Cell morphing: from array programs to array-free Horn clauses - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Cell morphing: from array programs to array-free Horn clauses

Résumé

Automatically verifying safety properties of programs is hard. Many approaches exist for verifying programs operating on Boolean and integer values (e.g. abstract interpretation, counterexample-guided abstraction refinement using interpolants), but transposing them to array properties has been fraught with difficulties. Our work addresses that issue with a powerful and flexible abstraction that morphes concrete array cells into a finite set of abstract ones. This abstraction is parametric both in precision and in the back-end analysis used. From our programs with arrays, we generate nonlinear Horn clauses over scalar variables only, in a common format with clear and unambiguous logical semantics, for which there exist several solvers. We thus avoid the use of solvers operating over arrays, which are still very immature. Experiments with our prototype VAPHOR show that this approach can prove automatically and without user annotations the functional correctness of several classical examples, including \emph{selection sort}, \emph{bubble sort}, \emph{insertion sort}, as well as examples from literature on array analysis.
Fichier principal
Vignette du fichier
arrays_Horn_articleHAL.pdf (532.87 Ko) Télécharger le fichier
SAS16_MonniauxGonnord.zip (20.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre
Origine Fichiers produits par l'(les) auteur(s)
Commentaire Benchmark files used for Table 1 and Table 2
Loading...

Dates et versions

hal-01206882 , version 1 (29-09-2015)
hal-01206882 , version 2 (06-04-2016)
hal-01206882 , version 3 (13-08-2016)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

David Monniaux, Laure Gonnord. Cell morphing: from array programs to array-free Horn clauses. 23rd Static Analysis Symposium (SAS 2016), Sep 2016, Edimbourg, United Kingdom. pp.361-382, ⟨10.1007/978-3-662-53413-7_18⟩. ⟨hal-01206882v3⟩
888 Consultations
1233 Téléchargements

Altmetric

Partager

More