, we obtain immediately that

H . C̃G(K/L) implies [̃H,K ]̃ ≤ L.

The other implications is a consequence of the following result:

Lemma 5.2. For any A-ind-definable normal subgroups H and K of G, we have
that

H . C̃G

(
K
/
[̃H,K ]̃

)
.

Moreover, [̃H,K ]̃ is the smallest intersection of A-definable normal subgroups for
which this holds.

Proof. We let L be the family of all A-definable normal subgroups L of G such that

H . C̃G(K/L). Suppose that H 6. C̃G(K/̃[H,K ]̃). As [̃H,K ]̃ is the intersection
of the normal subgroups L in L, Properties 2.8 (10) yields that there is an L in L

such that H 6. C̃G(K/L). This contradicts the choice of the L and the first part
of the lemma is established.

Now, let L be an intersection of A-definable normal subgroups such that H .

C̃G(K/L). Then, this holds for any of the definable subgroups in the intersection.

Thus, those subgroups contain [̃H,K ]̃ and therefore L contains [̃H,K ]̃. �

Using the previous lemma we obtain immediately the following corollaries.
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Corollary 5.3. Let H and K be two A-ind-definable normal subgroups of G and
L be an intersection of A-definable normal subgroups of G. Then, we have that

H . C̃G(K/L) if and only if [̃H,K ]̃ ≤ L.

Corollary 5.4. For any almost commutator of two A-ind-definable normal sub-
groups H and K and any intersection L of A-definable normal subgroups, we have

that [̃H,K ]̃ . L if and only if [̃H,K ]̃ ≤ L

Proof. The implication from right to left is trivial. So suppose that [̃H,K ]̃ . L.

Lemma 5.2 yields that H . C̃G(K/̃[H,K ]̃). Furthermore, by assumption we have

that the intersection of A-definable subgroups [̃H,K ]̃ ∩ L has bounded index in

[̃H,K ]̃, i. e. we have that [̃H,K ]̃ ∩ L ∼ [̃H,K ]̃. So Properties 2.8 (7) yields that

H . C̃G(K/(̃[H,K ]̃∩L)). As [̃H,K ]̃ is the smallest subgroup for which this holds,
we obtain the result. �

The next lemma seems rather trivial but it is essential for almost any proof
concerning computations with almost commutators.

Lemma 5.5. Let H, K, N and M be A-ind-definable normal subgroups of G.

(1) If N . H and M . K then [̃N,M ]̃ ≤ [̃H,K ]̃.

(2) If H (resp. K) is an intersection of definable groups [̃H,K ]̃ is contained in
H (resp. K).

Proof. (1) Let L be an arbitrary A-definable normal subgroup of G such that

H is almost contained in C̃G(K/L). Since K ∩ M is a subgroup of K,

we have that H is almost contained in C̃G(K ∩ M/L) as well. As N is
almost contained in H , we may replace H by N and obtain N is almost

contained in C̃G(K ∩ M/L). Additionally, the almost centralizer of two
commensurate A-ind-definable subgroups such as M and K ∩M coincides.

Thus we conclude that N is almost contained in C̃G(M/L) or in orther words

[̃N,M ]̃ is a subgroup of L. As L was arbitrary, the almost commutator

[̃N,M ]̃ is contained in [̃H,K ]̃.

(2) We have trivially that H ≤ C̃G(K/H). So if H is the intersection of de-
finable groups, we conclude that the almost commutator of H and K is
contained in H .

�

Lemma 5.6. Let H and K be two A-type-definable normal subgroups of an |A|+-
saturated group G. Fix {Hi : i ∈ I} and {Ks : s ∈ S} two projective systems
of A-definable sets such that H =

⋂
i∈I Hi and K =

⋂
s∈S Ks (i. e. for any i, j

in I and s, t in S there exists n in I and m in S such that Hi ∩ Hj ⊇ Hn and
Ks ∩Kt ⊇ Km). Then, we have that

HK =
⋂

(i,s)∈I×S

HiKs.

Proof. Inclusion from left to right is obvious. So take c in
⋂

(i,s)∈I×S HiKs. Thus
for all distinct i and I and s in S there exists elements hi of Hi and ks of Ks such
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that c is equal to hiks. So the following type over A is consistent.

π(x, y) = {x ∈ Hi : i ∈ I} ∪ {y ∈ Ks : s ∈ S} ∪ {c = xy}

By compactness and saturation of G, one can find h ∈
⋂

i∈I Hi = H and k ∈⋂
s∈S Ks = K such that c = hk. �

Lemma 5.7. Let H, K, and L be A-ind-definable normal subgroups of G. Then
we have

[̃HK, L̃] ≤ [̃H, L̃] · [̃K, L̃].

Proof.

[̃H, L̃] · [̃K, L̃] =
⋂

{M ∈ F : H . C̃G(L/M)} ·
⋂

{N ∈ F : K . C̃G(L/N)}

5.6
=

⋂
{M ·N : M,N ∈ F , H . C̃G(L/M), K . C̃G(L/N)}

As the product of two groups in F is again a subgroup which belongs to F

and since H . C̃G(L/M) and K . C̃G(L/N), by Properties 2.8 we have that

H . C̃G(L/MN) and K . C̃G(L/MN). So by Lemma 2.5 we obtain HK .

C̃G(L/MN). Thus, the previous set contains the following one:

⊇
⋂

{P ∈ F : HK . C̃G(L/P )}

= [̃HK, L̃]

This finishes the proof. �

Another useful behavior of the almost centralizer is the following:

Lemma 5.8. Let H and K be two A-ind-definable normal subgroups of G and

L be an intersection of A-definable normal subgroups of G. If [̃H,K ]̃ ≤ L then

H ≤ C̃2
G(K/L).

Proof. Let [̃H,K ]̃ be contained in L. By Corollary 5.3, we have that H . C̃G(K/L).

So H/C̃G(K/L) is a bounded group and as H is normal in G, it contains hk ·

C̃G(K/L) for all h in H and k in K. Hence the set {hk : k ∈ K}/C̃G(K/L) of

conjugates of any element h in H by K modulo C̃G(K/L) is bounded. As the

size of this set corresponds to the index of CK(h/C̃K(K/L)) in K, the group H is

contained in the almost centralizer C̃G(K/C̃K(K/L)), i. e. the group H is contained

in C̃2
G(K/L). �

5.2. Almost nilpotent subgroups of M̃c-groups. A consequence of the defin-

ability of the almost centralizer in M̃c-groups (Proposition 2.28) is that the almost
commutator is “well behaved”. For example, we obtain the lemma below:

Lemma 5.9. Let G be an M̃c-group and H be an A-ind-definable normal subgroup
of G. For any natural number n, so we have that

[̃H, C̃n
G(H )̃] ≤ C̃n−1

G (H)
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Proof. We have that

[̃H, C̃n
G(H )̃] =

[̃
H, C̃G

(
H
/
C̃n−1

G (H)
) ]̃

by definition of the almost centralizer. Moreover, the almost centralizer C̃n−1
G (H)

is an A-definable subgroup of G since G is an M̃c-group. Thus
[̃
H, C̃G

(
H
/
C̃n−1

G (H)
) ]̃

≤ C̃n−1
G (H)

as C̃G(H/C̃n−1
G (H)) is trivially contained in itself and we obtain the result. �

The main goal is to show a version Hall nilpotency criteria for almost nilpotent

M̃c-groups. The ordinary version is the following:

Fact 5.10. [9, Theorem 7] Let N be normal subgroup of G. If N is nilpotent of
class m and G/[N,N ] is nilpotent of class n then G is nilpotent of class at most(
m+1
2

)
n−

(
n
2

)
.

We first have to state the approximate three subgroups lemma in terms of the
almost commutator.

Notation. Let H , K and L be A-ind-definable normal subgroups of a given group
G. Recall that for the ordinary commutator, we write [H,K,L] for [[H,K], L].

Similarly, for the almost commutator, we write [̃H,K, L̃] for [̃̃[H,K ]̃, L̃]. Note that

the group [̃H,K ]̃ is an A-ind-definable normal subgroup of G and thus [̃̃[H,K ]̃, L̃]
is well defined.

Now, given an M̃c-group G, we have that the almost centralizer of any A-ind-
definable subgroup in G is definable. Thus for H , K and L such that H and

K normalize L, we have that H . C̃G(K/C̃G(L)) if and only if [̃H,K ]̃ ≤ C̃G(L)

by Corollary 5.3. This again is equivalent to [̃H,K, L̃] being trivial. With this

equivalence, we may phrase Theorem 2.19 for M̃c-groups as below.

Corollary 5.11. Let H, K and L be three A-ind-definable strongly normal sub-

groups of an M̃c-group G. Then for any M which is an intersection of A-definable
normal subgroups of G, we have that

[̃H,K, L̃] ≤ M and [̃K,L,H ]̃ ≤ M imply [̃L,H,K ]̃ ≤ M.

Proof. Let M be equal to the intersection of definable subgroups Mi with i < κ.
For any i less than κ, we may work in the group G modulo Mi which is a quotient of

an M̃c-group by a definable normal subgroup and so an M̃c-group as well. Hence,
Theorem 2.19 (working modulo the definable group Mi) yields that

H . C̃G

(
K
/
C̃G(L/Mi)

)
and K . C̃G

(
L
/
C̃G(H/Mi)

)

imply

L . C̃G

(
H
/
C̃G(K/Mi)

)
.

Which we can translate to

[̃H,K, L̃] ≤ Mi and [̃K,L,H ]̃ ≤ Mi imply [̃L,H,K ]̃ ≤ Mi

So the statement is true for any Mi and hence for the intersection. �
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Now, we want to define the notion of an almost lower central series and find a
characterization of being almost nilpotent via this series.

In literature the ordinary lower central series of a subgroup H of G is defined as
follows:

γ1H = H and γi+1H = [γiH,H ].

Analogously, we introduce a notion of the almost lower central series:

Definition 5.12. We define the almost lower A-central series of an A-ind-definable
subgroup H of G as follows:

(γ̃1H)A = H and (γ̃i+1H)A = [̃γ̃iH,H ]̃A.

We also refer to (γ̃nH)A as the iterated nth almost commutator of H . Again, if A
is the empty set we omit the index.

As we have added A as constants to the language, we may omit it

again in the subscript of the iterated nth almost commutator for the rest

of the section.

Remark 5.13. The almost lower center series is well-defined as [̃H,H ]̃ is the in-
tersection of A-definable groups and hence A-type-definable. Thus, by induction

we see that γ̃i+1H = [̃γ̃iH,H ]̃ is again an A-type-definable subgroup.

To make the proofs more readable, we fix the following notation:

Notation. If K1, . . . , Kn are A-ind-definable subgroups of G, we denote by γ̃n(K1, . . . , Kn)

the almost commutator [̃ . . . [̃̃[K0, K1̃], K2̃], . . . , Kñ]. If Ki, . . . , Ki+j−1 are all equal
to K we can replace the sequence by Kj , i. e. write γ̃n(K1, . . . , Kn) as γ̃n(K1, . . .Ki−1, K

j , Ki+j, . . . ,
Also, γ̃i+0+j(K1, . . .Ki, K

0, Ki+1, . . . , Ki+j) equals γ̃i+j(K1, . . .Ki, Ki+1, . . . , Ki+j).
Observe that γ̃n(H

n) is another way of writing (γ̃nH).

We want to establish a connection between the triviality of the nth iterated
almost commutator of a normal subgroup H of G and the almost nilpotency class
of H .

Lemma 5.14. If H is an A-ind-definable normal subgroup of an M̃c-group G and
almost nilpotent of class n, then γ̃n+1H is trivial. Conversely, if γ̃n+1H is trivial,
then H is almost nilpotent of class at most n + 1.

Proof. To prove the first result, we show by induction on i ≤ n that the almost
commutator γ̃i+1H is contained in C̃n−i

G (H). As H is almost nilpotent of class n, i.

e. H ≤ C̃n
G(H), the inclusion is satisfied for i equals to zero. Now suppose it holds

for all natural numbers smaller or equal to i. The induction hypothesis together

with Lemma 5.5(1) implies that γ̃i+2H = [̃γ̃i+1H,H ]̃ is contained in [̃C̃n−i
G (H), H ]̃.

Moreover, by Lemma 5.9 we have that [̃C̃n−i
G (H), H ]̃ is contained in C̃n−i−1

G (H).

Hence γ̃i+2H is also contained in C̃n−i−1
G (H) which finishes the induction. Letting

i be equal to n, we obtain that γ̃n+1H is contained in C̃0
G(H) which is the trivial

group by definition.
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For the second result, we first show the following inclusion by induction that for
i less or equal to n− 1:

γ̃(n+1)−iH ≤ C̃ i
G(H).

For i = 0, the inequality holds by hypothesis. Now we assume, the inequality holds

for i < n − 1. Thus γ̃(n+1)−iH ≤ C̃ i
G(H) or in other words [̃γ̃(n+1)−(i+1)H,H ]̃ ≤

C̃ i
G(H). By Corollary 5.3, we have that

γ̃(n+1)−(i+1)H . C̃G

(
H
/
C̃ i

G(H)
)
= C̃ i+1

G (H).

By Corollary 5.4, as (n+1)− (i+1) is at least 2, finally we obtain γ̃(n+1)−(i+1)H ≤

C̃ i+1
G (H) which finishes the induction.

Now, we let i be equal to n− 1 we obtain: [̃H,H ]̃ ≤ C̃n−1
G (H). Then by Lemma

5.8 we have that H ≤ C̃n+1
G (H) and hence H is almost nilpotent of class n+1. �

The next three lemmas are the preparation to finally show the approximate
version of Hall’s nilpotency criteria.

Lemma 5.15. Let N be a normal subgroup of an M̃c-group G. Then for all positive
natural numbers n and m, we have that

[̃γ̃nN, γ̃mN ]̃ = γ̃n+mN.

Proof. We proof this by induction on m > 0.

If m is equal to 1, we have immediately that for all n > 0,

[̃γ̃nN, γ̃1N ]̃ ≤ [̃γ̃nN,N ]̃ ≤ γ̃n+1N.

To continue the induction, suppose that for a given m > 1 and for all n > 0, we
have that

[̃γ̃nN, γ̃mN ]̃ ≤ γ̃n+mN.

Let k be an arbitrary positive natural number. We want to show that

[̃γ̃kN, γ̃m+1N ]̃ ≤ γ̃k+m+1N.

We have that
[̃̃
[γ̃kN,N ]̃, γ̃mN

]̃
= [̃γ̃k+1N, γ̃mN ]̃

hyp

≤ γ̃k+m+1N

and
[̃̃
[γ̃kN, γ̃mN ]̃, N

]̃ hyp

≤
5.5(1)

[̃γ̃k+mN,N ]̃ ≤ γ̃k+m+1N.

As k + m ≥ 2, we have that the group γ̃k+m+1N is an intersection of normal
definable subgroups of G. Thus by the three subgroups lemma (Corollary 5.11) we
have that [̃

γ̃kN, γ̃m+1N
]̃
=
[̃̃
[γ̃mN,N ]̃, γ̃kN

]̃
≤ γ̃k+m+1N

and the lemma is established. �

Lemma 5.16. Let N be an A-ind-definable normal subgroup of an M̃c-group G.
Then, for any natural numbers n ≥ 2, i and j we have that

[̃
γ̃nN, γ̃i+j(N

i, Gj)
]̃
≤ γ̃n+iN

where
[̃
γ̃nN, γ̃i+j(N

i, Gj)
]̃

for i = j = 0 equals γ̃nN .
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Proof. Note first that as n is at least 2, the group γ̃nN is an intersection of normal

A-definable groups. Thus for i equal to 0, we have that [̃γ̃nN, γ̃jG]̃ ≤ γ̃nN by
Lemma 5.5(2).

Now, let i be equal to 1. Note first that by Lemma 5.5(1) +(2),
[̃
γ̃nN, γ̃1+j(N,Gj)

]̃
≤
[̃
γ̃nN, [̃N,G]̃

]̃
. (∗)

Furthermore, we have the following:

[̃̃
[γ̃nN,G]̃, N

]̃ 5.5(1)+(2)

≤ [̃γ̃nN,N ]̃ = γ̃n+1N,

[̃̃
[γ̃nN,N ]̃, G

]̃ 5.5(2)

≤ [̃γ̃nN,N ]̃ = γ̃n+1N.

Hence, as γ̃n+1N is the intersection of A-definable subgroups, the three subgroups

lemma (Corollary 5.11) yields that [̃γ̃nN, [̃N,G]̃̃] is contained in γ̃n+1N . Now, by
(∗) we conclude for i equals to 1.

If i is greater than 1, we have that

[̃
γ̃nN, γ̃i+j(N

i, Gj)
]̃ 5.5(1)+(2)

≤ [̃γ̃nN, γ̃iN ]̃.

By Lemma 5.15, we obtain that [̃γ̃nN, γ̃iN ]̃ is contained in γ̃n+iN which finishes
the proof. �

The following lemma is [9, Lemma 7] generalized to our framework.

Lemma 5.17. Let N be a A-ind-definable normal subgroup of an M̃c-group G and

suppose that there exists a natural number m > 0 such that γ̃m+1(N,Gm) . [̃N,N ]̃.
Then, for all natural numbers r > 0 we have that

γ̃rm+1(N
r, Grm−r+1) ≤ γ̃r+1N.

Proof. We start this proof with the following claim.

Claim. Let X be an ind-definable normal subgroup of G. Then for any n > 0, we
have that

γ̃n+2(X,N,Gn) ≤

n∏

i=0

[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
.(2)

Proof of the claim. We prove the claim by induction on n > 0. Let n be equal to
1. Trivially we have that

[̃N,G,X ]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃̃
[X,G]̃, N

]̃

and

[̃G,X,N ]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃̃
[X,G]̃, N

]̃
.

The three subgroups lemma (Corollary 5.11) insures that

[̃X,N,G]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃̃
[X,G]̃, N

]̃

and so the claim holds for n = 1.
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Now, assume the claim holds for some n > 0. We compute:

γ̃n+3(X,N,Gn+1) =
[̃
γ̃n+2(X,N,Gn), G

]̃

IH
≤

5.5(1)

[̃ n∏

i=0

[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
, G
]̃
.

As all factors are invariant normal subgroups of G we may apply Lemma 5.7 finitely
many times to the last expression and continue the computation:

≤
n∏

i=0

[̃[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
, G
]̃
.(3)

To simplify notation, we let Xi = γ̃i+1(X,Gi) and Nj = γ̃j+1(N,Gj). Now, fix
some i less or equal to n. We obtain that

[̃[̃
γ̃i+1(X,Gi), G

]̃
, γ̃n−i+1(N,Gn−i)

]̃
=

[̃
γ̃i+2(X,Gi+1), γ̃n−i+1(N,Gn−i)

]̃

= [̃Xi+1, Nn−ĩ]

and
[̃[̃
γ̃n−i+1(N,Gn−i), G

]̃
, γ̃i+1(X,Gi)

]̃
=

[̃
γ̃n−i+2(N,Gn+1−i), γ̃i+1(X,Gi)

]̃

= [̃Nn−i+1, Xĩ]

= [̃Xi, Nn−i+1̃].

As the groups on the right are intersection of definable subgroups of G, using
the approximate three subgroups lemma (Corollary 5.11), we obtain the following
inequation for the ith factor of (3):

[̃[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
, G
]̃
≤ [̃Xi+1, Nn−ĩ] · [̃Xi, Nn−i+1̃].

Over all, we get that

γ̃n+3(X,N,Gn) ≤

n+1∏

i=0

[̃Xi, Nn−i+1̃] =

n+1∏

i=0

[̃
γ̃i+1(X,Gi), γ̃n+1−i+1(N,Gn+1−i)

]̃
.

�claim

Now, we prove the Lemma by induction on r > 0. By Corollary 5.4, the al-

most inequality γ̃m+1(N,Gm) . [̃N,N ]̃ implies immediately γ̃m+1(N,Gm) ≤ [̃N,N ]̃.
Thus, for r equals to 1 the lemma holds trivially by the hypothesis. Assume that
the result holds for a given r greater or equal to 1. We want to prove that

γ̃(r+1)m+1(N
r+1, G(r+1)m−r) ≤ γ̃r+2N.

Now consider equation (2) with n = (r + 1)m − r and X replaced by γ̃rN
r. This

gives us:

γ̃(r+1)m+1(N
r+1, G(r+1)m−r) = γ̃((r+1)m−r)+2(γ̃rN,N,G(r+1)m−r)(4)

≤

(r+1)m−r∏

i=0

[̃
γ̃i+1(γ̃rN,Gi), γ̃n−i+1(N,Gn−i)

]̃
.(5)

The group on the left hand side is the one we want to analyze. The goal is to prove
that all factors on the right hand side are contained in γ̃r+2N . So, we consider the
factor indexed by i.
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Supoose first that i is greater than rm − r. By induction hypothesis, we have
that

γ̃rm+1(N
r, Grm−r+1) ≤ γ̃r+1N.

As γ̃rm+1(N
r, Grm−r+1) is normal in G and an intersection of A-definable groups,

using Lemma 5.5 (2) we obtain that γ̃r+i(N
r, Gi) ≤ γ̃r+1N and

[̃
γ̃i+1(γ̃rN,Gi), γ̃n−i+1(N,Gn−i)

]̃ 5.5(1)

≤
[̃
γ̃r+1N, γ̃n−i+1(N,Gn−i)

]̃

5.16
≤ γ̃r+2N.

Now, assume that i ≤ rm − r. By the case r = 1, we have that γ̃m+1(N,Gm) ≤

[̃N,N ]̃. As n − i is greater than m and γ̃m+1(N,Gm) is an intersection of normal

subgroup of G, we also have that γ̃n−i+1(N,Gn−i) ≤ [̃N,N ]̃. So we may compute:

[̃
γ̃i+1((γ̃rN

r), Gi), γ̃n−i+1(N,Gn−i)
]̃ 5.5(1)

≤
[̃
γ̃i+r(N

r, Gi), [̃N,N ]̃
]̃

5.16
≤ γ̃r+2N.

Hence all factors, and therefore γ̃(r+1)m+1(N
r+1, G(r+1)m−r), are contained in γ̃r+2N .

This finishes the proof. �

Now, we are ready to generalize Hall’s nilpotency criteria (Fact 5.10) to M̃c-
groups.

Corollary 5.18. Let N be an A-ind-definable normal subgroup of an M̃c-group G.

If N is almost nilpotent of class m and G/̃[N,N ]̃ is almost nilpotent of class n then
G is almost nilpotent of class at most

(
m+1
2

)
n−

(
n
2

)
+ 1.

Proof. By hypothesis and Lemma 5.14 we have that

γ̃m+1N = 1 and γ̃n+1G ≤ [̃N,N ]̃. (∗)

Hence

γ̃n+1(N,Gn) ≤ [̃N,N ]̃

and whence N satisfies the hypothesis of Lemma 5.17. Thus

γ̃rn+1(N
r, Grn−r+1) ≤ γ̃r+1N(6)

holds for all natural numbers r.

Claim. Let f(x) =
(
x+1
2

)
n −

(
x
2

)
. For every i greater than 1, we obtain that

γ̃f(i)+1G ≤ γ̃i+1N

Proof of the claim. We prove the claim by induction on i ≥ 2.

So let i be equal to 2. We compute:

γ̃f(2)+1G = γ̃3nG = γ̃2n(γ̃n+1G,G2n−1)
(∗)

≤
5.5(1)

γ̃2n

(
[̃N,N ]̃, G2n−1

) 6

≤ γ̃3N.
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Now, suppose the claim holds for i ≥ 2. We show that the claim holds for i+ 1:

γ̃f(i+1)+1G = γ̃(i+1)n−i+1

(
γ̃f(i)+1G,G(i+1)n−i

)

hyp

≤
5.5(1)

γ̃(i+1)n−i+1

(
γ̃i+1N,G(i+1)n−(i+1)+1

)

hyp

≤
5.5(1)

γ̃(i+1)n+1

(
N i+1, G(i+1)n−(i+1)+1

)

6
≤ γ̃i+2N.

This finishes the induction and the proof of the claim. �claim

Choosing i to be m we get that

γ̃f(m)+1G ≤ γ̃m+1N = {1}.

So Lemma 5.14 yields that G is almost nilpotent of class at most
(
m+1
2

)
n −

(
n
2

)
+

1. �

Corollary 5.19. Let H and K be A-ind-definable normal subgroups of an M̃c-
group G.

(1) If [̃H,H ]̃ = [̃G,G]̃, then for all r ≥ 2, we have γ̃rH = γ̃rG.

(2) If [̃H,K ]̃ and [̃H,H ]̃ are contained in [̃K,K ]̃, then for all r ≥ 2, the almost
commutator γ̃rH is contained in γ̃rK.

Proof. (1) As H is a subgroup of G, we have that γ̃rH ≤ γ̃rG holds trivial for
all r ≥ 2. We prove the inverse inclusion by induction on r. For r equals
to 2, the statement holds by hypothesis. Now suppose that the statement
holds for all natural numbers smaller than r > 2. Thus,

γ̃rG ≤ γ̃r(H
r−1, G).

Furthermore, [̃H,G]̃ ≤ [̃H,H ]̃, hence we may apply Lemma 5.17 with m = 1
and obtain that

γ̃r(H
r−1, G) ≤ γ̃rH

which finishes the proof.
(2) Consider L = HK. Then we can compute that

[̃L, L̃] = [̃HK,HK ]̃
5.7
≤ [̃H,H ]̃ · [̃K,K ]̃ · [̃H,K ]̃ = [̃K,K ]̃.

By the first part of the corollary we can conclude that γ̃rH
r ≤ γ̃rL

r = γ̃rK
r.

�

5.3. Other applications of the almost three subgroups lemma and re-

sults on almost nilpotent groups. Using symmetry of the almost centralizer,
the three subgroups lemma and the definabilily of the almost centralizer, we may
generalize a theorem due to Hall [12, Satz III.2.8] for the ordinary centralizer to
our context.
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Proposition 5.20. Let G be an M̃c-group, N0 ≥ N1 ≥ · · · ≥ Nm ≥ . . . be
a descending sequence of A-definable normal subgroups of G, and H be an A-
ind-definable normal subgroup of G. Suppose that for all i ∈ ω, we have H .

C̃G(Ni/Ni+1). We define for i > 0,

Hi :=
⋂

k∈ω

C̃H(Nk/Nk+i).

Then we have that for all positive natural numbers i and j, the group Hi is almost

contained in C̃G(Hj/Hi+j), the group H is almost contained in C̃ i
G

(
H
/
C̃G(Nj−1/Ni+j)

)

and therefore [̃γ̃i+1H,Nj−1̃] ≤ Ni+j.

Remark 5.21. The non-approximate version [12, Satz III.2.8] states that for Hi

defined as
⋂

k<ω CH(Nk/Nk+i) we have that for all positive natural numbers i and
j, [Hi, Hj] ≤ Hi+j and [γi+1H,Nj−1] ≤ Ni+j .

Proof. Note that H is equal to
⋂

k∈ω C̃G(Nk/Nk+i) ∩ H and thus the intersection
of an ind-definable subgroup and boundedly many definable subgroups. So Hi is
as well an ind-definable subgroup of G.

As C̃G(Nk/Nk+i+j) is definable for any natural number k, Properties 2.8 (9)
yields that

Hi . C̃G(Hj/Hi+j) = C̃G

(
Hj

/ ⋂

k<ω

C̃G(Nk/Nk+i+j)

)

if and only if for all natural number k we have that

Hi . C̃G

(
Hj

/
C̃G(Nk/Nk+i+j)

)
.

So it is enough to show the latter result for any natural number k ∈ ω. So fix

some k, i and j in ω. By the definition of Hj we have that Hj ≤ C̃G(Nk+i/Nk+i+j).
Symmetry modulo definable subgroups for almost centralizers yields that Nk+i .

C̃G(Hj/Nk+i+j). This implies that

Hi ≤ C̃G (Nk/Nk+i) ≤ C̃G

(
Nk

/
C̃G(Hj/Nk+i+j)

)
.(7)

Exchanging the role of i and j we obtain as well that

Hj ≤ C̃G

(
Nk

/
C̃G(Hi/Nk+j+i)

)
= C̃G

(
Nk

/
C̃G(Hi/Nk+i+j)

)
.(8)

Using again symmetry modulo definable subgroups for almost centralizers to (7),
we get:

Nk . C̃G

(
Hi

/
C̃G(Hj/Nk+i+j)

)
.(9)

Working in G/Nk+i+j, we can apply the three subgroups lemma (Theorem 2.19)
to the equalities (8) and (9) since all Ni’s and all Hi’s normalize each other and
obtain

Hi . C̃G

(
Hj

/
C̃G(Nk/Nk+i+j)

)
.

As k was arbitrary, this establishes the first part of the theorem.
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In particular, we have that for any natural numbers i and j greater than 0

H1 . C̃G(H1/H2) . C̃G

(
H1

/
C̃G(H1/H3)

)
= C̃2

G(H1/H3)

. . . . . C̃ i
G(H1/Hi+1) . C̃ i

G

(
H1

/
C̃G(Nj−1/Ni+j)

)

By hypothesis we have that H1 is a bounded intersection of groups which are
commensurate with H and whence it is itself commensurate with H . As two
commensurate groups have the same almost centralizer, the same almost inclusion
holds for H which finishes the proof. �

Using the previous result and definability of the almost centralizers, we may find
a version of [4, Lemma 2.4] in terms of the almost centralizer:

Corollary 5.22. Let H be an A-ind-definable normal subgroup of an M̃c-group G.
Then for any 0 < i < j, we have that

H . C̃ i
G

(
H
/

C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
))

Proof. For k < 2j − 1, we let Nk = C̃2j−1−k
G (H) and for k ≥ 2j − 1, we let Nk

be the trivial group. As G is an M̃c-group, all Nk are definable. Note that for
any natural number n, the almost centralizer C̃n

G(H) is definable and C̃n+1
G (H) =

C̃G(H/C̃n
G(H)) is contained in itself. Hence, symmetry of the almost centralizer

(Theorem 2.13) yield that

H . C̃G

(
C̃n+1

G (H)
/
C̃n

G(H)
)

and whence

H . C̃G(Nk/Nk+1).

So we may apply Proposition 5.20 to the ind-definable subgroup H and the sequence
of definable groups Ni. This gives us that

H . C̃ i
G

(
H
/
C̃G(Nj−1/Ni+j)

)
= C̃ i

G

(
H
/

C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
))

�

Using the new notion of almost commutator, we may state the previous lemma
in this terminology which resembles more to the ordinary result.

Corollary 5.23. Let H be an A-ind-definable normal subgroup of the M̃c-group
G. Then for any 0 < i < j, we have that

[̃γ̃i+1H, C̃j
G(H )̃] ≤ C̃j−i−1

G (H).

Proof. We have that

H . C̃ i
G

(
H
/
C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
))

= C̃G

(
H
/
C̃ i−1

G

(
H
/
C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
)))

Using that the iterated almost centralizer of an ind-definable subgroup of an M̃c-
group is definable as well as that an ind-definable subgroup modulo a definable
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subgroup remains ind-definable, we have that C̃ℓ
G

(
H
/
C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
))

is definable for any natural number ℓ. Hence, the above yields that

[̃H,H ]̃ ≤ C̃ i−1
G

(
H
/
C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
))

.

Iterating this process gives us

γ̃iH ≤ C̃G

(
H
/
C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
))

.

As the almost centralizer C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
)

is again definable, we get

γ̃i+1H ≤ C̃G

(
C̃j

G(H)
/
C̃j−i−1

G (H)
)
.

By the same argument, we obtain the final inequation:

[γ̃i+1H, C̃j
G(H )̃] ≤ C̃j−i−1

G (H).

�

In the next lemma, we use the almost three subgroups lemma in terms of the
almost commutator to generalize [4, Lemma 2.5] to our framework.

Lemma 5.24. Let H and K be two A-ind-definable normal subgroups of G with
K ≤ H and ℓ > 0. If

C̃G(γ̃tK) ∼ C̃G(γ̃tH) t = 1, . . . , ℓ

then C̃ℓ
G(K) ∼ C̃ℓ

G(H).

Proof. The case ℓ equals 1 is trivial. So let’s assume that the lemma holds for ℓ−1.
We need to prove the following intermediate result:

Claim. [̃γ̃ℓ−tH, C̃ℓ
G(K )̃] ≤ C̃t

G(H) holds for all t = 0, . . . , ℓ− 1.

Proof. We show the claim by induction on the tuple (ℓ, t) (ordered lexicographi-
cally) with t < ℓ. First we treat the cases (ℓ, 0) for any natural number ℓ:

Replacing H by K, i by ℓ−1, and j by ℓ in Corollary 5.23, we obtain [̃γ̃ℓK, C̃ℓ
G(K )̃] =

1. This implies that C̃ℓ
G(K) is almost contained in C̃G(γ̃ℓK) which is, by the hy-

pothesis of the lemma, commensurate with C̃G(γ̃ℓH). Thus C̃ℓ
G(K) . C̃G(γ̃ℓH) or

in other words [̃γ̃ℓH, C̃ℓ
G(K )̃] = 1. Hence the claim holds for (ℓ, 0) with ℓ > 0.

Now, let 0 < t < ℓ and assume additionally that the claim holds for any tuple
(k, s) < (ℓ, t) in the lexicographical order.
Then using Lemma 5.5 (1) and the induction hypothesis for (ℓ, t−1) (in the equation
marked as (∗) below) and for (ℓ− 1, t− 1) (in the equation marked as (∗∗) below)
we may compute

[̃̃[γ̃ℓ−tH,K ]̃, C̃ℓ
G(K )̃]̃]

5.5(1)

≤
K≤H

[̃̃[γ̃ℓ−tH,H ]̃, C̃ℓ
G(K )̃] = [̃γ̃ℓ−(t−1)H, C̃ℓ

G(K )̃]
(∗)

≤ C̃t−1
G (H)

and

[̃γ̃ℓ−tH, [̃K, C̃ℓ
G(K )̃]̃] ≤ [̃γ̃ℓ−tH, C̃ℓ−1

G (K )̃] = [̃γ̃(ℓ−1)−(t−1)H, C̃ℓ−1
G (H )̃]

(∗∗)

≤ C̃t−1
G (H).
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Thus by Corollary 5.11 we have

[̃̃[γ̃l−tH, C̃ℓ
G(K )̃], K ]̃ ≤ C̃t−1

G (H).

As t − 1 is less than ℓ, we have, by the hypothesis of the outer induction, that

C̃t−1
G (H) is commensurate with C̃t−1

G (K) and so [̃̃[γ̃ℓ−tH, C̃ℓ
G(K )̃], K ]̃ is almost con-

tained in C̃t−1
G (K). As C̃t−1

G (K) is A-definable, using Corollary 5.4, we obtain
that

[̃̃[γ̃ℓ−tH, C̃ℓ
G(K )̃], K ]̃ ≤ C̃t−1

G (K).

Thus [̃γ̃ℓ−tH, C̃ℓ
G(K )̃] is almost contained in C̃t

G(K) which is commensurate once

more with C̃t
G(H) by the outer induction hypothesis. Again by Corollary 5.4 almost

contained can be replaced by contained, which gives us

[̃γ̃ℓ−tH, C̃ℓ
G(K )̃] ≤ C̃t

G(H).

Thus the claim holds for the tuple (ℓ, t) which finishes the induction and hence the
proof of the claim. �(claim)

Now taking t equals to ℓ − 1, we obtain [̃H, C̃ℓ
G(K )̃] ≤ C̃ℓ−1

G (H) which implies

that C̃ℓ
G(K) is almost contained in C̃ℓ

G(H). On the other hand, we have that

[̃K, C̃ℓ
G(H )̃]

5.5(1)

≤
K≤H

[̃H, C̃ℓ
G(H )̃]

5.9

≤ C̃ℓ−1
G (H)

hyp.
∼ C̃ℓ−1

G (K).

Again by Corollary 5.3 we obtain that [̃K, C̃ℓ
G(H )̃] ≤ C̃ℓ−1

G (K) and so C̃ℓ
G(H) is

almost contained in C̃ℓ
G(K). Combining these two results, we obtain that C̃ℓ

G(K)

is commensurate with C̃ℓ
G(H) which finishes the proof. �

We finish this section with another result on almost nilpotent M̃c-groups which
do not use the almost three subgroups lemma.

Lemma 5.25. Let G be almost nilpotent M̃c-group and N be a nontrivial inter-

section of A-definable normal subgroups of G. Then [̃N,G]̃ is properly contained

in N and N ∩ Z̃(G) is a nontrivial subgroup of G. In particular, any minimal
A-invariant normal subgroup of G is contained in the almost center of G.

Proof. As N is an intersection of A-definable normal subgroups of G and we have

trivially that N . C̃G(G/N), the group [̃N,G]̃ is contained in N . Additionally,

the commutator [̃N,G]̃ is also contained in [̃G,G]̃ by Lemma 5.5. Inductively we
obtain γ̃i+1(N,Gi) ≤ N ∩ γ̃i+1G. As G is almost nilpotent γ̃mG is trivial for some

natural number m. Hence [̃N,G]̃ has to be properly contained in N because if not
γ̃m(N,Gm−1) would be equal to N as well. This proves the first part of the Lemma.

Moreover, again by Lemma 5.5, we have that γ̃m(N,Gm−1) ≤ γ̃mG and thus it is
also trivial. Now choose n such that γ̃n+1(N,Gn) is trivial and properly contained
in γ̃n(N,Gn−1). Hence

γ̃n(N,Gn−1) . Z̃(G).

Since the almost center of G is definable, Corollary 5.4 yields that γ̃n(N,Gn−1) is

actually contained in Z̃(G). As additionally the group γ̃n(N,Gn−1) is nontrivial

and contained in N , the subgroup N ∩ Z̃(G) is nontrivial as well. �
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