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Abstract

Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and
bioenergetic needs. Cells have therefore developed sophisticate signaling and regulatory
pathways in order to cope with dynamic fluctuations of both resource and demand
and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these
pathways are organized around a relatively small number of regulatory hubs, such as the
highly-conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global
metabolic adaptations upon dynamic environment are investigated using a prototypical
model of regulated metabolism. In this model, the optimal enzyme profile as well as
the underlying regulatory architecture are identified by combining perturbation and
evolutionary methods. The results reveal the existence of distinct classes of adaptive
strategies, which differ in the management of storage reserve depending on the intensity
of the stress and in the regulation of ATP-producing reaction depending on the nature
of the stress. The regulatory architecture that optimally implements these adaptive
features is characterized by a crosstalk between two specialized signaling pathways,
which bears close similarities with the sensing and regulatory properties of AMPK and
TOR pathways.

Introduction

To cope with environmental changes that impact their metabolism, living cells have
evolved adaptive strategies consisting in sensing their extracellular or intracellular en-
vironment and regulating accordingly the activity of enzymes catalyzing metabolic re-
action pathways. These strategic tasks involve only a few signaling pathways in spite
of the huge number of enzyme-catalyzed metabolic pathways. In eukaryotes, the highly
conserved AMPK (AMP-activated kinase) and TOR (target of rapamycine) families
of protein kinase have crucial and numerous roles in nutrient and energy sensing, and
in governing metabolic adaptations by regulating the expression and post-translational
modifications of many metabolic enzymes [IH3]. Mammalian AMPK and its yeast and
plant homologs Snfl and SnRK1 are prone to be activated, allosterically or through
phosphorylation, upon intracellular increases of AMP or ADP levels [4H6]. In turn,
AMPK/Snfl/SnRK1 kinases tend to switch off anabolic pathways, including the biosyn-
thesis of proteins, ribosomal RNA, carbohydrates or lipids while promoting their degra-
dation through autophagy and fatty acid oxidation [7]. For its part, the TOR pathway
is rather sensitive to intracellular levels of metabolites, especially amino acids, and




promotes growth by activating regulating biosynthetic pathways at the level of both
transcriptional and translational machinery [S8HI0O]. Besides their opposite roles in reg-
ulating biosynthetic pathways, both signaling pathways nevertheless share the same
inclination to activate certain processes such as glycolysis or mitochondrial oxidative
metabolism. For the latter, TOR promotes PGC-1« [I1], 4EBP dependent translational
regulation [12] or TCA enzymes such as Glu dehydrogenase [13], and AMPK mediates
as well the activation of mitochondrial enzymes mainly through pathways converging
to PCGlea/p [14,15].

The crosstalk between AMPK and TOR signaling in sensing various intracellular cues
and in regulating diverse anabolic and catabolic pathways raises a number of theoretical
issues. The issue of intracellular sensing raises a difficult problem as these sensors
are embedded into a global feedback architecture [I6,[17]. As well, regulatory logic
has been mainly studied for unbranched metabolic pathways [I8-21] but much less for
coupled metabolic pathways that both cooperate and compete for the utilization of
internal resources. Besides the detailed schemes of sensing and regulatory mechanisms,
several general questions arise about the adaptive logic of cell metabolism: How do
signaling and regulatory strategies depend on the nature, frequency, duration, amplitude
or randomness of environmental perturbations? What are the minimal requirements
and the precise mechanisms that confer an adaptive benefit upon storage metabolism?
The present study aims to address most of these issues through a minimal modeling
approach.

Diverse computational modeling approaches have been developped to study the reg-
ulation of cell metabolism [22]. These approaches are generally based on a dual-level
description made of a metabolic reaction network and an enzyme regulatory network.
First, constraint-based stochiometric models of genome-scale metabolic reaction net-
work use steady-state assumptions and do not provide information on the enzymatic
concentrations. Nevertheless, several extensions have attempted to overcome these lim-
itations by incorporating a description of gene regulation [23], by considering enzyme
costs and capacity constraints [24], by performing timescale separation hypothesis [24],
or by using sensitivity analysis [25]. Second, metabolic control analysis is a power-
ful framework to study the response properties of complex metabolic systems to small
changes of the kinetic parameters, which can be used to derive the optimal linear feed-
back regulation to static perturbation of steady state [26], and can be extended to the
cases of non-steady state trajectories [27] or of time-dependent changes of kinetic param-
eters [28]. Although these two main modeling frameworks are well-adapted to determine
optimal flux balance in detailed metabolic reaction networks, they remain dependent
on steady-state or quasi-steady-state assumptions or on small perturbation approxima-
tions. A third approach consists in using simplified models depicting generic motifs
(unbranched or cyclic pathways) or a prototypical metabolism, which allows to study
regulation in simple resource allocation problem such as the switch from one to another
substrate [30,37], the switch between respiratory and fermentation metabolism [31], or
the evolution of regulatory complexity [29]. The total number of kinetic parameters
in these models is usually low enough to allow (i) for extensive parameter space explo-
ration or (ii) for parameter optimization through evolutionary computation techniques,
without necessarily requiring additional assumptions of steady state or of small enough
environmental fluctuations.

In this paper, minimal modeling and evolutionary computation are exploited to
investigated the regulated coordination of catabolic and anabolic processes, and to de-
cipher the logic underlying the universal sensing and regulatory features of TOR and
AMPK signaling pathway. To this purpose, we introduce a coarse-grained model of cell
metabolism that recapitulates the main catabolic and anabolic pathways. Steady-state
and perturbation analysis are first performed to identify the regulatory logic in response
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Figure 1: Coarse-grained description of cell metabolism. (A) Main anabolic and
catabolic metabolic pathways regulated by TOR and AMPK/Snfl signaling pathways.
(B) Corresponding model including metabolic variable M;, enzyme variable E; and
varying resource N and demand K, organized into a metabolic network (left) and a
signaling /regulatory network (right).

to very slow or very small perturbations. Evolutionary computation is then applied to
investigate adaptive strategy to a large range of perturbation amplitude and frequency,
and to obtain the optimal enzyme time course and regulatory parameters. The results
and the closing discussion emphasize the critical roles of storage metabolism, internal
sensing and regulatory crosstalk, for metabolic adaptation to dynamic and complex
environments.

Methods

We consider a coarse-grained description of cell metabolism where nutrients are imported
and catabolized into intermediate metabolites that can be either oxidized through the
TCA cycle to produce ATP or utilized as precursors to build storage or biomass mate-
rials. In turn, ATP fuels most of the import, maintenance and biosynthetic processes
(Fig. [MA). Each of these coarse-grained processes are based on a chain of reactions
that is regulated by a pool of enzyme and is characterized with a global energy bud-
get in terms of ATP cost or gain. Such schematic model of regulated metabolism
can be translated into a biochemical reaction rate model (Fig. B and Table 1) where
each macroprocess is modeled by a single reaction catalyzed by a single enzyme and
consumes a given amount of ATP. The model therefore comprises different classes of
variables and parameters : (i) metabolic variables M; where j = I for intermediate,
j = S for storage, j = B for biomass and j = A for ATP; (ii) regulatory variables E;
for the concentrations of enzymes catalyzing the jth reaction (j = A, B, S+, S_,T, M);
(iii) contextual/environmental variables, N for extracellular nutrient concentration and
K for the energy demand; (iv) budget parameters k; for the cost or gain in ATP of the
jth reaction.




The time evolution of metabolic variables follows the differential equation system:

M = - .

P~ P, B, N, K1) (1)
where F is given in Table 1. It is to mention that two reactions are assumed to be
catalyzed by constant enzyme level: (i) the nutrient transport reaction rate that is
described by a non-regulated anisotropic diffusion process and (ii) the maintenance
(i.e., housekeeping) reaction that is described as a zeroth order reaction and depends on
the concentration of storage and enzyme (Table 1).

Table 1: Biochemical reactions and parameter values.
Nutrient transport N+ kpMy+ Ep & M+ kr(1—My)+ Ep
v = ETMAH(N - M[)
ATP production Mr+ka(l—My)+Eg = kaMa+FEa
Vg = EA(l — MA)M]
Biomass production | M;+kgMa+ Ep — Mp+kp(l — M)+ Ep
V3 = EBMAM[
Storage production | My + ks, My + Es, — Mg + ks, (1 — M)+ Es,
vy = Egy MM
Storage degradation | Mg+ ks Ma+ Es. — My +ks_ (1 —Ma)+ Es_
V5 = ES_MAMS
Maintenance reaction | My — (1 — Ma)
ve = Ko+ KsMs+ Kg ), B

Parameters ka=30kp=5kr=1ks, =4 ks_ =1
Ko=1,Ks=001; Kgp=1;, Ep =05
Rate equations My = —kpvi +kavo — kpvs — kg v4 — ks_ vs — vg

M = vy — vy — v3 +v5 — vg; Mg = vy —v5; Mp = v3
Reaction rates are based on first-order rate law, except the Oth order maintenance
reaction rate. x indicates that the reversible reaction occurs only for N > M; with an
Heavyside function H in the rate law. 1 — M4 denotes the converted form of M4 with
a unit total pool concentration.

The sources of nonstationarity in the model are of two sorts : the changes in extra-
cellular nutrient levels N(¢) and the changes in energy demand K (t) as ATP-consuming
cellular functions (stress management, motility, morphological changes...) are prone to
be sensitive to environmental changes and transient in time. For simplicity, we consider
sinusoidal variations of N(¢) and K(t):

N(t) = Ny - Lvcostont)) 1 2)

K(t) = Ko + (2K (;Kt)) -1 (3)

where an, i are the perturbation amplitudes from such basal levels Ny and Ky and wy, x
are the perturbation frequencies. Given these nonstationary conditions, the optimiza-
tion criterion for metabolic fitness is the time-averaged biomass production rate in the
permanent regime:

o= % / T (O My (1) M)t

M;(to +T) = M;(to), {t=1,A}

(4)

where [tg, tg + T is the sampling time window and T' = 27 /w.




Metabolic parameter values

The prototypical model of metabolism depicted in Fig. [Il is not specific to a particular
organism and does not take into account the diversity of nutrient sources, storage com-
pounds and functional biomass compounds (e.g., DNA, RNA, proteins...). As a result,
model parameters values are not necessarily related with known reaction rates and sto-
chiometries associated with a selected metabolic pathway. Nevertheless, the choice of
parameter values has been made to match the order of magnitudes of some global or
averaged biological quantities (Table 1). Parameter values are dependent on the con-
centration and time unit chosen. The assumption that the total concentration of the
pool of adenyl phosphate is constant and equal to 1 defines the unit of concentration.
Because the experimentally measured value is of the order of 10mM (Immol/L) and the
molecular weight of ATP is 507g.mol~!, the concentration unit is set to 0.5g/L. The
unit of time is given by the arbitrary choice that the basal decay rate of ATP is unit-
normalized with Ky = 1. The biological value of the basal consumption rate of ATP can
be approximately derived from the respiratory rates Jarp ~ 50mM.min~! measured
in yeast cells in the stationary phase [33]. Given the concentration unit defined above
and an ATP:ADP ratio of about ~ 5 : 1, the consumption rate would be 6min~—! which
corresponds to a time unit of 10s. This upper bound of ATP lifetime is consistent with
the measured values of ATP turnover time of the magnitude of second in diverse growth
conditions and species [32].

Parameters for ATP production and consumption are chosen from the global gain
or cost of ATP associated with a whole metabolic process. The value for ATP gain
associated with TCA cycle is set to k4 = 30, which is similar to the order of magnitude
of 25g of ATP produced through the oxidation of 1g of acetyl COA (both metabolites
have a similar molar mass). The value for ATP consumption associated with biomass
production is set to kg = 5 as the minimal energy cost for protein synthesis is the 5
ATP hydrolyzed for each peptide bond formed, assuming that the molar mass of peptide
is similar to that of ATP and neglecting other biosynthetic costs. The ATP cost for
the whole process of storage production, maintenance and consumption depends on the
type of storage compounds. We use the following arbitrary values ks, = 4, ks_ =1
Kg = 0.01 and have checked a posteriori that storage content is lower than 10 times
the adenyl phosphate content M, < 10, as starch or glycogen contents is usually limited
to a maximum of a few percent of cell mass whereas ATP content of the magnitude of
0.1%. The parameter value Er for nutrient import is based on the glucose import rate
measured in budding yeast. Depending on the extracellular glucose concentration and
the type of hexose transporter involved, glucose import rate can be estimated between
10 and 100min~! [34], which translates into 0.5 < Ep < 5 for the concentration and
time units defined above.

Regulatory parameter optimization

The search for regulatory parameters that shapes E(t) so as to maximizes the flux ®
in dynamic environments requires to use parameter optimization techniques. Pertur-
bation methods are well adapted in the case of small enough environmental fluctua-
tions. Environmental, enzyme and metabolic variables can be expanded up to first
order © = xg + ex1 (x = M;, E;, N, K) where first-order terms are real trigonometric
polynomial functions:

x1=c¢ + Z a; cos(if) + b; sin(if) (5)
i=1

where n =1 for = E;, N, K and otherwise undefined. By substituting EqBl into EqI
and EqM, the vector field F' and the objective function ® are expanded in power series




%
of €, leading to a hierarchy of equations for M and ® that can be solved recursively
by using a formal calculus software. To the Oth order in €, the steady state condition

— —
?0 (MO7 ﬁo, {N, K}O) = 6> allows Mg to be expressed as a function of ﬁo and to be

substituted into ®3. Optimal enzyme parameters EO are obtained by finding the single
local maximum of ®q that satisfies V ®q(Ey) = 0 and V2 ®¢(Ey) > 0. As well, solution

_>
of the linear equations at the following Ith orders M; = ?l allows to find asymptotic
time-dependent solutions M (t) as a function of trigonometric polynomial coefficients

a, b and ¢ of ﬁl, while the optimized coefficient are obtained again by maximizing ®;.

In the case of large fluctuations N (¢) and K (t), perturbation method is substituted by
evolution strategy optimization technique that is a class of evolutionary algorithm [35].
The optimization criterion is the maximization of the metabolic flux ® given by EqH
whereas the termination criterion depends on both the number of generation and a
measure of evolution convergence.

Results

Steady-state metabolic adaptations: ATP homeostasis and metabolic
collapse

In stationary condition defined by constant levels of nutrient Ny, energy demand K
and enzymes EO, a stable metabolic state corresponds to a fixed point of EqlIl with non-
negative value of nutrients, metabolites, storage, ATP and ADP. However, for some
range of values of Ny, Ky and Eo, a stable metabolic state may not exist, such that
all phase space trajectories drift toward the region of negative ATP level (M4 < 0), in
which case metabolic death occurs. As mentioned in Methods section, an optimal stable
metabolic steady state is defined for enzyme parameters EO that maximize the metabolic
flux ® for any values Ny and Ky (Fig. ). The optimal metabolic flux ® decreases
with decreasing values of Ny and increasing values Ky to ® = 0 at a threshold value
No,o(Ko) and Ky (Ny) (Fig. 2A) beyond which metabolic death always occurs. This
stress-induced decrease of ® is paralleled with a decay of biomass production enzyme
Ey g to 0 (Fig. 2B), while the ATP production enzyme Ej 4 is either slightly increased
or decreased depending on whether it is a nutrient stress or an energy stress, respectively
(Fig.2IC). In this result, the smaller regulation of Ey 4 compared to that of Ey g reflects
the imperative need to maintain relatively constant and high levels of ATP for survival
at the expense of a much reduced biomass production and flux (Fig. 2D). Furthermore,
the opposite regulation of Ey 4 between the two types of stress reflects the fact that the
many ATP-producing and ATP-consuming reactions can be differentially affected by
the two stress types, such that stress-specific and finely-tuned regulation are required
to reestablish ATP homeostasis. In contrast with these subtle mechanisms of ATP
homeostasis, the optimal level of internal metabolites M| roughly scales with external
nutrients Ny (Fig. 2E). Finally, an expected feature of the optimal steady state is the
absence of storage enzymes Ey g, ,_ = 0 as the processes of production, maintenance and
degradation of storage generate metabolic costs in ATP and enzymes and any profits
in stationary conditions. Note that even for the optimal enzyme parameters, a stable
fixed point coexists with a saddle fixed point (Fig. 2F), such that transition to death
can arise at the threshold condition Ky . and Ny . through a saddle-node bifurcation but
also through transient perturbations, which is a critical feature for further investigations
of the effect of dynamic fluctuations. Quantitatively, the value & ~ 0.12 obtained for
Ny =1 and the nutrient threshold of Ny = 0.3 corresponds to a doubling time of ~ 10h
for an external glucose concentration of 25mM, which matches the order of magnitude
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Figure 2: Optimal steady-state solutions. Properties of the optimal solution as a
function of stationary parameters Ny and Ky: (A) Flux ® where green line corresponds
to @ = 0; (B-C) Stationary enzyme level Ey p and Ep 4; (D,E) Stable fixed point
coordinate M4 and My; (F) Example of phase space portrait and trajectories for Ny =
0.8 and Ky = 2 where black and white circles indicate stable and unstable fixed points
and the black line separates the viability domain (white) and metabolic collapse domain

(gray).

of experimental values [36].

Dynamic metabolic adaptations: just-in-time and storage strate-
gies

After having characterized the main features of the optimal metabolic steady state,
the following step is to search for optimal enzyme profiles in response to nonstationary
environmental conditions such as oscillations of N (¢) and K (¢) of amplitudes an, i given

by EqB (Fig. BA). For simplicity, we assume a sinusoidal shape for E(t)
E;i(t) = eg,i(1 + a; cos (wy xt + ¢i)) (6)

The optimal values for eg ;, a; and ; can first be derived for small amplitude oscillations
a; by using a perturbation method, and then obtained for any perturbation amplitude
by using evolutionary methods (see Methods section). The results depicted in Fig.
shows that the optimal solutions are well predicted by the perturbation approach, up
to relatively large stress amplitudes ay, x, which can be explained by the almost linear
relation between the metabolic flux and the parameter perturbation (Fig. ZA). For
these optimal solutions, the enzyme oscillations display an increasing amplitude with
perturbation amplitude and are in phase or antiphase with the perturbation depending
on whether dEy;/dN and dEy;/dK are positive or negative in (Fig. 2B,C). The in-
phase or anti-phase relationship between enzyme and perturbation oscillations is related
with the assumption of a low perturbation frequency wy,x = 0.01 (i.e, dimensionalized
period of T = 100mn) that is much smaller than the natural frequency wg of the
metabolic system, while phase shifts would occur for wy g ~ wg. This strategy bears
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Figure 3: Optimal enzyme profile in presence of time-dependent nutrient or
energy stress. (A) Simulation protocol to obtain optimal enzyme profile as a function
of the stress condition. (B) Optimal solutions as a function of stress type and amplitude
reveals the existence of storage-based solutions for large enough amplitude. Upper panel:
Metabolic flux ®, mean enzyme level e ;, amplitude of enzyme oscillations a;, phase
of enzyme oscillations ;. Optimal enzyme profile obtained with evolution methods
(colored point) are compared with small amplitude solutions obtained with perturbation
methods (continuous lines).

similitudes with so-called just-in-time or lean manufacturing strategy for production
lines as enzymes must be produced and activated at the right time by maximizing the
use of rate-limiting substrates while avoiding accumulating or stored parts. However,
above some critical perturbation amplitude a; . > a;. (i = N, K), the optimal solutions
display qualitatively different properties characterized by a tight regulation of storage
production and degradation (eg g > 0, ag+,s— =1 and pgi ~ pg_ + ).

These storage-based solutions occur for a given frequency range of oscillatory per-
turbations (Fig. HA,B). The upper-bound frequency coincides with the undamped nat-
ural (also cutoff) frequency wy of the low-pass second-order filter associated with the
metabolic system {M, M;} linearized around the steady state Ny = kg = 1. The stor-
age strategy thus confers a fitness benefit for slow variations of N(¢) or K(t) below the
thresholds Ny . or Ky, which would not be filtered out and would induce metabolic
death in the absence of slow storage cycles. In turn, the lower-bound frequency indi-
cates that a too long stress requires to be anticipated with high storage reserves that
comes with an unbearable cost and death. As a result, the precise values of this bound
depends on the actual cost of storage production and maintenance.

The mechanism through which the accumulation and degradation of storage material
buffer out slow environmental fluctuations can be captured by the low-pass filter com-
ponent in presence of stationary levels of enzymes F;(t) = Ey; (Fig.HC). The dominant
cutoff frequency coincides with the environmental frequency for which the system has
been optimized. The optimal profile of the enzymatic variables and the corresponding
time course for metabolic variables depicted in Fig. FD illustrate how the optimal solu-
tion coincides with a temporal management of storage material, in order to ensure that
M4 and M; remain in the viability domain (shown in Fig. 2IF') so as to avoid metabolic
collapse.
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Figure 4: Storage strategy. (A,B) Distinct classes of optimal solutions (S: Storage;
L: lean / no storage; D: Death) as a function of the type, the amplitude and the
frequency of the stress condition. (C) Amplitude gain as a function of perturbation
frequency in presence of static enzyme with and without storage reveals specific low-
pass filtering properties. (D) Timecourse of metabolic and enzymatic variable illustrated
for an optimal solution with nutrient stress wy = 0.01 and ay = 0.75.

Optimal signaling and regulation for dynamic adaptations to metabolic
stress

The optimal oscillatory profiles of enzyme obtained for various nonstationary conditions
provide guidance on the manner how these enzymes would be optimally regulated by
specific signaling cues. For instance, the optimal phases of enzyme oscillations with
respect to signal oscillations (see low panels of Fig. B]) are expected to predict whether
these enzymes would be positively or negatively regulated by the signaling pathways
sensitive to these signals. It remains however difficult to foresee which signaling cues and
how many signaling pathways are required to regulate metabolism in an optimal manner.
To address these issues, the metabolic network model given by Eq[Il is supplemented
by a minimal description of the signaling pathways that regulate the time evolution of
enzyme concentration :

Ny

dE;

a0l | BEICORE! (7)
j=1

Ti
where Y is the signal input that can depend on any environmental or metabolic variables,
and Ny is the number of signaling pathway. The regulation function f;; is described by

a Hill function:
1+ >\ij (%)

— R
1+(0'fj)

where p; is the basal activation rate of Ej;, A;; the Y;-dependent activation (> 1) or
inactivation (< 1) rate of E; by Yj, 6;; the regulatory threshold (the inflection point
of the response curve for ng = 2), and ngy is the Hill coefficient or slope factor that

nH

fij(z) = (8)
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Figure 5: Optimal signaling and regulatory pattern of enzyme in response
to single or combined stress conditions. (A) Enzyme amplitude (Eq. [)): average
and variance values computed for the 20 better solutions overs 40 evolutionary runs.
Evolutionary optimization is made on the regulatory parameters u;, A;; and 6;; for two
distinct and combined stress conditions (N (t): No =1, wy = 0.01, ay = 0.7, ax = 0;
K(t): Ng =1, wy =0.01, ay =0., ax = 3.5) and for various signals. For optimization
in combined stress conditions (right panel), left versus right bars corresponds to en-
zyme amplitudes measured when exposed to a single stress, N(t) (left) or K(¢) (right).
(B) Optimal regulatory parameters f;;(Yiae) — fij(Ymin) represented as activatory or
inhibitory regulations in presence of two signaling pathway and combined stress condi-

tions (see dashed rectangle of (A)). (C) Corresponding regulatory scheme by assuming
the existence of AMPK-like and TOR-like regulatory proteins.

is set to 2. Evolutionary optimization technique is applied to determine the regulatory
parameters ji;, A;; and 0;; that maximizes the flux. We use constant value 7; = 1, which
would correspond to a rapid mode of regulation (e.g, post-translational), since, anyway,
optimization leads to minimize 7; in the absence of synthesis and degradation costs for
enzymes. To compare the optimal solutions obtained in the cases of oscillatory versus
regulated enzymes, a generic quantity for enzyme amplitude is defined as,

EM _ pm

a; = COb( )W

(9)
where ¢ = 27(t}y, — t} n)/T corresponds to the phase of the enzyme response (¢, is
the time of the maximum of z(¢)). Optimization is first performed in presence of a
single stress conditions (N (t) or K (t) with wy x = 0.01) and a single signaling pathway
Ny =1 where Y7 is a function of N, K, M; or M4 (Fig[HA, left panels). The sensing
functionsare Y(N) =N, Y (M) =M, Y(K)=5-Kand Y(M4) = 0.1 M4 /(1 —My)
and have been chosen to display similar maximal and minimal values for Y given the
stress intensities considered here.

Irrespective to the signaling cue, a stress associated with low levels of N, M or M4
or high levels of K induces an inhibition of enzymes Es,, Ep and activation of Eg_,




while it induces either an activation or an inactivation of E 4 depending on whether it is
an energy or a nutrient stress, respectively (FiglHA, left panels). These tendencies are
consistent with the optimal oscillatory pattern of enzyme (see Fig[Bl). However, both the
strengths of regulation and the metabolic flux ® slightly depend on the type of signaling
cues, which presumably reflects differences in the periodic time profile of Y;(t) which
can be more or less sinusoidal or distorted. The result that ® systematically augments
by increasing the hill coefficient ny (result not shown) or by increasing the number of
signaling pathways Ny is consistant with the notion that signaling complexity improves
metabolic fitness through a refined control of enzyme time course in the absence of costs
associated with increases of Ny or npg.

In the case where a single signaling pathway is optimized to maximize the sum of the
flux for the two stress conditions (FiglHA, right panels), the metabolic flux is decreased
from 10% (for M) to 40% (for M) compared to the case where optimization is done for
each stress condition separately. This result reflects the property that optimal regulation
of E4 depends on the stress type, giving rise to a compromise solution of intermediate
regulation of F4. In contrast, optimization with two signaling pathways allows to
recover the optimal fluxes obtained for each stress condition optimized separately with
a single signaling pathway. This dual signaling and regulatory scheme shows a clear
divisions of the sensing and regulatory task as the signaling sensitive to M7 inhibits F 4
while the pathways sensitive to M4 activates E4 (FighB), which is reminiscent to the
acknowledged pattern of regulation by AMPK and TOR (Compare FiglIC and FiglIIA).
Besides their opposite regulation of E4, the two signaling pathways also differ in the
regulatory strength of storage enzyme, which also suggest a division of task based on
the survival-growth dichotomy. The M 4-sensitive pathway is prone to lead to drastic
metabolic adaptation upon severe stress, while the M;-signaling pathway would rather
achieve a more graded response to optimize the metabolic growth rate.

To summarize, the crosstalk between several signaling and regulatory pathways con-
fers fitness advantages by refining the time profile of respective enzymes, but also by
allowing a distribution of tasks when coping with different stress types and intensities.

Discussion

The analysis of a coarse-grained model of cell metabolism reveals distinct adaptive
strategies in changing environments, depending on the nature, the amplitude, and the
timescale of environmental changes. In line with previous studies, adaptation to small
environmental fluctuations only requires to be compensated in time by dynamically
reallocating the enzyme resources [37,[38] by analogy with just-in-time manufacturing
strategies [18]. In contrast, metabolic adaptation to large environmental fluctuations
involves storage management’s pathways in order to buffer out these fluctuations and
protect cells against detrimental outcomes for survival. The buffer effect relies on a slow
storage degradation process, providing a low-pass filtering’s property to the metabolic
system. In this process, a tight regulation of the storage’s production and degradation is
of critical importance to minimize the cost of production and of maintenance of storage
material. A typical example of such adaptive mechanism is the regulation of starch, a
major form of stored carbohydrate in plants: starch is accumulated during the day and
remobilized at night at a rate which depends on the night length to support continued
respiration [39]. In fact, different storage compounds may exhibit differential capacities
in coping with rapid or slow changes of their environment, depending on the energetic
and temporal constraints associated with their production, transport, reactivity, and
degradation. Carbohydrates, for instance, are energy’s stores less concentrated than
triacylglycerols, but are more rapidly mobilized. The specific roles of glycogen and tre-
halose during the diauxic shift response and the quiescence starvation response in yeast




further suggest the existence of distinct and combined storage strategies depending on
the mode of production and reactivity of storage compounds [40]. Finally, proteins
and other macromolecular complexes also constitutes large reserves of recyclable ma-
terial that can be catabolized through the process of autophagy [41]. This diversity
of catabolic processes leave open the question of their coordination to resupply the
biosynthetic precursors or the energetic compounds and to optimize survival at various
timescales.

Optimal metabolic fitness in fluctuating environments requires a time-dependent
regulation of storage material, but also of biosynthetic ATP-consuming processes and
catabolic ATP-generating processes. While the biosynthetic machinery is switched off
in any stress condition, the regulation of the ATP production through the TCA cycle
is more subtle and is prone to depend on the nature of the stress. As a result, optimal
regulation in various stress conditions tend to require a crosstalk between specialized
signaling pathways that have both cooperative or opposing actions on selected enzymatic
targets. The obtained pattern of regulation display close similarity with the AMPK
and TOR-dependent pathways, as these pathways exert antagonistic roles for storage
management, autophagy, and biosynthesis whereas both activate some other pathways
such as glycolysis and mitochondrial activity. However, it remains debatable whether
regulation should be mediated through post-translational or transcriptional mechanisms,
given that transcription-dependent or degradation-dependent changes of expression can
be too slow to track environmental changes [38,42], while rapid protein turnover can
be energetically costly. Although the optimal regulatory profile of enzyme exhibited a
clear and consistent pattern, the issue of optimal sensing cues remains more difficult to
apprehend. An external perturbation is propagated simultaneously through both the
metabolic and signaling network in a complex manner as different perturbation modes
can be either amplified or attenuated in time. On the one hand, external perturbation
seems to provide a more reliable cues. On the other hand, internal sensing provides
informations about the metabolic state, that is how well-balanced are the respective
flux [16], or how close a system is far from steady state or from the threshold beyond
which metabolic collapse occurs. Combined mechanisms of ATP homeostasis and fast
ATP turnover make the level of ATP:ADP:AMP ratios very sensitive to whether the
metabolic stability is threatened or compromised, and such ratios therefore constitute
good indicators of stress [7].

From a single-cell perspective, a primary role of intracellular signaling is to track
environmental changes so as to adjust the cellular state accordingly. However, efficient
metabolic adaptations in microbial organisms to environmental changes can also occur
in the absence of signaling through bet-hedging strategy based on the relative growth
and survival rates of cells within multistable and heterogeneous population [43]. In
fact, which strategy is optimal and whether these strategies could be mixed depend
on many cellular and environmental parameters, such as the rates of proliferation, the
randomness and frequency of environmental changes, or the timescale and energetic
cost of regulation [44H46], which is reliant on the organism’s lifestyle, prokaryote or
eukaryote, unicellular or multicellular, phototroph or chemotroph. The issue of the
cellular response strategy to nutrient and energy stress thus provides a promising venue
for investigating the evolution of regulatory complexity.
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