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Abstract

Simulation of all phenomena taking place in a surgical procedure is a formidable task
that involves, when possible, the use of supercomputing facilities over long time
periods. However, decision taking in the operating room needs for fast methods that
provide an accurate response in real time. To this end, Model Order Reduction (MOR)
techniques have emerged recently in the field of Computational Surgery to help
alleviate this burden. In this paper, we review the basics of classical MOR and explain
how a technique recently developed by the authors and coined as Proper Generalized
Decomposition could make real-time feedback available with the use of simple devices
like smartphones or tablets. Examples are given on the performance of the technique
for problems at different scales of the surgical procedure, form gene regulatory
networks to macroscopic soft tissue deformation and cutting.

Keywords: Model Order Reduction; Gene regulatory networks; Surgery simulation

Background
Some 15 years ago, Satava [1] proposed a taxonomy of virtual anatomy consisting of five
different generations. The first generation is composed by systems representing accu-
rately the geometry of the organs at a macroscopic level. The second generation would
include an accurate description of the physical dynamics of the body. While it is still hard,
more than a decade after, to find a real-time surgical simulator that incorporates accurate,
state-of-the-art models for soft tissues at a continuum level, this taxonomy included three
more generations. From the third to the fifth one, these virtual descriptions of the patient
should include, respectively, accurate descriptions of physiology, microscopic anatomy (at
a neurovascular level, for instance), and, finally, biochemical systems.

While many successful models exist for all these different levels of description, see for
instance [2-8] among many others, they have not been yet fully incorporated into virtual
reality simulators due to the impressive computing requirements that they involve.

Difficulties at a macroscopic level

These difficulties are of very different nature. If we talk, for instance, of systems devoted
to train future surgeons’ gestures such as cutting and suturing, the main difficulty comes
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from the highly non-linear constitutive equations of soft tissues, very often modeled as
(possibly visco-) hyperelastic media [9]. These non-linear equations must be solved under
real-time constraints that reach 1 kHz of feedback response if we think of haptic devices,
or 25 Hz if we need for visual feedback only. Currently, very few surgical training sim-
ulators at this level incorporate accurate models for tissue deformation. Among these,
we can cite the works by Ourselin and Taylor [10] based on the use of explicit finite
elements implemented on hardware (Graphic Processing Units, GPU). But in general,
explicit algorithms lack of robustness for very long times of simulation.

Recently, a growing interest has been paid to investigate Model Order Reduction (MOR)
techniques in this framework. MOR comprises a variety of techniques known under dif-
ferent names (Proper Orthogonal Decomposition, POD; Principal Component Analysis,
PCA; Karhunen-Loeve transform; among others) and ubiquitous in almost every branch
of applied sciences and engineering. After the pioneering works of Karhunen, Loeve and
Lorenz [11-13], MOR techniques have been applied and re-discovered under different
frameworks many times [14-16].

In essence, POD-based model order reduction is based (with the notable exception of
[15,17]) on an a posteriori statistical treatment of existing solutions to complex prob-
lems that is used to construct an efficient (i.e., with very few degrees of freedom) basis
to simulate problems slightly different to the original ones. While standard finite element
techniques employ a basis of local, piece-wise polynomials to approximate the solution
of a given problem (a very efficient choice when no information is at hand on the form
of that solution), POD-based techniques employ global basis, specific for each particular
problem. This basis is determined after constructing the correlation matrix of the results
obtained by solving similar problems to the one at hand (the so-called snapshots of the
system). These snapshots could be obtained, for instance, by simulating different points of
contact between surgical tools and organ, as in [18,19]. These snapshots allow to extract
the basis to simulate, in a Galerkin framework, for instance, situations different to the
original ones (a new point of contact, not considered initially, for instance). In [20], POD
is employed to augment the range of stability of explicit finite element methods, which is
another known property of the technique.

This approach presents, however, some major drawbacks. When dealing with highly
non-linear tissues (which is very often the case), resulting equations must be consequently
linearized. Employing standard Newton-Raphson schemes to solve these equations leads
to the need of re-computing the tangent stiffness matrix of the system, which is a very
time-consuming operation that eliminates many of the advantages of POD and ren-
ders the method useless. To overcome this, several techniques have been proposed. For
instance, POD with interpolation [18], the so-called Empirical Interpolation Method [21]
or its discrete counterpart [22] allow to overcome this difficulty. A different approach has
been followed in some of our previous works [23,24], in which a Taylor series expansion
is applied to the variables of interest (here, the displacement field) in order to obtain a
sequence of problems, one for each order of the expansion, but all with the same tangent
stiffness matrix.

Beating the curse of dimensionality

A completely different source of complexity arises in problems whose solution is defined
in spaces of a high number of dimensions. For instance, in [25] and references therein,
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the very interesting problem of modeling and simulating vein graft is studied that com-
bines the need for simulation not only at a macroscopic level but also at a gene regulatory
network level. It is hypothesized that blood shearing forces modulates a specific gene
regulatory network determining the adaptive response of the vein wall.

Simulating the behavior of gene regulatory networks is a formidable task for several
reasons. At this level of description, only a few molecules (maybe dozens or hundreds) of
each species involved in the regulation process is present, and this eliminates the possi-
bility of considering the process as deterministic, as is done very often in most chemical
applications. In this situation, the continuum approach itself is questioned, as justified
clearly in the excellent review by Turner et al. [26] and references therein. Here, the con-
cept of concentration of the species does not make sense [6,27]. On the contrary, under
some weak hypothesis (well-stirred mixture, fixed volume, and temperature), the sys-
tem can be considered as Markovian and can be consequently modeled by the so-called
Chemical Master Equation (CME), [28], which is in fact no more than a set of ordinary dif-
ferential equations stating the conservation of the probability density function P in time:

∂P (z, t|z0, t0)

∂t
=

∑
j

[
aj

(
z − vj

)
P

(
z − vj, t|z0, t0

) − aj(z)P (z, t|z0, t0)
]

, (1)

where P (z, t|z0, t0) represents the probability of being at a state in which there are a num-
ber of molecules of each species stored in the vector z at time t when we started from
a state z0 at time t0. aj represents the propensity (i.e., the probability) of reaction j to
occur, while vj represents the change in the number of molecules of each species if reac-
tion j takes place. This change is given, of course, by the stoichiometry of the reaction at
hand.

What is challenging, however, in this set of equations is that they are defined in a state
space which possess as many dimensions as the number of different species involved in
the regulatory network. Under this framework, if we consider N different species, present
at a number n of copies, the number of different possible states of the system is nN . This
number can take the astronomical value of 106,000 if we consider some types of proteins,
for instance, [28]. This phenomenon is known as the curse of dimensionality in many
branches of science. For instance, Nobel prize winner R. B. Laughlin said, when talking
about this problem [29], that ‘No computer existing, or that will ever exist, can break this
barrier because it is a catastrophe of dimension’.

To overcome this difficulty, most of the authors employ Monte Carlo-like algorithms
(the so-called stochastic simulation algorithm, SSA [28,30,31]). But Monte Carlo tech-
niques need for as many as possible individual realizations of the problem that compro-
mise its simple application in inverse identification, leading to excessive time-consuming
simulations, together with great variance in the results.

Methods
Proper generalized decomposition at a glance

Dealing with the problem of the curse of dimensionality in a very different context, the
authors presented in a previous work a technique that is now known under the name
of Proper Generalized Decomposition (PGD) [32,33]. Essentially, to avoid the exponen-
tially growing complexity of the problem with the number of state space dimensions,
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the method approximates the variable of interest, say u, as a finite sum of separable
functions:

u (x1, x2, . . . , xD, t) ≈
N∑

i=1
Fi

1 (x1) · Fi
2 (x2) · . . . · Fi

D (xD) · Ti(t). (2)

The reason for this particular choice motivated the method itself that is conceived as a
greedy algorithm that computes one sum at a time and one product at a time, within a
fixed point, alternating directions algorithm. This leads to a sequence of one-dimensional
(low-dimensional, in general) problems, one for each function Fi

j that can be solved using
your favorite technique (finite elements, finite volumes, finite differences, colocation, . . .).

If M nodes are used to discretize each coordinate, the total number of PGD unknowns
is N × M × D instead of the MD degrees of freedom involved in standard mesh-based
discretizations. Moreover, all numerical experiments carried out to date with the PGD
show that the number of terms N required to obtain an accurate solution is not a func-
tion of the problem dimension D, but it rather depends on the regularity of the exact
solution. The PGD thus avoids the exponential complexity with respect to the problem
dimension.

The PGD technique can thus be seen as both a MOR technique, if we keep the number
N of modes to a minimum and as an efficient weapon against the curse of dimensionality,
since it proceeds by solving a sequence of one-dimensional problems of negligible com-
putational cost. Note that by letting N grow, we will finally arrive at a solution of the same
accuracy of the finite element one, for instance, once the number of terms in the basis,
N is the same as the number of nodes of the finite element mesh. In many applications
studied to date (see [34,35] and references therein), N is found to be as small as a few
tens for usual symmetric differential operators, and the approximation converges towards
the solution associated with the complete tensor product of the approximation bases
considered in each spatial dimension (see [36] for a formal proof in the case of elliptic
problems).

This was also the main motivation of the so-called radial loading approximation within
the LArge Time Increment (LATIN) method by Ladeveze [37]. It can be seen as a particu-
lar case of PGD approximation in which space-time separated representation is employed
to solve non-linear structural mechanics problems.

On the other hand, PGD methods can be also seen as an efficient tool for high-
dimensional problems. This twofold characteristic of the method makes it specially
appealing for the numerical solution of the type of problems mentioned in the
‘Background’ section.

Parametric problems as a tool for real-time simulation: an off-line/on-line strategy

As mentioned before, PGD can be seen both as a model order reduction technique and
as an efficient solver for high-dimensional problems. But what actually interests us in the
field of computational surgery is its ability to solve parametric problems in an unprece-
dented way. Indeed, in [38], a strategy was developed that sets out parametric problems
in the form of high-dimensional ones, for which PGD is specially efficient. In words,
if we seek for the solution of a parametric problem u (x, t, p1, . . . , pm), the approach we
follow is to consider the dependence of the solution on the parameters as if they were
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additional, non-physical coordinates where the solution takes place, just as new additional
coordinates:

u (x, t, p1, . . . , pm) ≈
N∑

i=1
Xi(x) · Ti(t) · Pi

1 (p1) · . . . · Pi
m (pm) (3)

and therefore look for a solution as a finite sum of separable functions of space, (possibly)
time and parameters p1, . . . , pm. This possibility opens the door to establish a strategy
based on two steps. First, a general, multi-dimensional solution to the parametric prob-
lem is computed off-line. This phase may lead to the need of supercomputing facilities,
but the solution is computed once for life and can be efficiently stored in the form of a
set of separated functions, as stated before. This phase thus leads to a sort of meta-model
or response surface for the problem. It is noteworthy to mention that this response sur-
face is obtained without the need of any prior computer experiment. It is computed on
the fly and stored for life. It provides the solution to the problem for a combination of
parameter values, taken from within a prescribed value interval. This response surface is
efficiently stored as a file of nodal values for all the involved separated functions that are
just multiplied in real time straightforwardly.

After this meta-model is obtained, a second phase of the method is executed on-line.
In this phase, the meta-model is evaluated, not solved for, at very efficient feedback rates.
Figure 1 sketches the basics of the developed method. This approach has reported to
provide with feedback rates on the order of kilohertz running on a simple laptop. These
results will be deeply analyzed in the following section.

Results and discussion
In order to show how the proposed methodology works, we consider here two distinct
examples at two different scales. On one hand, we show how the technique works for
the simulation of gene regulatory networks, even in the lack of knowledge about some
parameters in the reactions. Secondly, we analyze how the multi-dimensional methodol-
ogy proposed so far can be efficiently applied to the simulation of macro-scale problems
such as liver palpation.

Figure 1 Off-line/on-line strategy. The method we analyze here is based upon a combination of the
‘off-line’ solution of a general enough parametric model and the ‘on-line’ particularization of such a general
solution in a particular context at real-time feedback rates. Photo credits: http://es.wikipedia.org/wiki/Archivo:
UPM-CeSViMa-SupercomputadorMagerit.jpg.

http://es.wikipedia.org/wiki/Archivo:UPM-CeSViMa-SupercomputadorMagerit.jpg
http://es.wikipedia.org/wiki/Archivo:UPM-CeSViMa-SupercomputadorMagerit.jpg
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A PGD approach to gene regulatory network simulation

The PGD approach to the problem of efficiently simulating gene regulatory networks
begins by assuming that the probability of being at a particular state z at time t can be
approximated as a finite sum of separable functions, i.e.

PN (z, t) =
N∑

j=1
Fj

1 (z1) · Fj
2 (z2) · . . . · Fj

D (zD) · Fj
t(t), (4)

where, as mentioned before, the variables zi represent the number of molecules of species
i present at a given time instant. This particular choice of the form of the basis functions
allows for an important reduction in the number of degrees of freedom of the problem,
N × nnod × (D + 1) instead of (nnod)D, where D is the number of dimensions of the
state space and nnod the number of degrees of freedom of each one-dimensional grid
established for each spatial dimension. For this to be useful, one has to assume that the
probability is negligible outside some interval and therefore substitute the infinite domain
by a subdomain [0, . . . , m − 1]D, m being the chosen limit number of molecules for any
species in the simulation. A similar assumption is behind other methods in the literature,
such as the Finite State Projection algorithm, for instance, [28].

Another important point to be highlighted is the presence of a function depending
solely on time, Fj

t(t). This means that the algorithm is not incremental. Instead, it solves
for the whole time history of the chemical species at each iteration of the method. If one
then assumes that n terms of the sum given by Equation (4) are already known,

Pn+1(z, t) = Pn(z, t) + Fn+1
1 (z1) · Fn+1

2 (z2) · . . . · Fn+1
D (zD) · Fn+1

t (t), (5)

and look for the n + 1-th term, by substituting Equation (5) into the CME, Eq. (1) gives
a non-linear problem in Fn+1

1 , . . . , Fn+1
D , Fn+1

t that is solved by means of a fixed point,
alternating directions algorithm, see [39].

To show how this technique works, consider one of the simplest and most studied
examples of gene regulatory networks, that of λ-phage. When a bacteriophage λ infects
a cell, it either stays dormant or it reproduces until the cell dies. The resulting behav-
ior depends crucially on two competing proteins that inhibit mutually each other, see
a schematic representation in Figure 2. The so-called toggle switch is composed of a
two-gene co-repressive network. For this case, the governing CME has the form [7]

∂P
∂t

= AP, (6)

with A = A1 +A2, two operators, one for each reaction in the system. The form of these
operators, following [7] is

A1P (z1, z2) = αβ

β + γ z2
P (z1 − 1, z2) + δ (z1 + 1) · P (z1 + 1, z2) −

(
αβ

β + γ z2
+ δ · z1

)

× P (z1, z2) ,

and A2 equivalent with z1 and z2 interchanged. We computed the solution for δ = 0.05,
α = 1.0, γ = 1.0 and β = 0.4.

The simulation started from a non-physiological state in which both proteins showed
a very high probability around z1 = z2 = 15. Despite this initial state, after t = 100 s
(Figure 3a), one has a case where both average values of both proteins and small levels of
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Figure 2 Schematic mechanism of the toggle switch. Schematic mechanism of the toggle switch [6]. The
constitutive PL promoter drives the expression of the lacI gene, which produces the lac repressor tetramer.
The lac repressor tetramer binds the lac operator sites adjacent to the Ptrc − 2 promoter, thereby blocking
transcription of cI. The constitutive Ptrc − 2 promoter drives the expression of the cI gene, which produces
the λ-repressor dimer. The λ-repressor dimer cooperatively binds to the operator sites native to the PL

promoter, which prevents transcription of lacI.
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Figure 3 Simulated behavior of λ-phage toggle switch. (a) Marginal probability distribution function at
t = 100 s. Axes denote the number of protein 1 and 2. (b) Solution at steady state (t ≈ 300 s) by separation of
variables. Axes denote the number of protein 1 (abscissa) and protein 2 (ordinate).
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the one protein combined with higher level of the other protein are quite likely, and this
remains the case for the stationary distribution as well [7], Figure 3b.

But what should be highlighted about this technique is not only its ability to solve
gene regulatory network simulations in a reasonable amount of time, which is extended
easily to problems with some 20 different species involved, see [39], for instance. Very
often, there is an important lack of experimental data concerning constants of the reac-
tions (propensities), or simply we want to adopt the meta-modeling strategy introduced
before. In that case, it is very convenient to set up the problem in parametric form and to
convert it in a multi-dimensional one. Considering parameters as new state space dimen-
sions opens the door to designing in silico experiments in which one readily (in real time)
observes the behavior of the system under different conditions. The transient solution for
a particular value of the propensity can then be computed by restricting the general solu-
tion to each particular value of this extra-coordinate. Even if the dimensionality of the
problems increases even more than that demanded by the CME itself, this does not con-
stitute major difficulty for PGD techniques that have easily solved problems in dimension
100 and more [35].

To illustrate this feature, we have simulated, for the ease of exposition, a cascade of only
two terms. The operator related to a cascade is of the form A = A1 + A2, with A1 of the
same form of the previous example and operator A2 takes the form

A2P(z) = βz1
βz1 + γ

P (z − e2) + δ (z2 + 1) P (z + e2) −
(

βz1
βz1 + γ

+ δz2

)
P(z), (7)

where se2 is the second standard basis of R2. In order to check the proposed technique,
and for the ease of illustration, we have considered a cascade of only two terms, with
the parameter δ as an unknown. Note that the solution (obtained in one execution of the
program), see Figure 4, provides the solution for different values of δ that reproduces the
ones in the literature [7]. These examples run (off-line phase) on some minutes in a laptop,
while they can be evaluated (on-line phase, parametric phase) at kilohertz rates with no
special hardware requirements.

These examples show how an efficient simulation of gene regulatory networks can be
incorporated into surgical simulators even within the operating room. In the new section,
we show how a similar parametric, multi-dimensional strategy can be developed for
macroscopic descriptions of surgery.

Simulation of liver palpation

As a representative example of the performance of the proposed technique at a macro-
scopic, continuum level, we have chosen a classical example of liver palpation during
hepatic endoscopic resections [3]. For a detailed description of how resection could be
simulated under MOR settings, we refer the interested reader to our former work [19].
For the sake of simplicity, we focus on the simulation of the interaction of surgical tools
and organ, without the presence of cuts.

The problem of determining the response of an organ to the load transmitted by the
contact with a surgical tool could be formulated as to determine the displacement at any
point of the model, u(x, y, z), for any load position s and for any force vector orienta-
tion and module, t, thus rendering a problem defined in the physical space (R3), plus a
six-dimensional state space (R6). Following the previous developments, we propose an
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Figure 4 Solution of the cascade problem with unknown parameter δ. Solution for the cascade problem
with unknown propensities. Probability distribution function (top row) and marginal probability distribution
function of each species (bottom row) at time t = 0 s, t = 30 s, and t = 600 s (approximately steady state).
The left column presents the results for a value δ = 0.01, while the central one is for δ = 0.025 and the left
one for δ = 0.045. Note that all the results are obtained in one execution of the program. The
four-dimensional hypercube containing the solution space, whose dimensions are the concentrations of the
two proteins, the value of δ and time, is then cut by the hyperplanes defined by the different values of δ and
time to give these plots.
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iterative scheme that works by finding the n + 1-th term of the separated approximation
in the form:

un+1
j (x, s) =

n∑
k=1

Xk
j (x) · Y k

j (s) + Rj(x) · Sj(s) = un
j (x, s) + Rj(x) · Sj(s), (8)

where we have assumed, for the sake of simplicity on the exposition, that the load is uni-
tary and directed along the z axis (thus, no dependence on t is considered here). The term
uj refers to the j-th component of the displacement vector, j = 1, 2, 3 and where R(x) and
S(s) are the sought functions that improve the approximation. Again, this iterative scheme
is solved by introducing approximation given by Equation (8) into the weak form of the
problem. This renders a non-linear problem on R and S that is solved, in our implemen-
tation, by using a fixed point, alternating directions algorithm. At each direction of the
fixed point algorithm, we face again a non-linear problem, due to the non-linear consti-
tutive equations of the liver tissue. In [40,41], two distinct approaches have been pursued,
namely an explicit one and a combination of PGD and asymptotic expansions on the vari-
ables of interest. The interested reader is committed to read these references for more
details on the implementation.

Although the literature on the mechanical properties of the liver is not very detailed,
we have assumed a Kirchhoff-Saint Venant material with Young’s modulus of 160 kPa,
and a Poisson coefficient of 0.48, thus nearly incompressible [2]. Model’s solution was
composed by a total of N = 167 functional pairs Xk

j (x) · Y k
j (s) (see Equation (8)). The

third component (thus j = 3) of the first six modes Xk
3 (x) is depicted in Figure 5. The

same is done in Figure 6 for functions Y, although in this case they are defined only on the
boundary of the domain.

Performance of the technique

Both problems introduced before can be solved off-line in standard computing facilities
in reasonable amounts of time. In our case, the solution to the problem of liver palpation,
for instance, was solved in a workstation equipped with two Nehalem cores at 2.33 Ghz,
24 Gb RAM and 64 bits. The simulations took some 20 h to complete.

Figure 5 Spatial modes of the liver solution. Six first functions Xk
3(x), k = 1, . . . 6, for the simulation of the

liver.
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Figure 6 Load-dependent modes of the liver solution. Six first functions Yk
3(s), k = 1, . . . 6, for the

simulation of the liver. Note that, in this case, functions Yk(s) are defined on the boundary of the liver only.

The solution provided by the method agrees well with reference FE solutions obtained
employing full-Newton-Raphson iterative schemes. But, notably, the computed solution
can be stored in a so compact form that the on-line evaluation of the parametric solu-
tion (meta-model) is possible on handheld devices such as smartphones and tablets. For
instance, for Android-operated devices, an application has been developed (we call it
iPGD and is freely downloadable from [42]) that runs the model on a Motorola Xoom
tablet running Android 3.0 without problems (only the surface of the model is rep-
resented for simplicity, given the limitations of the Android OS), see Figure 7. The
25-Hz feedback rate necessary for continuous visual perception is achieved without
problems.

For more sophisticated requirements, such as those dictated by haptic peripherals, a
simple laptop (in our case a MacBook pro running MAC OSX 10.7.4, equipped with 4-Gb
RAM and an Intel core i7 processor at 2.66 GHz) is enough to achieve this performance.
Even performances higher than 500 Hz have been reported for some implementations
[43] Additional file 1.

Conclusions
In this paper, we have reviewed a new methodology for Model Order Reduction in the
context of computational surgery proposed by the authors in a series of previous papers.
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Figure 7 Appearance of the proposed method running in a tablet under Android. An example of the
implementation of the iPGD application for the liver problem in a Motorola Xoom tablet.

This new methodology, coined as Proper Generalized Decomposition, improves existing
techniques in various ways. Firstly, it enables to incorporate state-of-the-art constitutive
models for soft tissues in systems requiring real-time performance (even reaching feed-
back rates in the order of 1 kHz). This performance can be achieved by employing an
off-line/on-line strategy in which a multi-dimensional surface response or meta-model is
computed, without the need of previous computer experiments. This meta-model is then
evaluated or particularized at real-time rates very efficiently. This is possible due to the
special form of the approximation of the solution, in the form of a finite sum of separa-
ble functions. Thus, this meta-model is stored in memory as a file containing a series of
vector, with great savings of memory.

Another fundamental issue regarding this method is that it solves very efficiently high-
dimensional problems. Gene regulatory networks modeled in a stochastic differential
equation framework are a paradigm of such a high-dimensional problem. Parameters,
such as unknown properties of the system, could also be considered advantageously as
new state space dimensions of the problem, thus rendering an ever higher-dimensional
problem, but that is still solved efficiently by the proposed technique.

The result is an appealing technique that allows to solve at unprecedented feedback
rates state-of-the-art models for multiscale computational surgery. After an academic
validation, our current effort of research is directed towards clinical validation of this
approach.

Additional file

Additional file 1: Movie: performance of the proposed technique for the liver problem. This avi file shows the
performance of the proposed method on a test implementation of the technique. In it, the load position is controlled
with the help of the mouse, whereas the load orientation is controlled by a Wii joystick.
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