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Abstract

Automatically verifying safety properties of programs is hard. Many approaches exist for verifying
programs operating on Boolean and integer values (e.g. abstract interpretation, counterexample-
guided abstraction refinement using interpolants), but transposing them to array properties has
been fraught with difficulties. Our work addresses that issue with a powerful and flexible abstraction,
parametric both in precision and in the back-end analysis used.

From our programs with arrays, we generate nonlinear Horn clauses over scalar variables only,
in a common format with clear and unambiguous logical semantics, for which there exist several
solvers. We thus avoid the use of solvers operating over arrays, which are still very immature.

Experiments with our prototype vaphor show that this approach can prove automatically and
without user annotations the functional correctness of several classical examples, including selection
sort, bubble sort, insertion sort, as well as examples from literature on array analysis.

1 Introduction

Formal program verification, that is, proving that a given program behaves correctly according to spec-
ification in all circumstances, is difficult. Except for very restricted classes of programs and properties,
it is an undecidable question. Yet, a variety of approaches have been developed over the last 40 years
for automated or semi-automated verification, some of which have had industrial impact.

In this article, we consider programs operating over arrays, or, more generally, maps from an index
type to a value type (in the following, we shall use “array” and “map” interchangeably). Such programs
contain read (e.g. v := a[i]) and write (a[i] := v) operations over arrays, as well as “scalar” operations.1

Universally quantified properties Very often, desirable properties over arrays are universally quan-
tified; e.g. sortedness may be expressed as ∀k1, k2 k1 < k2 =⇒ a[k1] ≤ a[k2]. However, formulas with
universal quantification and linear arithmetic over integers and at least one predicate symbol (a predicate
being a function to the Booleans) form an undecidable class [Halpern, 1991], of which some decidable
subclasses have however been identified [Bradley et al., 2006]. There is therefore no general algorithm
for checking that such invariants hold, let alone inferring them. Yet, there have been several approaches
proposed to infer such invariants (see Sec. 7).

We here propose a method for inferring such universally quantified invariants, given a specification
on the output of the program. This being undecidable, this approach may fail to terminate in the
general case, or may return “unknown”. Experiments however show that our approach can successfully
and automatically verify nontrivial properties (e.g. the output from selection sort is sorted and is a
permutation of the input).

Our key insight is that if there is a proof of safety of an array-manipulating program, it is likely that
there exists a proof that can be expressed with simple steps over properties relating only a small number
N of (parametric) array cells, called “distinguished cells” . For instance, all the sorting algorithms we

∗The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”

1In the following, we shall lump as “scalar” operations all operations not involving the array under consideration, e.g.
i := i+ 1. Any data types (integers, strings etc.) are supported if supported by the back-end solver.

1

http://erc.europa.eu/
http://stator.imag.fr/


tried can be proved correct with N = 2, and simple array manipulations (copying, reversing. . . ) with
N = 1.

Horn clauses We convert the verification problem to Horn clauses, a common format for program veri-
fication problems [Rümmer et al., 2014] supported by a number of tools. Usual conversions [Gurfinkel et al.,
2015] map variables and operations from the program to variables of the same type and the same op-
erations in the Horn clause problem:2 an integer is mapped to an integer, an array to an array, etc.
If arrays are not supported by the back-end analysis, they may be abstracted away (reads replaced by
nondeterministic choices, writes discarded) at the expense of precision. In contrast, our approach ab-
stracts programs much less violently, with tunable precision, even though the result is still a Horn clause
problems without arrays. Section 3 explains how many properties (e.g. initialization) can be proved
using one “distinguished cell” (N = 1), Section 4 explains how properties such as sortedness can be
proved using two cells; completely discarding arrays corresponds to using zero of them.

An interesting characteristic of the Horn clauses we produce is that they are nonlinear (their unfolding
produces a tree), even though a straightforward translation of the semantics of a control-flow graph
into Hoare triples expressed as clauses yields a linear system (whose unfoldings correspond to abstract
execution traces). If a final property to prove (e.g. “all values are 0”) queries one cell position, this
query may morph, by the backward unfolding of the clauses, into a tree of queries at other locations, in
contrast to some earlier approaches [Monniaux and Alberti, 2015].

We illustrate this approach with automated proofs of several examples from the literature: we apply
Section 3, 4 or 5 to obtain a system of Horn clauses without arrays. This system is then fed to the Z3,
Eldarica or Spacer solver, which produces a model of this system, meaning that the postcondition
(e.g. sortedness or multiset of the output equal to that of the input) truly holds.3

Previous approaches [Monniaux and Alberti, 2015] using “distinguished cells” amounted (even though
not described as such) to linear Horn rules; on contrast, our abstract semantics uses non-linear Horn
rules, which leads to higher precision (Sec. 7.1).

Contributions Our main contribution is a system of rules for transforming the atomic program state-
ments in a program operating over arrays or maps, as well as (optionally) the universally quantified
postcondition to prove, into a system of non-linear Horn clauses over scalar variables only. The precision
of this transformation is tunable using a Galois connection parameterized by the number of “distinguished
cells”; e.g. properties such as sortedness need two distinguished cells (Section 4) while simpler proper-
ties need only one (Section 3). Statements operating over non-arrays variables are mapped (almost)
identically to their concrete semantics. This system over-approximates the behavior of the program.
A solution of that system can be mapped to inductive invariants over the original programs, including
universally properties over arrays.

A second contribution, based on the first, is a system of rules that also keeps tracks of array/map
contents (Sec. 5) as a multiset. This system is suitable for showing e.g. that the output of a sorting
algorithm is a permutation of the input, even though the sequence of operations is not directly a sequence
of swaps.

We implemented our approach and benchmarked it over several classical examples of array algorithms
(Section 6), comparing it favorably to other tools.

2 Program Verification as solving Horn clauses

A classical approach to program analysis is to consider a program as a control-flow graph and to attach
to each vertex pi (control point) an inductive invariant Ii: a set of possible values x of the program
variables (and memory stack and heap, as needed) so that i) the set associated to the initial control
point pi0 contains the possible initialization values Si0 ii) for each edge pi →c pj (c for concrete), the
set Ij associated to the target control point pj should include all the states reachable from the states in
the set Ii associated to the source control point pi according to the transition relation τi,j of the edge.

2With the exception of pointers and references, which need special handling and may be internally converted to array
accesses.

3Z3 and Eldarica can also occasionally directly solve Horn clauses over arrays; we also compare to that.
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initstart loop end
n > 0
i := 0

i < n
a[i] := 42
i := i+ 1

i ≥ n

Figure 1: Compact control-flow graph for Program 1

Inductiveness is thus defined by Horn clauses4:

∀x, Si0(x) =⇒ x ∈ Ii0 (1)

∀x,x′, Ii(x) ∧ τi,j(x,x
′) =⇒ Ij(x

′) (2)

For proving safety properties, in addition to inductiveness, one requires that error locations pe1 , . . . , pen
are proved to be unreachable (the associated set of states is empty): this amounts to Horn clauses im-
plying false: ∀x, Iei(x)⇒ ⊥.

Various tools can solve such systems of Horn clauses, that is, can synthesize suitable predicates Ii,
which constitute inductive invariants. In this article, we tried Z35 with the PDR fixed point solver
[Hoder and Bjørner, 2012], Z3 with the Spacer solver [Komuravelli et al., 2013, 2014],6 and Eldar-

ica[Rümmer et al., 2013].7 Since program verification is undecidable, such tools, in general, may fail to
terminate, or may return “unknown”.

For the sake of simplicity, we shall consider, in this article, that all integer variables in programs are
mathematical integers (Z) as opposed to machine integers8 and that arrays are infinite. Again, it is easy
to modify our semantics to include systematic array bound checks, jumps to error conditions, etc.

In examples, instead of writing Istmt for the name of the predicate (inductive invariant) at statement
stmt , we shall write stmt directly, for readability’s sake: thus we write e.g. loop for a predicate at the
head of a loop. Furthermore, for readability, we shall sometimes coalesce several successive statements
into one.

Example 1 (Motivating example). Consider the program:

void a r r a y f i l l 1 ( i n t n , i n t a [ n ] ) {
fo r ( i n t i =0; i<n ; i ++) a [ i ] = 4 2 ;

}

We would like to prove that this program truly fills array a[] with value 42. The flat encoding into
Horn clauses assigns a predicate (set of states) to each of the control nodes (Fig. 1), and turns each
transition into a Horn rule with variables ranging in Array (A,B), the type of arrays of B indexed by A
[Kroening and Strichman, 2008, Ch. 7]:

∀n ∈ Z ∀a ∈ Array (Z,Z) n > 0 =⇒ loop(n, 0, a) (3)

∀n, i ∈ Z ∀a ∈ Array (Z,Z) i < n ∧ loop(n, i, a) =⇒ loop(n, i+ 1, store(a, i, 42)) (4)

∀n, i ∈ Z ∀a ∈ Array (Z,Z) i ≥ n ∧ loop(n, i, a) =⇒ end(n, i, a) (5)

∀x, n, i ∈ Z ∀a ∈ Array (Z,Z) 0 ≤ x < n ∧ end(n, i, a) =⇒ select(a, x) = 42 (6)

where store(a, i, v) is array a where the value at index i has been replaced by v and select(a, x) denotes
a[x].

4Classically, we denote the sets using predicates:Ii0 (x) means x ∈ Ii0
5https://github.com/Z3Prover hash 7f6ef0b6c0813f2e9e8f993d45722c0e5b99e152; due to various problems we preferred

not to use results from later versions.
6https://bitbucket.org/spacer/code hash 7e1f9af01b796750d9097b331bb66b752ea0ee3c
7https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc
8A classical approach is to add overflow checks to the intermediate representation of programs in order to be able to

express their semantics with mathematical integers even though they operate over machine integers.
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None of the tools we have tried (Z3, Spacer, Eldarica) has been able to solve this system, pre-
sumably because they cannot infer universally quantified invariants over arrays.9 Indeed, here the loop
invariant needed is

0 ≤ i ≤ n ∧ (∀k 0 ≤ k < i =⇒ a[k] = 42) (7)

While 0 ≤ i ≤ n is inferred by a variety of approaches, the rest is tougher. We shall also see (Ex. 6) that
a slight alteration of this example also prevents some earlier abstraction approaches from checking the
desired property.

Most software model checkers attempt constructing invariants from Craig interpolants obtained from
refutations [Christ, 2015] of the accessibility of error states in local [Hoder and Bjørner, 2012] or global
[McMillan, 2006] unfoldings of the problem, but interpolation over array properties is difficult, espe-
cially since the goal is not to provide any interpolant, but interpolants that generalize well to invariants
[Alberti and Monniaux, 2015, Alberti et al., 2014]. This article instead introduces a way to derive uni-
versally quantified invariants from the analysis of a system of Horn clauses on scalar variables (without
array variables).

3 Getting rid of the arrays

To use the power of Horn solvers, we soundly abstract problems with arrays to problems without arrays.
In the Horn clauses for Ex. 1, we attached to each program point pℓ a predicate Iℓ over Z×Z×Array (Z,Z)
when the program variables are two integers i, n and one integer-value, integer-indexed array a. 10 In
any solution of the system of clauses, if the valuation (i, n, a) is reachable at program point pℓ, then

Iℓ(i, n, a) holds. Instead, in the case of Ex. 1, we will consider a predicate I♯ℓ over Z × Z × Z × Z (the

array key → value has been replaced by a pair (key , value)) such that I♯ℓ (i, n, k, ak)
11 holds for each

reachable state (i, n, a) satisfying a[k] = ak. This is the same Galois connection [Cousot and Cousot,
1992] as some earlier works [Monniaux and Alberti, 2015] [Cousot and Cousot, 1994, Sec. 2.1]; yet, as
we shall see, our abstract transformers are more precise.

Definition 1. The “one distinguished cell” abstraction of I ⊆ χ × Array (ι, β) is α (I) = {(x, i, a[i]) |
x ∈ χ, i ∈ ι}. The concretization of I♯ ⊆ χ× (ι× β) is γ

(

I♯
)

= {(x, a) | ∀i ∈ ι (x, i, a[i]) ∈ I♯}.

Theorem 1. P (χ×Array (ι, β)) −−−→←−−−α
γ
P (χ× (ι× β)) is a Galois connection.

To provide the abstract transformers, we will suppose in the sequel that any statement in the program
(control flow graph) will be: i) either an array read to a fresh variable, v=a[i ]; in C syntax, v := a[i] in
pseudo-code; the variables of the program are (x, i, v) where x is a vector of arbitrarily many variables;
ii) either an array write, a[ i]=v; (where v and i are variables) in C syntax, a[i] := v in pseudo-code; the
variables of the program are (x, i, v) before and after the statement; iii) or a scalar operation, including
assignments and guards over scalar variables. More complex statements can be transformed to a sequence
of such statements, by introducing temporary variables if needed: for instance, a[i] := a[j] is transformed
into temp := a[j]; a[i] := temp.

Definition 2 (Read statement). Let v be a variable of type β, i be a variable of type ι, and a be
an array of values of type β with an index of type ι. Let x be the other program variables, taken
in χ. The concrete “next state” relation for the read statement v=a[i ]; between locations p1 and p2 is
(x, i, v, a)→c (x, i, a[i], a).

Its forward abstract semantics is encoded into two Horn clauses:

∀x ∈ χ ∀i ∈ ι ∀v, ai ∈ β ∀k ∈ ι ∀ak ∈ β

k 6= i ∧ I♯1
(

(x, i, v), (k, ak)
)

∧ I♯1
(

(x, i, v), (i, ai)
)

=⇒ I♯2
(

(x, i, ai), (k, ak)
) (8)

∀x ∈ χ ∀i ∈ ι ∀v, ai ∈ β ∀k ∈ ι ∀ak ∈ β

I♯1
(

(x, i, v), (i, ai)
)

=⇒ I♯2
(

(x, i, ai), (i, ai)
)

(9)

9Some of these tools can however infer some simpler array invariants.
10For instance, Iloop = loop(n, i, a), Iend = end(n, i, a).
11also denoted by I

♯
ℓ((i, n), (k, ak)) for sake of readability.
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The tuple (k, ak) now represents a “distinguished cell”. While rule 9 is straightforward (ai is assigned
to the variable v), the nonlinear12 rule 8 may be more difficult to comprehend. The intuition is that,
to have both ai = a[i] and ak = a[k] at the read instruction with a given valuation (x, i) of the other
variables, both ai = a[i] and ak = a[k] had to be reachable with the same valuation.
From now on, we shall omit all universal quantifiers inside rules, for readability.

Definition 3 (Write statement). The concrete “next state” relation for the write statement a[ i]=v; is
(x, i, v, a) →c (x, i, v, store(a, i, v)). Its forward abstract semantics is encoded into two Horn clauses,
depending whether the distinguished cell is i or not:

I♯1
(

(x, i, v), (k, ak)
)

∧ i 6= k =⇒ I♯2
(

(x, i, v), (k, ak)
)

(10)

I♯1
(

(x, i, v), (i, ak)
)

=⇒ I♯2
(

(x, i, v), (i, v)
)

(11)

Example 2 (Ex. 1, cont.). The a[i] := 42 statement of Ex. 1 is translated into (the loop control point is
divided into loop/write/inc, all predicates of arity 4):

i 6= k ∧ write(n, i, k, ak) =⇒ incr(n, i, k, ak) (12)

write(n, i, i, ak) =⇒ incr(n, i, i, 42) (13)

Definition 4 (Initialization). The creation of an array variable with nondeterministically chosen initial

content is abstracted by I♯1(x) =⇒ I♯2(x, k, ak).

Definition 5 (Scalar statements). With the same notations as above, we consider a statement (or
sequence thereof) operating only on scalar variables: x →s x′ if it is possible to obtain scalar values x′

after executing the statement on scalar values x. The concrete “next state” relation for that statement
is (x, i, v, a)→c (x

′, i, v, a). Its forward abstract semantics is encoded into:

I♯1(x, k, ak) ∧ x→s x
′ =⇒ I♯2(x

′, k, ak) (14)

Example 3. A test x 6= y gets abstracted as

I♯1(x, y, k, ak) ∧ x 6= y =⇒ I♯2(x, y, k, ak) (15)

Definition 6. The scalar operation kill (v1, . . . , vn) removes variables v1, . . . , vn: (x, v1, . . . , vn) → x.
We shall apply it to get rid of dead variables, sometimes, for the sake of brevity, without explicit note,
by coalescing it with other operations.

Our Horn rules are of the form ∀y I♯1(f1(y)) ∧ · · · ∧ I♯1(fm(y)) ∧ P (y) =⇒ I♯2(g(y)) (y is a vector of
variables, f1, . . . , fm vectors of terms depending on y, P an arithmetic predicate over y). In other words,

they impose in I♯2 the presence of g(y) as soon as certain f1(y), . . . , fm(y) are found in I♯1. Let I♯2− be

the set of such imposed elements. This Horn rule is said to be sound if γ(I♯2−) includes all states (x
′, a′)

such that there exists (x, a) in γ(I♯1) and (x, a)→c (x
′, a′).

Lemma 2. The forward abstract semantics of the read statement (Def. 2), of the write statement
(Def. 3), of array initialization (Def. 4), of the scalar statements (Def. 5) are sound w.r.t the Galois
connection.

Remark 1. The scalar statements include “killing” dead variables (Def. 6). Note that, contrary to many
other abstractions, in ours, removing some variables may cause irrecoverable loss of precision on other
variables [Monniaux and Alberti, 2015, Sec. 4.2]: if v is live, then one can represent ∀k, a[k] = v, which
implies ∀k1, k2 a[k1] = a[k2] (constantness), but if v is discarded, the constantness of a is lost.

Theorem 3. If I♯1, . . . , I
♯
m are a solution of a system of Horn clauses sound in the above sense, then

γ(I♯1), . . . , γ(I
♯
m) are inductive invariants w.r.t the concrete semantics →c.

12Nonlinear in the sense that it refers to I
♯
1 twice in its antecedents, and thus unfolding it tends to create a tree structure,

as opposed to a “comb”.
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Definition 7 (Property conversion). A property “at program point pℓ, for all x ∈ χ and all k ∈ ι,
φ(x, k, a[k]) holds” (where φ is a formula, say over arithmetic) is converted into a Horn query ∀x ∈
χ ∀k ∈ ι φ(x, k, ak).

Our method for converting a scalar program into a system of Horn clauses over scalar variables is
thus:

Algorithm 1 (Abstraction into Horn constraints). Given the the control-flow graph of the program:

1. To each control point pℓ, with vector of scalar variables xℓ, associate a predicate I♯ℓ (xℓ, k, ak) in
the Horn clause system (the vector of scalar variables may change from control point to control
point).

2. For each transition of the program, generate Horn rules according to Def. 2, 3, 5 as applicable (an
initialization node has no antecedents in its rule).

3. Generate Horn queries from desired properties according to Def. 7.

Example 4 (Ex. 1, continued). Let us now apply the Horn abstract semantics from Definitions 3 and 5
to Program 1; in this case, α = Z, ι = {0, . . . , n− 1} (thus we always have 0 ≤ k < n) , χ = Z. After
slight simplification, we get:

0 ≤ k < n =⇒ loop(n, 0, k, ak) (16)

0 ≤ k < n ∧ i < n ∧ loop(n, i, k, ak) =⇒ write(n, i, k, ak) (17)

0 ≤ k < n ∧ i 6= k ∧ write(n, i, k, ak) =⇒ incr(n, i, k, ak) (18)

write(n, i, i, ak) =⇒ incr(n, i, i, 42) (19)

0 ≤ k < n ∧ incr(n, i, k, ak) =⇒ loop(n, i+ 1, k, ak) (20)

0 ≤ k < n ∧ i ≥ n ∧ loop(n, i, k, ak) =⇒ end(n, i, k, ak) (21)

Finally, we add the postcondition (using Def. 7):

0 ≤ k < n ∧ end(n, i, k, ak)⇒ ak = 42 (22)

A solution to the resulting system of Horn clauses can be found by e.g. Z3.

Our approach can also be used to establish relationships between several arrays, or between the initial
values in an array and the final values: arrays a[i] and b[j] can be abstracted by a quadruple (i, ai, j, bj).

13

Example 5. Consider the problem of finding the minimum of an array slice a[d . . . h − 1], with value
b = a[p]:

void find minimum ( i n t n , i n t a [ n ] , i n t d , i n t h ) {
i n t p = d , b = a [d ] , i = d+1;
while ( i < h ) {

i f ( a [ i ] < b ) {
b = a [ i ] ;
p = i ;

}
i = i +1;

}
}

Again, we encode the abstraction of the statements (Def. 2, 3, 5) as Horn clauses. We obtained a
predicate end(d, h, p, b, k, ak) constrained as follows:

end(d, h, p, b, p, ap) =⇒ b = ap (23)

d ≤ k < h ∧ end(d, h, p, b, k, ak) =⇒ b ≤ ak (24)

Rule 23 imposes the postcondition b = a[p], Rule 24 imposes the postcondition ∀k d ≤ k < h =⇒ b ≤
a[k]. This example is again solved by Z3.

13If one is sure that the only relation that matters between a and b are between cells of same index, then one can use
triples (i, ai, bi).
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Earlier approaches based on translation to programs [Monniaux and Alberti, 2015], thus transition
systems, are equivalent to translating into linear Horn clauses where x1, . . . , xp are the same in the
antecedent and consequent:

I1(. . . , x1, a1, . . . , xp, ap) ∧ condition → I2(. . . , x1, a
′
1, . . . , xp, a

′
p) (25)

In contrast, in this article we use a much more powerful translation to nonlinear Horn clauses (Sec. 7.1)
where x′′

1 , . . . , x
′′
p differ from x1, . . . , xp:

I1(. . . , x1, a1, . . . , xp, ap) ∧ . . . ∧ I1(. . . , x
′′
1 , a

′′
1 , . . . , a

′′
p , x

′′
p) ∧ condition

→ I2(. . . , x1, a
′
1, . . . , xp, a

′
p) (26)

Example 6 (Motivating example, altered). The earlier work [Monniaux and Alberti, 2015] could suc-
cessfully analyze Ex 1. However a slight modification of the program prevents it from doing so:

i n t tab [ n ] ;
fo r ( i n t i =0; i<n ; i ++) tab [ i ] = 4 2 ;

M: f = 0 ;
fo r ( i n t i =0; i<n ; i ++) { i f ( tab [ i ] != 42) f =1; }
a s s e r t ( f == 0) ;

For this particular example, the array tab would be abstracted all over the program using a fixed
number of cells tab[x1],. . . ,tab[xp], where x1, . . . , xn are symbolic constants.

The second loop is then analyzed as though it were14.

fo r ( i n t i =0; i<n ; i ++) {
r = random ( ) ;
i f ( i == x1 ) r = a1 ;
...
i f ( i == xp ) r = ap ;

T : i f ( r != 42) f =1;
}

One easily sees that if p < n, there must be a loop iteration where i /∈ {x1, . . . , xp} and thus at location
T, r takes any value and f may take value 1. The output of our translation process in this example is the

same until the M control point, then15 it is:

end(n, i, k, ak) =⇒ loop2 (n, 0, x, k, ak, 0) (27)

loop2 (n, i, x, k, ak, f) ∧ i < n =⇒ rd2 (n, i, x, k, ak, f) (28)

rd2 (n, i, x, k, ak, f) ∧ i 6= k ∧ rd2(n, i, x, i, ai, f) =⇒ test2 (n, i, ai, k, ak, f) (29)

rd2 (n, i, x, i, ai, f) =⇒ test2 (n, i, ai, i, ai, f) (30)

test2 (n, i, x, k, ak, f) ∧ x 6= 42 =⇒ loop2 (n, i+ 1, k, ak, 0) (31)

test2 (n, i, x, k, ak, f) ∧ x = 42 =⇒ loop2 (n, i+ 1, k, ak, f) (32)

loop2 (n, i, x, k, ak, f) ∧ i ≥ n =⇒ end2 (f) (33)

end2 (f) ⇒ f = 0 (property to prove) (34)

This abstraction is precise enough to prove the desired property, thanks to the bold antecedent (multiples
cell indices occur within the same unfolding). Without this nonlinear rule (removing this antecedent
yields a sound abstraction equivalent to [Monniaux and Alberti, 2015]), the unfoldings of the system of
rules all carry the same k (index of the distinguished cell) between predicates: the program is analyzed
with respect to one single a[k], with k symbolic, leading to insufficient precision.

14It would still be possible to proceed by first analyzing the first loop, getting the scalar invariant tabx = 42 at location
M, quantifying it universally as ∀x tab[x]|, then analyzing the second loop. Such an approach would however fail if this
program was itself included in an outer loop.

15The statement if tab[i]!=42 is decomposed into x:=a[i];if(x!=42).
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No restrictions on domain type and relationships; matrices The kind of relationship that can
be inferred between loop indices, array indices and array contents is limited only by the capabilities of the
Horn solver. For instance, invariants of the form ∀i i ≡ 0 (mod 2) =⇒ a[i] = 0 may be inferred if the
Horn solver supports numeric invariants involving divisibility. Similarly, we have made no assumption
regarding the nature of the indexing variable: we used integers because arrays indexed by an integer
range are a very common kind of data structure, but really it can be any type supported by the Horn
clause solver, e.g. rationals or strings. For instance, matrices (resp. n-tensors) are specified by having
pairs of integers (resp. n-tuples) as indices.

4 Sortedness and other N -ary predicates

The Galois connection of Def. 1 expresses relations of the form ∀k ∈ ι φ(x, k, a[k]) where x are variables
from the program, a a map and k an index into the map a; in other words, relations between each array
element individually and the rest of the variables. It cannot express properties such as sortedness, which
link two array elements: ∀k1, k2 ∈ ι k1 < k2 =⇒ a[k1] ≤ a[k2].

For such properties, we need two “distinguished cells”, with indices k1 and k2. For efficiency, we
break this symmetry between indices k1 and k2 by imposing k1 < k2 for some total order.

Definition 8. The abstraction with indices k1 < k2 is

γ2<

(

I
♯
)

= {(x, a) | ∀k1 < k2 ∈ ι (x, k1, a[k1], k2, a[k2]) ∈ I
♯} (35)

α2< (I) = {(x, k1, a[k1], k2, a[k2]) | x ∈ χ, k1 ≤ k2 ∈ ι} (36)

Theorem 4. α2< and γ2< form a Galois connection:

P (χ×Array (ι, β)) −−−−→←−−−−
α2<

γ2<

P ({(x, k1, v1, k2, v2) | x ∈ χ, k1 < k2 ∈ ι, v1, v2 ∈ β})

These constructions easily generalize to arbitrary N indices k1, . . . , kN .

Definition 9 (Read, two indices k1 < k2). The abstraction of v := a[i] is:

I
♯
1(x, i, v, k1, ak1

, k2, ak2
) ∧ I

♯
1(x, i, v, i, ai, k2, ak2

)∧

I
♯
1(x, i, v, i, ai, k1, ak1

) ∧ i < k1 < k2 =⇒ I
♯
2(x, i, ai, k1, ak1

, k2, ak2
)

(37)

I
♯
1(x, i, v, i, ai, k2, ak2

) ∧ I
♯
1(x, i, v, k1, ak1

, k2, ak2
)∧

I
♯
1(x, i, v, k1, ak1

, i, ai) ∧ k1 < i < k2 =⇒ I
♯
2(x, i, ai, k1, ak1

, k2, ak2
)

(38)

I
♯
1(x, i, v, k2, ak2

, i, ai) ∧ I
♯
1(x, i, v, k1, ak1

, i, ai)∧

I
♯
1(x, i, v, k1, ak1

, k2, ak2
) ∧ k1 < k2 < i =⇒ I

♯
2(x, i, ai, k1, ak1

, k2, ak2
)

(39)

I
♯
1(x, i, v, i, ai, k2, ak2

) ∧ i < k2 =⇒ I
♯
2(x, i, ai, i, ai, k2, ak2

) (40)

I
♯
1(x, i, v, k1, ak1

, i, ai) ∧ k1 < i =⇒ I
♯
2(x, i, ai, k1, ak1

, i, ai) (41)

This generalizes to N -ary abstraction by considering all orderings of i inside k1 < · · · < kN , and for
each ordering taking all sub-orderings of size N .

Definition 10 (Write statement, two indices k1 < k2). The abstraction of a[i] := v is:

I
♯
1(x, i, v, k1, ak1

, k2, ak2
) ∧ i 6= k1 ∧ i 6= k2 =⇒ I

♯
2(x, i, v, k1, ak1

, k2, ak2
) (42)

I
♯
1(x, i, v, i, ai, k2, ak2

) ∧ i < k2 =⇒ I
♯
2(x, i, v, i, v, k2, ak2

) (43)

I
♯
1(x, i, v, k1, ak1

, i, ai) ∧ k1 < i =⇒ I
♯
2(x, i, v, k1, ak1

, i, v) (44)

Lemma 5. The abstract forward semantics of the read statement (Def. 9) and of the write state-
ment(Def. 10) are sound w.r.t the Galois connection.

Example 7 (Selection sort). Selection sort finds the least element in a[d . . . h− 1] (using Prog. 5 as its
inner loop) and swaps it with a[d], then sorts a[d+ 1, h− 1]. At the end, a[d0 . . . h− 1] is sorted, where
d0 is the initial value of d.
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i n t d = d0 ;
while (d < h−1) {

i n t p = d , b = a [d ] , f = b , i = d+1;
while ( i < h ) { / / f i n d m i n i

i f ( a [ i ] < b ) {
b = a [ i ] ; p = i ;

}
i = i +1;

}
a [ d ] = b ; a [ p ] = f ; / / swap
d = d+1;

}

Using the rules for the read (Def. 9) and write (Def. 10) statements, we write the abstract forward
semantics of this program as a system of Horn clauses.

We wish to prove that, at the end, a[d0, h− 1] is sorted: at the exit node,

∀d0 ≤ k1 < k2 < h, a[k1] ≤ a[k2] (45)

This is expressed as the final condition:

d0 ≤ k < k2 < h ∧ exit(d0, h, k1, ak1
, k2, ak2

) =⇒ ak1
≤ ak2

(46)

By running a solver on these clauses, we show that the output of selection sort is truly sorted16 Let
us note that this proof relies on nontrivial invariants:17

∀k1, k2, d0 ≤ k1 < l ∧ k1 ≤ k2 < h =⇒ a[k1] ≤ a[k2] (47)

This invariant can be expressed in our Horn clauses as:

d0 ≤ k1 < d ∧ k1 < k2 < h ∧ outerloop(d0, d, h, k1, ak1
, k2, ak2

) =⇒ ak1
≤ ak2

(48)

If this invariant is added to the problem as an additional query to prove, solving time is reduced from
6min to 1 s. It may seem counter-intuitive that a solver takes less time to solve a problem with an
additional constraint; but this constraint expresses an invariant necessary to prove the solution, and thus
nudges the solver towards the solution.

Our approach is therefore flexible: if a solver fails to prove the desired property on its own, it is
possible to help it by providing partial invariants. This is a less tedious approach than having to provide
full invariants at every loop header, as common in assisted Floyd-Hoare proofs.

5 Sets and multisets

Our abstraction for maps may be used to abstract (multi)sets. Let us see for instance how to abstract
the multiset of elements of an array, so as to show that the output of a sorting algorithm is a permutation
of the input.

In Ex. 7, we showed how to prove that the output of selection sort is sorted. This is not enough
for functional correctness: we also have to prove that the output is a permutation of the input, or,
equivalently, that the multiset of elements in the output array is the same as that in the input array.

Let us remark that it is easy to keep track, in an auxiliary map, of the number #a(x) of elements of
value x in the array a[]. Only write accesses to a[] have an influence on #a: a write a[i] := v is replaced
by a sequence:

#a(a[i]) := #a(a[i])− 1; a[i] := v; #a(v) := #a(v) + 1 (49)

(that is, in addition to the array write, the count of elements for the value that gets overwritten is
decremented, and the count of elements for the new value is incremented).

This auxiliary map #a can itself be abstracted using our approach! Let us now see how to implement
this in our abstract forward semantics expressed using Horn clauses. We enrich our Galois connection
(Def. 1) as follows:

16In Ex. 8 we shall see how to prove that the multiset of elements in the output is the same as in the input.
17Nontrivial in the sense that a human user operating a Floyd-Hoare proof assistant typically does not come up with

them so easily.
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Definition 11. The concretization of I♯ ⊆ χ× (ι× β)× (β × N) is

γ#

(

I
♯
)

=
{

(x, a) | ∀i ∈ ι ∀v ∈ β
(

x, (i, a[i]), (v, card{j ∈ ι | a[j] = v})
)

∈ I
♯
}

(50)

where cardX denotes the number of elements in the set X .
The abstraction of I ⊆ χ×Array (ι, β) is

α# (I) =
{

(

x, (i, a[i]), (v, card{j ∈ ι | a[j] = v})
)

∣

∣

∣
x ∈ χ, i ∈ ι

}

(51)

Theorem 6. P (χ×Array (ι, β)) −−−−→←−−−−
α#

γ#

P (χ× (ι× β)× (β × N))

The Horn rules for array reads and for scalar operations are the same as those for our first abstraction,
except that we carry over the extra two components identically.

Definition 12 (Read statement). Same notations as Def. 2:

k 6= i ∧ I
♯
1

(

(x, i, v), (k, ak), (z, a#z)
)

∧

I
♯
1

(

(x, i, v), (i, ai), (z, a#z)
)

=⇒ I
♯
2

(

(x, i, ai), (k, ak), (z, a#z)
)

I
♯
1

(

(x, i, v), (i, ai), (z, a#z)
)

=⇒ I
♯
2

(

(x, i, ai), (i, ai), (z, a#z)
)

Lemma 7. The abstract forward semantics of the read statement (Def. 12) is a sound abstraction of the
concrete semantics given in Def. 2.

The abstraction of the write statement is more complicated (see the sequence of instructions in
Formula 49). To abstract a write a[i] := v between control points p1 and p2, we execute a read of the
old value from the cell abstraction of the array, decrement the number of cells with this value, execute
the write to the cell abstraction, and increment the number of cells with the new value.

Definition 13 (Write statement). With the same notations in Def. 3:

step translation

e:=a[i]; #a[e]--; kill(e)
ai 6= z ∧ I

♯
1

(

(x, i, v), (k, ak), (z, a#z)
)

∧ I
♯
1

(

(x, i, v), (i, ai), (z, a#z)
)

=⇒ I
♯
a

(

(x, i, v), (k, ak), (z, a#z)
)

I
♯
1

(

(x, i, v), (k, ak), (ai, a#z)
)

∧ I
♯
1

(

(x, i, v), (i, ai), (ai, a#z)
)

=⇒ I
♯
a

(

(x, i, v), (k, ak), (ai, a#z − 1)
)

#a[v]++ v 6= z ∧ I
♯
a

(

(x, i, v), (k, ak), (z, a#z)
)

=⇒ I
♯
b

(

(x, i, v), (k, ak), (z, a#z)
)

I
♯
a

(

(x, i, v), (k, ak), (v, a#z)
)

=⇒ I
♯

b

(

(x, i, v), (k, ak), (v, a#z + 1)
)

a[i]=v i 6= k ∧ I
♯
1

(

(x, i, v), (k, ak), (z, a#z)
)

=⇒ I
♯
2

(

(x, i, v), (k, ak), (z, a#z)
)

I
♯
1

(

(x, i, v), (i, ak), (z, a#z)
)

=⇒ I
♯
2

(

(x, i, v), (i, v), (z, a#z)
)

Lemma 8. The abstract forward semantics of the write statement (Def. 13) is a sound abstraction of
the concrete semantics given in Def. 3.

If we want to compare the multiset of the contents of an array a at the end of a procedure to its
contents at the beginning of the procedure, one needs to keep a copy of the old multiset. It is common
that the property sought is a relation between the number of occurrences #a(z) of an element z in the
output array a and its number of occurrences #a0(z) in the input array a0. In the above formulas, one
may therefore replace the pair (z, a#z) by (z, a#z, a

0
#z), with a0#z always propagated identically.

Example 8. Consider again selection sort (Program 7). We use the abstract semantics for read (Def. 12)
and write (Def. 13), with an additional component a0#z for tracking the original number of values z in
the array a.

We specify the final property as the query

exit(l0, h, k, ak, z, a#z, a
0
#z) =⇒ a#z = a0#z (52)

6 Experiments

Implementation We implemented our prototype vaphor in 2k lines of OCaml. vaphor takes as
input a mini-Java program (a variation of While with array accesses, and assertions) and produces
a Smtlib2 file18. The core analyzer implements the translation for one and two-dimensional arrays
described in Section 3 and Section 4, and also the direct translation toward a formula with array variables.

18http://smtlib.cs.uiowa.edu/
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Table 1: Comparison on the array benchmarks of [Dillig et al., 2010]. (Average) timing are in seconds, CPU
time. Abstraction with N = 1. “sat” means the property was proved, “unsat” that it could not be proved. “hints” means that
some invariants had to be manually supplied to the solver (e.g. even/odd conditions). A star means that we used another version
of the solver. Timeout was 5 mn unless otherwise noted. The machine has 32 i3-3110M cores, 64 GiB RAM, C/C++ solvers were
compiled with gcc 4.8.4, the JVM is OpenJDK 1.7.0-85.

Benchmark
Z3/PDR Z3/Spacer Eldarica

Comment
Res Time Res Time Res Time

Correct problems, “sat” expected
append sat 2.11 sat 0.85 sat 22.61
copy sat 4.66 sat 0.44 timeout(300s)
find sat 0.20 sat 0.14 sat 12.93
findnonnull sat 0.50 sat 0.34 sat 12.04
initcte sat 0.16 sat 0.26 sat 13.28
init2i sat 0.31 sat 0.16 sat 14.67
partialcopy sat 1.88 sat 0.34 timeout(300s)
reverse sat 40.70 sat 2.19 timeout(300s)
strcpy sat 0.92 sat 0.37 sat* 66.69
strlen sat 0.24 sat 0.22 sat 36.69
swapncopy sat 71.16 timeout(300s) timeout(300s)
memcpy sat 3.54 sat 0.39 timeout(300s)
initeven sat 1.32 sat 0.71 timeout(300s) “hints”
mergeinterleave sat 39.49 sat 4.61 timeout 322.39 “hints”

Incorrect problems, “unsat” expected
copyodd buggy unsat 0.08 unsat 0.04 unsat 7.42
initeven buggy unsat 0.06 unsat 0.06 unsat 6.28
reverse buggy unsat 1.88 unsat 1.28 unsat 58.96
swapncopy buggy unsat 3.13 unsat 0.74 unsat 27.54
mergeinterleave buggy unsat 1.16 unsat 0.56 unsat 31.22

Table 2: Other array-manipulating programs, including various sorting algorithms. a star means that we used
another version of the solver, R1 means random seed=1

Benchmark N
Z3/PDR Z3/Spacer Eldarica

Comment
Res Time Res Time Res Time

bin search check 1 sat 0.71 sat 0.34 Crash
find mini check 1 sat 4.22 sat 0.82 sat 110.58
revrefill1D check buggy 1 unsat 0.03 unsat 0.07 unsat 9.21
array init 2D 1 sat 0.46 sat 0.22 sat 12.76
array sort 2D 1 sat 0.78 sat 0.30 sat 26.68
selection sort (sortedness) 2 sat* 99.04 timeout(300s) timeout(300s)
selection sort (sortedness) 2 unsat 83 sat 48 timeout 334 manual translation
selection sort (permutation) 1 timeout 600 sat 9.24 timeout 336 manual translation
bubble sort simplified 2 sat 5.98 sat 2.77 sat 158.70
insertion sort 2 sat(R1) 53.83 timeout(300s) timeout(300s)

Experiments We have tested our analyzer on several examples from the literature, including the array
benchmark proposed in [Dillig et al., 2010] also used in [Bjørner et al., 2013] (Table 1); and other classical
array algorithms including selection sort, bubble sort and insertion sort (Table 2). We compared our
approach to existing Horn clause solvers capable of dealing with arrays. All these files are provided as
supplementary material.

Limitations Our tool does not currently implement the reasoning over array contents (multiset of
values). Experiments for these were thus conducted by manually applying the transformations described
in this article in order to obtain a system of Horn clauses. For this reason, because applying rules manually
is tedious and error-prone, the only sorting algorithm for which we have checked that the multiset of the
output is equal to the multiset of the inputs is selection sort. We are however confident that the two
other algorithms would go through, given that they use similar or simpler swapping structures.

Some examples from Dillig et al. [2010] involve invariants with even/odd constraints. The Horn
solvers we tried do not seem to be able to infer invariants involving divisibility predicates unless these
predicates were given by the user. For these cases we added these even/odd properties as additional
invariants to prove.

Efficiency caveats Our tool does not currently simplify the system of Horn clauses that it produces.
We have observed that, in some cases, manually simplifying the clauses (removing useless variables,
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inlining single antecedents by substitution. . . ) dramatically reduces solving times. Also, precomputing
some simple scalar invariants on the Horn clauses (e.g. 0 ≤ k < i for a loop from k to i−1) and asserting
them as assertions to prove in the Horn system sometimes reduces solving time.

We have observed that the execution time of a Horn solver may dramatically change depending on
minor changes in the input, pseudo-random number generator seed, or version of the solver. For instance,
the same version of Z3 solves the same system of Horn clauses (proving the correctness of selection sort)
in 3m 40s or 3h 52m depending on whether the random seed is 1 or 0.19

Furthermore, we have run into numerous problems with solvers, including one example that, on
successive versions of the same solver, produced “sat” then “unknown” and finally “unsat”, as well as
crashes.

For all these reasons, we believe that solving times should not be regarded too closely. The purpose
of our experimental evaluation is not to benchmark solvers relative to each other, but to show that our
abstraction, even though it is incomplete, is powerful enough to lead to fully automated proofs of func-
tional correctness of nontrivial array manipulations, including sorting algorithms. Tools for solving Horn
clauses are still in their infancy and we thus expect performance and reliability to increase dramatically.

7 Related work

7.1 Cell-based abstractions

Smashing The simplest abstraction for an array is to “smash” all cells into a single one — this amounts
to removing the k component from our first Galois connection (Def. 1). The weakness of that approach
is that all writes are treated as “may writes” or weak updates : a[i] := x adds the value x to the values
possibly found in the array a, but there is no way to remove any value from that set. Such an approach
thus cannot treat initialization loops (e.g. Program 1) precisely.

Exploding At the other extreme, for an array of statically known finite length N (which is common
in embedded safety-critical software), one can distinguish all cells a[0], . . . , a[N − 1] and treat them as
separate variables a0, . . . , aN−1. This is a good solution when N is small, but a terrible one when N is
large: i) many analyses scale poorly with the number of active variables ii) an initialization loop will
have to be unrolled N times to show it initializes all cells. Both smashing and exploding have been used
with success in the Astrée static analyzer [Blanchet et al., 2002, 2003].

Slices More sophisticated analyses [Gopan et al., 2005, Halbwachs and Péron, 2008, Péron, 2010, Perrelle,
2013, Cousot et al., 2011] distinguish slices or segments in the array; their boundaries depend on the
index variables. For instance, in array initialization (Program 1), one slice is the part already initialized
(indices < i), the other the part yet to be initialized (indices ≥ i). In the simplest case, each slice is
“smashed” into a single value, but more refined analyses express relationships between slices. Since the
slices are segments [a, b] of indices, these analyses generalize poorly to multidimensional arrays. Also,
there is often a combinatorial explosion in analyzing how array slices may or may not overlap.

Cornish et al. [2014] similarly apply a program-to-program translation over the LLVM intermediate
representation, followed by a scalar analysis.

To our best knowledge, all these approaches factor through our Galois connections −−−→←−−−α
γ

, −−−−→←−−−−
α2<

γ2<

or

combinations thereof: that is, their abstraction can be expressed as a composition of our abstraction and
further abstraction — even though our implementation of the abstract transfer functions is completely
different from theirs. Our approach, however, separates the concerns of i) abstracting array problems
to array-less problems ii) abstracting the relationships between different cells and indices.

Fluid updates Dillig et al. [2010] extend the slice approach by introducing “fluid updates” to overcome
the dichotomy between strong and weak updates. They specifically exclude sortedness from the kind of
properties they can study.

19We suspect that different choices in SAT lead to different proofs of unsatisfiability, thus different interpolants and
different refinements in the PDR algorithm.
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Array removal by program transformation Monniaux and Alberti [2015] analyze array programs
by transforming them into array-free programs, which are sent to a back-end analyzer. The resulting
invariants contain extra index variables, which can be universally quantified away, similar to the Skolem
constants of earlier invariant inference approaches [Flanagan and Qadeer, 2002, Lahiri and Bryant, 2004].
We have explained (p. 3) why these approaches are less precise than ours.

Another difficulty they obviously faced was the limitations of the back-end solvers that they could
use. The integer acceleration engine Flata severely limits the kind of transition relations that can
be considered and scales poorly. The abstract interpreter ConcurInterproc can infer disjunctive
properties (necessary to distinguish two slices in an array) only if given case splits using observer Boolean
variables; but the cost increases greatly (exponentially, in the worst case) with the number of such
variables.

7.2 Instantiation in Horn clauses

Bjørner et al. [2013] propose an approach for solving universally quantified Horn clauses: a Horn clause
(∀x P (x, y))→ Q(y), not handled by current solvers, is abstracted by P (x1(y))∧ · · · ∧P (xn(y))→ Q(y)
where the xi are heuristically chosen instantiations. Our approach can be construed as an application of
their approach to the axioms of arrays, with specific instantiation heuristics.

We improve on their interesting contribution in several ways. i) Instead of presenting our approach
as a heuristic instantiation scheme, we show that it corresponds to specific Galois connections, which
clarifies what abstraction is done and what kind of properties can or cannot be represented. ii) We
handle sortedness properties. None of their examples deal with sortedness and it is unclear how their
instantiation heuristics would behave on them. iii) We handle multisets (and thus permutation prop-
erties) by reduction to arrays. It is possible that our approach in this respect can be described as an
instantiation scheme over the axioms for arrays (including the multiset of array contents), but, again, it
is unclear how their instantiation heuristics would behave in this respect.

Their approach has not been implemented except in private research prototypes; we could not run a
comparison.20

7.3 Predicate abstraction, CEGAR and array interpolants

There exist a variety of approaches based on counterexample-guided abstraction refinement using Craig
interpolants [McMillan, 2005, 2006, 2011]. In a nutshell, Craig interpolants are predicates suitable for
proving, using Hoare triples, that some unfolding of the execution cannot lead to an error state. They
are typically processed from the proof of unsatisfiability of the unfolding produced by an SMT solver.

Generating good interpolants from purely arithmetic problems is already a difficult problem, and
generating good universally quantified interpolants on array properties has proved even more challenging
[Jhala and McMillan, 2007, Alberti et al., 2014, Alberti and Monniaux, 2015].

7.4 Acceleration

Bozga et al. [2009] have proposed a method for accelerating certain transition relations involving actions
over arrays, outputting the transitive closure in the form of a counter automaton. Translating the counter
automaton into a first-order formula expressing the array properties however results in a loss of precision.

8 Conclusion and perspectives

We have proposed a generic approach to abstract programs and universal properties over arrays (or
arbitrary maps) by syntactic transformation into a system of Horn clauses without arrays, which is then
sent to a solver. This transformation is powerful enough to prove, fully automatically and within minutes,
that the output of selection sort is sorted and is a permutation of the input.

While some solvers have difficulties with the kind of Horn systems that we generate, some (e.g.
Spacer) are capable of solving them quite well. We have used the stock version of the solvers, without

20Their approach is not implemented in Z3 (personal communication from N. Bjørner).
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tuning or help from their designers, thus higher performance is to be expected in the future. If the solver
cannot find the invariants on its own, it can be helped by partial invariants from the user.

As experiments show, our approach significantly improves on the procedures currently in array-
capable Horn solvers, as well as earlier approaches for inferring quantified array invariants: they typically
cannot prove sorting algorithms.

Our rules are for forward analysis: a solution to our Horn clauses defines a super-set of all states
reachable from program initialization, and the desired property is proved if this set is included in the
property. We intend to investigate backward analysis : find a super-set of the set of all states reachable
from a property violation, not intersecting the initial states.

One advantage of some of approaches (the abstract interpretation ones from Sec. 7.1 and the trans-
formation from [Monniaux and Alberti, 2015]) is that they are capable of inferring what a program does,
or at least a meaningful abstraction of it (e.g. “at the end of this program all cells in the array a contains
42”) as opposed to merely proving a property supplied by the user. Our approach can achieve this as
well, provided it is used with a Horn clause solver that provides interesting solutions without need of
a query. This Horn clause solver should however be capable of generating disjunctive properties (e.g.
(k < i∧ak = 0)∨(k ≥ i∧ak = 42)); thus a simple approach by abstract interpretation of the Horn clauses
in, say, a sub-class of the convex polyhedra, will not do. We know of no such Horn solver; designing one
is a research challenge. Maybe certain partitioning approaches used in sequential program verification
[Rival and Mauborgne, 2007, Henry et al., 2012] may be transposed to Horn clauses.

We have considered simple programs operating over arrays or maps, as opposed to a real-life program-
ming language with objects, references or, horror, pointer arithmetic. Yet, our approach can be adapted
to such languages, following methods that view memory as arrays [Bornat, 2000], whose disjointness is
proved by typing (e.g. two values of different types can never be aliased, two fields of different types can
never be aliased) or by alias analysis.

References

F. Alberti and D. Monniaux. Polyhedra to the rescue of array interpolants. In Symposium on applied com-
puting (Software Verification & Testing), pages 1745–1750. ACM, 2015. doi: 10.1145/2695664.2695784.

F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. An extension of lazy abstraction
with interpolation for programs with arrays. Formal Methods in Systems Design, 45(1):63–109, 2014.
doi: 10.1007/s10703-014-0209-9.

N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified Horn clauses. In Static
Analysis Symposium (SAS), pages 105–125, 2013. doi: 10.1145/2695664.2695784.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
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static analyzer for large safety-critical software. In Programming language design and implementation
(PLDI), pages 196–207. ACM, 2003. doi: 10.1145/781131.781153.

Richard Bornat. Proving pointer programs in Hoare logic. In Roland Carl Backhouse and José Nuno
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