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Introduction

The modeling and understanding of fluid flow in unsaturated soils is an important problem in a wide range of scientific domains, such as environmental engineering or groundwater hydrology. Two-phase flow in porous media can be modeled by solving the mass conservation equation for each phase where the phase velocities are expressed using a generalized Darcy's law [START_REF] Muskat | Physical principles of oil production[END_REF]. However, a classical approach commonly used in soils science consists in neglecting the pressure gradient in the non-wetting phase (typically the air) to reduce the two-phase flow to one equation, the so-called Richards' equation [START_REF] Richards | Capillary conduction of liquids through porous mediums[END_REF][START_REF] Hillel | Fundamentals of soil physics[END_REF].

Several softwares has been developed to solve the Richards' equation and some of these developments have already been done using the OpenFOAM platform [START_REF] Jasak | Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows[END_REF][START_REF] Rusche | Computational fluid dynamics of dispersed two-phase flows at high phase fractions[END_REF]. We can cite the example of Liu [START_REF] Liu | suGWFoam: An Open Source Saturated-Unsaturated GroundWater Flow Solver based on OpenFOAM[END_REF] who developed a saturated-unsaturated groundwater flow solver based on the Picard's algorithm. This solver includes several features such as the different forms of the Richards equation (pressurebased and mixed-form), three convergence criteria and specific boundary conditions. More recently, another Richards' solver has also been proposed for the OpenFOAM platform [START_REF] Orgogozo | An open source massively parallel solver for Richards equation: Mechanistic modelling of water fluxes at the watershed scale[END_REF]. Both initiatives have been shown to have good parallel efficiency.

In a previous work, an open-source toolbox based on OpenFOAM and dedicated to the simulation of multiphase flow in porous media as been developed and validated [START_REF] Horgue | An open-source toolbox for multiphase flow in porous media[END_REF]. Based on the IMPES method (Implicit Pressure Explicit Saturation) [START_REF] Sheldon | One-dimensional, incompressible, non-capillary, two-phase fluid flow in a porous medium[END_REF], this toolbox includes the commonly used porous media models (relative permeability, capillary pressure), specific boundary conditions and validation cases. A good parallel efficiency has also been demonstrated. This project is still under development and the toolbox is freely available [START_REF]The porousmultiphasefoam toolbox[END_REF].

To expand the possibilities and the application fields of the porous media toolbox, this work proposes to implement a version of the Richards' equation following the formalism of the toolbox and re-using as much as possible the existing libraries. First, the mathematical model and the formulation chosen are presented. In Sec. 3, the numerical implementation is developed with the different choices in terms of time step determination, algorithm, etc. The solver is then validated and evaluated in September 30, 2015 terms of parallel efficiency in Sec. 4. In the following, italic style refers to solver s, small capitals style to libraries, and typewriter style to directories.

Mathematical model

Three major forms of the unsaturated mass conservation equation exist in the literature: the pressure head-based, the saturation-based or the mixed-form formulation. The pressure head-based formulation has been chosen as this formulation is closed to the previously developed solvers of the toolbox [START_REF] Horgue | An open-source toolbox for multiphase flow in porous media[END_REF]. The Richards' equation in the pressure head based formulation reads

C(h) ∂h ∂t -∇ • [K S (h)∇ (h + z)] = 0, ( 1 
)
where h is the pressure head, C(h) the capillary capacity depending on the head pressure, K S (h) the hydraulic conductivity and z the elevation. This equation can be formulated as

C(h) ∂h ∂t -∇ • [M θ (ρ θ g 2 ∇h -ρ θ g)] = 0, (2) 
where ρ θ is the phase density, g 2 the magnitude of the gravity field and M θ the phase mobility of the phase defined as

M θ = Kk r,θ µ θ , ( 3 
)
where K is the intrinsic permeability of the porous medium, µ θ the liquid viscosity and k r,θ the relative permeability. The saturated hydraulic conductivity K S , commonly used for fluid flow in unsaturated soils, is then directly related to the rock intrinsic permeability following:

K = µ θ K S ρ θ g 2 . (4) 
Note that the relative permeability k r,θ is expressed as a function of saturation θ to re-use the already implemented relative permeability models (Brooks and Corey [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF], Van Genuchten [START_REF] Van Genuchten | A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1[END_REF]). Using this formulation, only two functions need to be added in the capillaryModel library. The first one allows to compute the saturation θ from the pressure head h, which gives, for the Van Genuchten model,

θ(h) = θs-θr ((1+(α|h|)) n ) m + θ r ∀ h < 0 θ s ∀ h ≥ 0 (5) 
where θ s and θ r are respectively the saturated and residual saturations, and α and m the Van Genuchten's parameters. The second function computes the capillary capacity

C(h) = αm (θ s -θ r ) 1 -m (θ e ) 1 m 1 -(θ e ) 1 m m ( 6 
)
where θ e is the effective saturation given by

θ e = θ(h) -θ r θ s -θ r .
The total mobility M is defined as

M = M θ ρ θ g 2 (7) 
which allows to directly use the existing darcyGradPressure boundary condition for the pressure head field h. When using this boundary conditions, the solver will look up at the fixed value for the velocity field U , and the value of total mobility M to set the pressure head gradient necessary to impose the fluid velocity. Readers can refer to the work of Horgue et al. [START_REF] Horgue | An open-source toolbox for multiphase flow in porous media[END_REF] for more details about the darcyGradPressure boundary condition.

Numerical implementation

Different iterative techniques can be used to solve the non-linear problem expressed in Eq. ( 2) including Picard and Newton methods. The Picard method has been implemented in this work as it the simplest and the more robust technique. Note that a better convergence rate can be obtained with Newton methods but this requires the computation of a Jacobian matrix (increasing the RAM memory required).

Picard's algorithm

In the Picard method, the pressure-head field h n+1,m+1 for the iteration m + 1 of the algorithm is computed as:

C(h n+1,m ) h n+1,m+1 -h n ∆t n -∇ • ρ θ g 2 M n+1,m θ ∇h n+1,m+1 + ∇M n+1,m θ • ρ θ g = 0 (8)
with h n the head pressure value at the last time n and M n+1,m the phase mobility computed using the last iteration h n+1,m . The loop occurs until the Picard residual r P icard satisfies:

r P icard = max | h n+1,m+1 -h n+1,m | < P icard (9) 
where P icard is the user-defined Picard tolerance.

Time-step

A simple heuristic way has been chosen as proposed in [START_REF] Williams | An evaluation of temporally adaptive transformation approaches for solving richards' equation[END_REF] for time step determination with a stabilization parameter to avoid too sharp time-step evolution. This includes three user-defined numbers of iterations (n maxIter,P icard , n minIter,P icard and n maxIter,stabilization ) and two time-step factors (f ∆t,increase and f ∆t,decrease ). After the Picard algorithm has converged using n iter,P icard iterations, three different situations can occur:

1. n iter,P icard > n maxIter,P icard , the current time step is too large and ∆t n+1 = f ∆t,decrease × ∆t n . 2. n minIter,P icard ≤ n iter,P icard ≤ n maxIter,P icard , the time step remains unchanged ∆t n+1 = ∆t n . 3. n iter,P icard < n minIter,P icard : (a) the stabilized iteration counter is increased: n iter,stabilized = n iter,stabilized + 1 (b) If n iter,stabilized = n maxIter,stabilization , then the time step increases ∆t n+1 = f ∆t,increase × ∆t n and the counter is reseted (n iter,stabilized = 0).

Algorithm

The global algorithm for each time step consists in: 

Code structure

The program groundwaterFoam, solving the Richards' equation for an heterogeneous isotropic permeability field (K is an heterogeneous scalar field) have been added to the porousMultiphaseFoam toolbox. Note that, following the example of impesFoam and anisoImpesFoam, it is possible to develop a Richards' solver handling anisotropic permeability fields. The capillarityModels functions have been modified to compute saturation θ and capillary capacity C(h) from head pressure h. Note that the Van Genuchten model is currently the only model implemented in the toolbox.

Three test cases have been added in the groundwaterFoam-tutorials folder of the toolbox. The 1Dinfiltration simulation is used to validate the developed solver (see Sec. 4.1) and provides an example of the solver use. The 1Dinfiltration Ufixed is close to the previous validation case but using the darcyGradPressure boundary condition (which set the value of the velocity field). The realCase provides an example on a more complex geometry based on real topographic dataset and has been used to evaluate parallel efficiency (see Sec. 4.2).

Numerical simulations

Validation case

The vertical 1D water infiltration problem proposed for validation is derived from the work of Celia et al. [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF] and has been used in several studies [START_REF] Rathfelder | Mass conservative numerical solutions of the headbased Richards equation[END_REF][START_REF] Kavetski | Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation[END_REF]. The column of New Mexico soils is modeled using the following parameter:

• K s = 0.00922 cm.s -1 (corresponding to K = 9.4.10 -12 m 2 ),

• θ r = 0.102 and θ s = 0.368,

• α = 0.0335 cm -1 , • m = 1 -1 n = 0.5, • µ θ = 1 • 10 -3 Pa.s, • ρ θ = 1 • 10 3 kg.m -3 .
The boundary condition on the top of the column is initialized to h = -75 cm (corresponding to θ = 0.20037) while the head pressure is uniformly distributed in the column h = -1000 cm (corresponding to θ = 0.10994). The domain is discretized using 200 computation cells and the test case is directly available in the toolbox tutorials (1Dinfiltration folder).

The comparison between simulations and the reference solution (numerical results extracted from the work of Kavetski et al. [START_REF] Kavetski | Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation[END_REF]) presented in Fig. 1 shows a good agreement and validates the code.

Parallel efficiency

The test of the parallel efficiency is performed on a 3D unstructured mesh constructed on real topographic dataset. For this purpose, the software MMesh3D developed by S. Marras is used [START_REF]MMesh3D[END_REF] which allows to build standard mesh files in the VTK format. Using the topographic dataset of the Monterey bay in California (dataset available with the software), a coarse unstructured mesh composed by 60 × 120 × 10 (72 000) computation cells is constructed in the VTK format and then transformed into the OpenFOAM format using the utility vtkUnstructuredToFoam. Figure 2 shows the mesh with an aspect ratio of 1 : 1 : 4. The permeability field, randomly distributed with a uniform law (K ∈ 9.4.10 -13 : 9.4.10 -12 m 2 ), is shown in Fig. 3. The pressure head is initialized in the full domain with an homogeneous value h init = -5 m (θ init ≈ 0.118) and a fixed pressure head h top = -0.5 m (θ top ≈ 0.306) is imposed on the top of the domain (the irregular face). The other parameters used for this test are identical to those used in the Sec. 4.1. An example of the saturation field at t = 1000 days using the coarse mesh is presented in Figure 4. To increase the size of the problem (necessary for the strong scaling evaluation), the utility re-fineMesh is used twice to multiply by 64 the mesh size (240 × 480 × 40 = 4 608 000 computation cells). The infiltration phenomenon is then simulated on the CALMIP's EOS cluster which consists of 612 computation nodes of 2 Intel processors 10-cores clocked at 2.8 GHz. Simulations are performed from 20 (the reference) to 1280 cores (corresponding to 64 computation nodes) and the total CPU time required for the full simulation is about 12 hours. The maximum amount of memory used by the process is ∼ 5500 Mb. The speedup σ for a simulation with n cores is computed as

σ n = T 20 T n ( 10 
)
where T n is the computation time for n cores. The speedup of the groundwaterFoam solver is shown in Figure 5 and exhibits a super-linear speedup until 640 cores. This behavior has previously been observed with the previous developed solver of the toolbox [START_REF] Horgue | An open-source toolbox for multiphase flow in porous media[END_REF]. We should note that the parallel efficiency is almost linear for 1280 cores and probably decreases for a larger number of processors. This may be explained by the fact that the linear system for each computation core becomes too small (3600 mesh cells per core for 1280 cores). In this configuration, the parallel efficiency allows to reduce the computation time from ∼ 34 min (20 cores) to ∼ 36 seconds (1280 cores).

Conclusion

In this work, an OpenFOAM® solver dedicated to the Richards' equation has been developed to extend the scope of the porousMultiphaseFoam toolbox [START_REF]The porousmultiphasefoam toolbox[END_REF]. The specific form of Van Genuchten's model has been implemented to allow groundwater flow simulations with the groundwaterFoam solver. Three test cases are provided with the freely accessible toolbox:

1. The 1D infiltration case which validates the numerical implementation of the model by a comparison with results from the literature. 2. A 1D infiltration case with inlet velocity fixed which shows an example of using the boundary condition darcyGradPressure. 3. A real topographic case with an unstructured mesh that has been used to evaluate the parallel efficiency of the solver and exhibits a super-linear behavior.
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 123 Figure 1: Pressure head profiles at various times for the 1D infiltration case (lines are reference results from Kavetski et al. [8])
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 45 Figure 4: Saturation field at t = 1000 days
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