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Figure 1: Panorama Weaving on a challenging data-set (Nation, 12848 x 3821, 9 images) with moving objects during acquisition, registration
issues and varying exposure. Our initial automatic solution (bottom, left) was computed in 4.6 seconds at full resolution for a result with
lower seam energy than Graph Cuts. Additionally, we present a system for the interactive user exploration of the seam solution space (bottom,
right), easily enabling: (a) the resolution of moving objects, (b) the hiding of registration artifacts (split pole) in low contrast areas (scooter)
or (c) the fix of semantic notions for which automatic decisions can be unsatisfactory (stoplight colors are inconsistent after the automatic
solve). The user editing session took only a few minutes. (top) the final, color-corrected panorama.

Abstract

A fundamental step in stitching several pictures to form a larger mo-
saic is the computation of boundary seams that minimize the visual
artifacts in the transition between images. Current seam computa-
tion algorithms use optimization methods that may be slow, sequen-
tial, memory intensive, and prone to finding suboptimal solutions
related to local minima of the chosen energy function. Moreover,
even when these techniques perform well, their solution may not
be perceptually ideal (or even good). Such an inflexible approach
does not allow the possibility of user-based improvement. This pa-
per introduces the Panorama Weaving technique for seam creation
and editing in an image mosaic. First, Panorama Weaving provides
a procedure to create boundaries for panoramas that is fast, has low
memory requirements and is easy to parallelize. This technique of-
ten produces seams with lower energy than the competing global
technique. Second, it provides the first interactive technique for the
exploration of the seam solution space. This powerful editing ca-
pability allows the user to automatically extract energy minimizing
seams given a sparse set of constraints. With a variety of empirical
results, we show how Panorama Weaving allows the computation
and editing of a wide range of digital panoramas including unstruc-
tured configurations.
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1 Introduction

The composition of panoramas from a collection of smaller indi-
vidual images has recently become a popular application in digital
image processing. With the introduction of low-cost, robotic tri-
pod heads along with the improvement of image registration tech-
niques, panoramas are becoming larger and more complex. In the
past, these image collections were captured in one sweeping motion
(i.e. with image overlaps in only one dimension as in Figure 2). To-
day’s images are often collections of multiple rows and columns
such as images in Figure 1 or in more unstructured configurations
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Figure 2: (a, e) Two examples (Canoe: 6842 x 2853, 2 images and
Lake Path: 4459 x 4816, 2 images) of non-desirable, yet exactly op-
timal seams (unique pairwise overlaps, pixel difference energy). (b,
f) A zoom of visual artifacts caused by this optimal seam. (c, g) The
pixel labeling. (d, h) The result produced by Adobe PhotoshopTM.
Images courtesy of City Escapes Nature Photography.

such as images in Figure 21. The fully composited panoramic im-
age can range from a few megapixels to many gigapixels in size.
Consequently, more sophisticated panorama processing techniques
continue to be developed to account for their more complex config-
urations and larger sizes.

After the initial registration, the panorama’s individual images are
blended to give the illusion of a single seamless image. As a usual
first step, a boundary between images must be computed as input
for a color correction technique such as gradient domain blend-
ing [Pérez et al. 2003; Levin et al. 2004]. These boundaries are
often called seams. Using a global optimization technique, these
seams can be computed to minimize visual artifacts due to transi-
tion between images. This is typically a pixel-based energy func-
tion such as color or color-gradient variations across the boundary.
An important property inherent in these techniques is that they pro-
duce a consistent labeling (or seam network) for the mosaic. We
use the term consistent to denote that every pixel in the mosaic
receives only a single label and the boundaries produced between
images are computed on an energy function from the proper labels.

Currently, the most commonly used technique for global seam
computation in a panorama is the Graph Cuts algorithm [Boykov
et al. 2001; Boykov and Kolmogorov 2004; Kolmogorov and Zabih
2004]. This is a popular and robust computer vision technique that
has been adapted [Kwatra et al. 2003; Agarwala et al. 2004] to com-
pute the boundary between a collection of images. While this tech-
nique has been used with good success for a variety of panoramic
or similar graphics applications [Kwatra et al. 2003; Agarwala et al.
2004; Agarwala et al. 2005; Agarwala et al. 2006; Agarwala 2007;
Kopf et al. 2007; Kazhdan and Hoppe 2008; Correa and Ma 2010;
Kazhdan et al. 2010], it can be problematic due to its high compu-
tational cost and memory requirements. Moreover, Graph Cuts ap-
plied to digital panoramas is typically a serial operation. Since com-
puting the globally optimal boundaries between images is known to
be NP-hard when the panorama is composed of more than a collec-
tion of unique pairwise overlaps [Boykov et al. 2001], Graph Cuts
aims to efficiently approximate the optimal solution and can there-
fore fall into local minima of the solution space.

To overcome these types of limitations, we have designed a new
approach based on the following observations:

A minimal energy seam does not necessarily give visually pleas-
ing results. In Figure 2, we provide two examples of panoramas
with an exact pairwise optimal energy boundary based on pixel dif-
ference across the seam. This should be sensitive to dynamic, mov-

Figure 3: Even when seams are visually acceptable, moving ele-
ments in the scene may cause multiple visually valid seam config-
urations. (top) A 4 image panorama (Crosswalk: 4705 x 3543, 4
images) with 3 valid configurations. (bottom) A 2 image panorama
(Apollo-Aldrin: 3432 x 2297, 2 images) with 2 valid configurations.
Images courtesy of NASA.

ing objects which appear in the overlap. As you can see, neither
seam would be considered ideal by a user since they cut through
moving objects. Additionally, to further argue the importance of
this observation, we also show very similar seams computed by
Adobe PhotoshopTM, a widely used image editing application.

There can be more than one valid seam solution. Even if the
initial seam solution is visually acceptable to the user, there may
be a large number of additional, valid solutions. Some of these
alternative seams may be preferable and this determination is com-
pletely subjective. For example, a user may have wished that the
high energy in a seam occurred in an area where it is less likely
to be noticed such as the grassy area or the water in the images in
Figure 2. Given moving elements in a scene, such elements may
occur entirely within the area of an overlap. Therefore there can be
acceptable seams where the element is included and ones where it
is not. We refer the reader to Figure 3 for examples.

An interactive technique is necessary and attainable. Given the
subjective nature of the image boundaries and the possibility of
techniques falling into bad local minima, a user must be interjected
into the seam boundary problem. Currently, finding panorama
boundaries with Graph Cuts is an offline process with only one so-
lution presented to the user. The only existing alternative is the
manual editing, pixel by pixel, of the individual image boundaries.
This is a time-consuming and tedious process where the user relies
on perception alone to determine whether the manual seam is ac-
ceptable. Applications such as PTguiTM [PTgui 2012] help acceler-
ate this process although complex scenes will still require laborious
editing. Therefore, a guided interactive technique for image bound-
aries is necessary for panorama processing. This technique should
allow users to include or remove dynamic elements, move an im-
age seam out of possible local minima into a lower energy state,
move the seam into a higher energy state (but one with more ac-
ceptable visual coherency) or hide high energy seams in locations
where they feel it is less noticeable (Figure 1 (b)). During these
edits, the user should be provided the locally optimal seams given
these new constraints.

A solution based on pairwise boundaries can achieve good re-
sults for panoramas giving a fast, highly parallel, and light sys-
tem. As we will describe in Section 2, computing pairwise-only
optimal boundaries is both fast and exact (i.e. is guaranteed to find
the global minimum). It is then of no surprise that these bound-
aries have been used often in past work for pan- or tilt-only panora-
mas [Shum and Szeliski 1998; Davis 1998; Szeliski 1996; Uytten-
daele et al. 2001]. Although it was previously thought to not gener-



alize beyond this case. There has been no technique to use pairwise
boundaries in panoramas with more complex structure, save for ef-
forts to combine them via a distance metric [Gracias et al. 2009]
or sequentially [Efros and Freeman 2001; Cohen et al. 2003]. In
this work, we not only provide a global solution based on pairwise
boundaries, but also show that this solution often produces lower
energy seams than Graph Cuts for panoramas. Given a technique to
combine these pairwise boundaries into a global, consistent seam
network, each disjoint seam can be computed separately and triv-
ially in parallel. Moreover, the solution produced for each is typ-
ically independent and therefore memory and resources for each
can be allocated and released as needed. In addition, the solution
domain is only the overlap between pairs of images in contrast to
some previous applications of Graph Cuts for panoramas [Kwatra
et al. 2003; Agarwala et al. 2004] which often consider the entire
composite image as the solution domain. All of these properties
give the potential for a very fast and light system.

In this paper, we introduce a new image boundary technique:
Panorama Weaving. First, Panorama Weaving provides an auto-
matic technique to create approximate optimal boundaries that is
fast, has low memory requirements and is easy to parallelize. This
initial seam configuration often produces lower energy seams than
Graph Cuts for panoramas in only a few seconds. Second, it pro-
vides the first interactive technique to enable the exploration of the
seam solution space. This gives the end-user a powerful editing
system for panorama seams. In particular, the contributions of this
work on a technical level are:

• An approach to merge independently computed pairwise
boundaries into a global, consistent seam network that does
not cascade to a global calculation.

• An automatic seam creation algorithm for panoramas which
is fast and highly parallel.

• The first system that allows interactive editing of seams in
panoramas. This system guarantees minimal user input thanks
to an efficient exploration of the solution space.

• An intuitive mesh representation based on the region adja-
cency graph that encodes seam and image relations. This ad-
jacency mesh provides a way to guarantee the global consis-
tency of the seam network during interactions and also en-
ables a robust editing of the network’s topology.

1.1 Related Work

After registration, image mosaics contain areas of duplicated pixel
values where individual images overlap. Thus, determining which
picture provides the color for a pixel location is an important next
step. The simplest approach is an alpha-blend of the overlap ar-
eas to achieve a smooth transition between images. Szeliski [2006]
provides an excellent introduction to this and other blending tech-
niques. Such an approach does not work well in the presence of dy-
namic elements which move between captures, artifacts from poor
registration, or varying exposures across images. Often, it is prefer-
able to compute a ”hard” boundary, or seam, between the images
as a final step, or as the preprocess for a technique such as gradient
domain blending [Pérez et al. 2003; Levin et al. 2004]. Techniques
exists to compute these seams based purely on distance [Wood et al.
1997; Peleg et al. 2000], but like blending these will perform poorly
when the scene contains moving elements. A more sophisticated
approach computes boundaries between images through an energy
function minimization to produce a nice transition between the mo-
saic images.

Pairwise Boundaries. Some of the seminal works in digital
panoramas assume that an image collection is acquired in a sin-

gle sweep of the scene (either pan, tilt or a combination of the
two). In such panoramas, only pairwise overlaps of images need
be considered [Milgram 1975; Milgram 1977; Szeliski 1996; Shum
and Szeliski 1998; Davis 1998; Uyttendaele et al. 2001]. The
pairwise boundaries which have globally minimal energy can be
computed quickly and exactly using a min-cut or min-path algo-
rithm. There is an intuitive and proven duality between min-cut and
single-source/single-destination min-path [Hassin 1981]. These
pairwise techniques were thought to not be general enough to han-
dle the many configurations possible in modern panoramas. Re-
cent work [Gracias et al. 2009] has dealt with the combination of
these seams for more complex panoramas, although the seam com-
binations are still based on an image distance metric. Other recent
work [Efros and Freeman 2001], combined these separate seams
for the purposes of texture synthesis by adding the seams together
sequentially. For their work, this was sufficient to provide good re-
sults for textures. As we will describe in Section 3, the combination
and intersection of these seams in a digital panorama can be more
complex and therefore a more expressive combination is necessary.
In addition, interaction was not considered as a necessary function-
ality in these works. In this paper, we present a novel technique to
combine these disjoint seams into a global panorama seam network
and allow for manual user interaction.

Graph Cuts. The Graph Cuts technique [Boykov et al. 2001;
Boykov and Kolmogorov 2004] computes a k-labeling of a graph,
typically an image, to minimize an energy function on the domain.
An algorithm that guarantees to find the global minimum is consid-
ered to be NP-hard [Boykov et al. 2001] and therefore Graph Cuts
was designed to efficiently compute a good approximation. Graph
Cuts has been shown to give good results for a variety of energy
functions [Kolmogorov and Zabih 2004]. Thus, it is of no surprise
given this versatility that it has been shown to adapt to the image
mosaic and panorama boundary problem [Kwatra et al. 2003; Agar-
wala et al. 2004]. However, Graph Cuts is both a computationally
expensive and memory intensive technique. Given these require-
ments, there has been work on accelerating the Graph Cuts process.
For instance, adapting the technique to run on the GPU [Vineet and
Narayanan 2008], in parallel [Liu and Sun 2010], or in parallel-
distributed [Delong and Boykov 2008] environments. Building a
hierarchy for the Graph Cuts computation [Lombaert et al. 2005;
Agarwala et al. 2005] has shown to be popular due to its reduction
of memory and computation costs. For panoramas, this strategy has
only been shown to provide good results for a hierarchy of 2-3 lev-
els [Agarwala et al. 2005]. This can lead to problems as panoramas
increase in size. There has also been work on bringing Graph Cuts
into an interactive setting [Boykov and Jolly 2001; Rother et al.
2004; Li et al. 2004; Freedman and Zhang 2005; Nagahashi et al.
2007] although these works have only focused on user guided im-
age segmentation. Our work is the first technique to allow interac-
tive editing of panorama boundaries.

2 Optimal Image Boundaries

In this section, we discuss the technical background for boundary
calculations of both pairwise and many-image panoramas.

Optimal Boundaries. Given a collection of n panorama images
I1, I2..In and the panorama P , the image boundary problem can
be thought of as finding a discrete labeling L(p) ∈ (1...n) for all
panorama pixels p ∈ P which minimizes the transition between
each image. If L(p) = k, this indicates that the pixel value for
location p in the panorama comes from image Ik. This transition
can be defined by an energy on the piecewise smoothness Es(p, q)
of the labeling of neighboring elements p, q ∈ N , where N is
the set of all neighboring pixels. We would like to minimize the
sum of the energy of all neighbors, E. For the panorama boundary
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Figure 4: The 4-neighborhood min-cut solution (left) with its
dual min-path solution (right). The min-cut labeling is colored in
red/blue and the min-path solution is highlighted in red.

problem, this energy is typically [Agarwala et al. 2004] defined as:

E(L) =
∑

p,q∈N

Es(p, q)

If minimizing the transition in pixel values:

Es(p, q) = ‖IL(p)(p)− IL(q)(p)‖+ ‖IL(p)(q)− IL(q)(q)‖

or if minimizing the transition in the gradient:

Es(p, q) = ‖∇IL(p)(p)−∇IL(q)(p)‖+‖∇IL(p)(q)−∇IL(q)(q)‖

where L(p) and L(q) are the labeling of the two pixels. Notice that
L(p) = L(q) implies Es(p, q) = 0. Minimizing the change in
pixel value works well in the context of poor registration or moving
objects in the scene, while minimizing the gradient produces a nice
input for techniques such as gradient domain blending. In addition,
techniques can use a linear combination of the two energies.

Min-cut and Min-path. When computing the optimal boundary
between two images, the binary labeling is equivalent to computing
a min-cut of a graph whose nodes are the pixels and arcs connect a
pixel to its neighbors. The arc weights are then the energy function
being minimized, see Figure 4 (a). If we consider a 4-neighborhood
and the dual-graph of the planar min-cut graph, as we show in Fig-
ure 4 (b), we can see that there is an equivalent min-path to the
min-cut solution on the dual-graph. This has been shown to be true
for all single source, single destination paths on planar graphs [Has-
sin 1981]. The approaches are equivalent in the sense that the final
solution of a min-cut calculation defines the pixel labeling L(p)
while the min-path solution defines the path that separates pixels of
different labeling.

Graph Cuts. This technique provides good solutions to pixel label-
ing problems for more than two images. The intricacies of the al-
gorithm [Boykov et al. 2001; Boykov and Kolmogorov 2004; Kol-
mogorov and Zabih 2004] are beyond the scope of this paper, but
at a high level, Graph Cuts finds a labeling L which minimizes an
energy function E′(L). This function consists of term Es(p, q)
augmented with energy associated with individual pixel locations
Ed(p).

E′(L) =
∑
p

Ed(p) +
∑

p,q∈N

Es(p, q)

For the panorama boundary problem, this data energy Ed is typ-
ically [Agarwala et al. 2004] defined as being 0 if location p is a
valid pixel of IL(p). Otherwise, it has infinite energy.

3 Weaving

This section provides the technical details of Panorama Weaving
that enable our new, user friendly, approach for creating and modi-
fying seams in a panorama. In particular, we first discuss how pair-
wise seam computations allow new interactions, where a user can
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Figure 5: Overview of Panorama Weaving (Sec. 3 and 4). The
initial computation is given by Steps 1-4, after which the solution is
ready and presented to the user. Interactions, Steps 5 and 6, use the
tree update in Step 4 as a background process. Additionally, Step 6
updates the dual adjacency mesh.
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Figure 6: (a) Given a simple overlap configuration a seam can be
thought of as a path s that connects pairs of boundary intersections
u and v. (b) Even in a more complicated case, a valid seam con-
figuration is still computable by taking pairs of intersections with a
consistent winding about an image boundary. Note that there is an
alternate configuration denoted in gray.

interactively modify seams via control points. Next, we show how
to combine the pairwise editing computations to build a globally
consistent seam network while maintaining interactivity. A simpli-
fied diagram of the steps of the technique is given in Figure 5.

3.1 Pairwise Seams and Seam Trees

Figure 6 illustrates two example pairwise image seams. In the sim-
plest and most common case of Figure 6 (a) the boundary lines
of the two images intersect at two points u and v connected by
the seam s. The other simple, but more general case in Figure 6
(b) shows two overlapping images, where the intersection of their
boundary lines results in an even number of intersection points. A
set of seams can be built by connecting pairs of points with a con-
sistent winding. The seams computed in this way define a complete
partition of the space between the two images. In non-simple cases,
i.e. with co-linear boundary intervals, we can achieve the same re-
sult by choosing one representative point (possibly optimized to
minimize an energy). Notice that the case in Figure 6 (b) produces
more than a single set of valid seams, denoted by the purple and
grey dashed lines. For clarity in the discussion, we will focus on
the case in Figure 6 (a) since we can treat each seam of the case in
Figure 6 (b) as independent.

Assuming the dual-path energy representation in Figure 4 (b), a
seam is a path that connects the intersection points (u, v). Com-
puting the minimal path of a given energy function will give an
optimal seam s, which can be computed efficiently with Dijkstra’s
algorithm [Dijkstra 1959]. With minimal additional overhead, we
can compute both min-path trees Tu and Tv from u and v (sin-
gle source all paths). These trees provide all minimal seams which
originate from either endpoint and define the dual seam tree of our
technique. Given a point in the image overlap, we can find its min-
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Figure 7: Given two min-path trees associated with a seam’s end-
points (u,v), a new seam that passes through any point in the over-
lap (yellow) is a simple linear walk up each tree.

Figure 8: (left) A solution to the panorama boundary problem can
be considered as a network of pairwise boundaries between images.
(right) Our adjacency mesh representation is designed with this
property in mind. Nodes correspond to panorama images, edges
correspond to boundaries and branching points (intersections in
red) of pairwise seams correspond to faces of the mesh. (bottom)
Graph Cuts optimization can provide more complex pixel assign-
ments where ”islands” of pixels assigned to one image can be com-
pletely bounded by another image. Our approach simplifies the so-
lution by removing such islands.

imal paths to u and v with a linear walk up the trees Tu and Tv, as
shown in Figure 7. If this point is a user constraint, the union of the
two minimal paths forms a new constrained optimal seam. Due to
the simplicity of the lookup, this path computation is fast enough
to achieve interactive rates even for large image overlaps. Note that
two min-paths on the same energy function are guaranteed not to
cross. Although, since each dual-seam tree is computed indepen-
dently, the minimal paths from a constraint (to u and v) can cross.
In particular, if the trees computed by Dijkstra’s algorithm are de-
pendent on the order in which the edges are calculated and there are
multiple paths in an overlap that share the same energy, the paths on
each tree to a user constraint can cross. To avoid this problem we
enforce an ordering based on the edge index and we are guaranteed
to achieve non-crossing solutions.

Moving an endpoint is also a simple walk up its partner endpoint’s
seam tree. Therefore a user can change an endpoint location at-will,
interactively. Although after the movement, the shifted endpoint’s
seam tree is no longer valid since it was based on a previous loca-
tion. If future interactions are desired, the tree must be recomputed.
This can be computed as a background process after the users fin-
ish their initial interaction without any loss of responsiveness to the
system.

3.2 From Pairwise to Global Seams

To avoid incurring the cost associated with the solution of a global
optimization, we build the panorama as a proper collection of pair-

Figure 9: (left) A 3 overlap adjacency mesh representation. (mid-
dle) A 4 overlap initial quadrilateral adjacency mesh with its two
valid mesh subdivisions. (right) A 5 overlap pentagon adjacency
mesh with an example subdivision.

wise seams. This is based on the observation, illustrated in Figure 8
(top left), that the label assignment in a Graph Cut optimization
mostly forms a simple collection of regions partitioned by pairwise
image seams (denoted in the picture by the double-arrows).

Our technique is designed with this property in mind and indepen-
dently computes each seam constrained by the pairwise intersec-
tions called branching points. These are colored in red in Figure 8
(top-right).

Note that the solution of a Graph Cuts optimization can provide
more complex pixel assignments, where ”islands” of pixels as-
signed to one image can be completely bounded by another image,
as shown in Figure 8 (bottom). Obviously, our approach simpli-
fies the solution by removing such islands and makes each region
simply connected. We have checked how the energy optimized by
our technique would change with this assumption (see Section 5).
In all cases we have noticed that the energy of the seams produced
by our system remains in the same order of magnitude as Graph
Cuts, actually being reduced in all cases but one. Limitations on
this assumption are detailed in Section 6.

3.2.1 The Dual Adjacency Mesh

To construct a seam network, our computations are driven by an
abstract structure that we call the dual adjacency mesh. We draw
the inspiration for our adjacency mesh representation from the tra-
ditional region adjacency graph used in computer vision, as well as
the regions of difference (ROD) graphs of Uyttendaele et al [2001].
In Figure 8 (top right and bottom), we have the adjacency graph
for a global, Graph Cuts computation. This graph can be consid-
ered the dual to the seam network: each node corresponds to an
image in the panorama, whereas each edge describes an overlap
relation between images. Edges are then orthogonal to the seam
they represent. If we consider this graph as having the structure
of a mesh, the dual of the panorama branching points are the faces
of this mesh representation. In Figure 8 (top right), the branching
points are highlighted in red. Seams which exit this mesh represen-
tation correspond to pairwise overlaps on the panorama boundary.
These are illustrated in Figure 8 (top right) with a single yellow
endpoint. Connecting the branching points on adjacent faces in the
mesh and/or the external endpoints gives a global seam network of
pairwise image boundaries.

In addition to the branching points in the seam network, the faces
of the adjacency mesh are also an intuitive representation for over-
lap clusters. Specifically, clusters are groups of overlaps that share
a common area that we call a multi-overlap. These multi-overlaps
are areas where branching points must occur. The simplest multi-
overlap beyond the pairwise case consists of 3 overlaps and is rep-
resented by a triangle, see Figure 9 (left). A multi-overlap with 4
pairwise overlaps, can be represented by a quadrilateral, indicating
that all 4 pairwise seams branch at a mutual point. An important
property of this representation is that this quadrilateral can be split
into two triangles, a classic subdivision, see Figure 9 (middle). Any
valid (no edge crossing) subdivision of a polygon in this mesh will
result in a valid seam configuration. In this way, the representation



Figure 10: Considering the full neighborhood graph of a
panorama (left), where an edge exists if an overlap exists between a
pair of images, an initial valid adjacency mesh (right) can be com-
puted by finding all non-overlapping, maximal cliques in the full
graph then activating and deactivating edges based on the bound-
ary of each clique.

can handle a wide range of seam combinations, but keep the overall
network valid. Figure 9 (right) shows an example subdivision of a
5-way intersection.

As a pre-computation, we calculate the initial adjacency mesh con-
sisting of simple n-gon face representations for every n-way clus-
ter. This pre-computation stage enables the conversion of the ini-
tial non-planar full neighborhood graph into a planar mesh repre-
sentation, see Figure 10. Clusters (and their corresponding muti-
overlaps) by definition are non-overlapping, maximal cliques of the
full neighborhood graph. This computation is a classic clique prob-
lem and is known to be NP-complete [Cormen et al. 1990]. For
most panoramas, we have found the neighborhood graph is small
enough that a brute-force search can be computed quickly. Al-
though, it has been shown that given a graph with a polynomial
bound on the number of maximal cliques, they can be found in
polynomial time [Rosgen and Stewart 2007]. This is indeed the case
for the neighborhood graph which has maximal boxicity [Roberts
1969] dimension of 2 [Chandran et al. 2006]. After the maximal
cliques have been found, each n-gon face is extracted by finding
the fully spanning cycle of clique vertices on the boundary in re-
lation to the centroids of the images. The boundary edges of the
n-gon face are marked as active, while the interior (intersecting)
edges are marked as inactive as shown in Figure 10.

This adjacency mesh is used to drive the computation and combi-
nation of the pairwise boundaries as well as user manipulation. As
we will illustrate in Section 4, it can be completely hidden from a
user of the interactive system with intuitive editing concepts.

3.2.2 Branching Points and Intersection Resolution

Given a collection of seam trees which correspond to active edges
in the adjacency mesh, we can now combine the seams into a global
seam network. To do this, we need to compute the branching points
which correspond to each adjacency mesh face, adjust the seam
given a possible new endpoint, and resolve any invalid intersections
that may arise (in order to maintain consistency).

Branching Points. Assuming for each pairwise seam there exists
only two endpoints, for each multi-overlap one endpoint must be
adapted into a branching point. We refer to this endpoint as being
inside in relation to the adjacency mesh face. The other seam end-
point is considered to be outside in relation to the multi-overlap.
These can be computed by finding the endpoints which are closest
(euclidean distance) to the multi-overlap associated with the face.
Figure 11 (a) displays these endpoints with the color red and the
multi-overlap area with a blue shading. Although it is possible to
create a pathological overlap configuration where this distance met-
ric fails, we have found that this strategy works well in practice.

If we use the dual seam tree distances, i.e. the path distance values
associated with the outside endpoints, we can compute a branching

Tree Lookup

a) b) c) d)

Figure 11: (a) Pairwise seam endpoints closest to a multi-overlap
(red) are considered a branching point. (b) This can be determined
by finding a minimum point in the multi-overlap with respect to min-
path distance from the partner endpoints. (c) After the branching
point is found, the new seams are computed by a linear lookup up
the partner endpoint’s seam tree. (d) To enable parallel computa-
tion, each branching point is computed using the initial endpoint
location (green) even if it was moved via another branching point
calculation (red).

point which is optimal with respect to these paths, as illustrated in
Figure 11 (b). This can be accomplished with a simple lookup of
the distance values in the trees. We have found that minimizing the
sum of the least squared error provides a nice low energy solution.
The new path associated with a moved endpoint is determined by a
simple walk up the dual seam tree, see Figure 11 (c). Additionally,
each seam tree associated with the branching point is recalculated
given its location. As Figure 11 (d) illustrates, the branching point
is always computed using the distance field of the initial endpoint
location even if this point had been previously adjusted by an ad-
jacent face. In practice, we have found the contribution of the root
location is minimal to the overall structure of the seam tree towards
the leaves of the tree. Since using the initial starting endpoints al-
lows the branching points to be computed independently and in a
single parallel pass, we have adopted this into our technique.

The seams produced by this initial process in the 4-overlap case
are similar to the sequential techniques introduced by Efros and
Freeman [2001] and Cohen et al. [2003]. With the additional adja-
cency mesh, our technique is much more expressive in the possible
seam configurations (especially allowing arbitrary valence branch-
ing points). In addition, as we will illustrate next, for panoramas
and especially in an interactive setting one cannot assume that a
seam’s path to a branching point respects the paths of other seams.

Removing Invalid Intersections. Since each seam is computed
using a separate energy function, seam-to-seam intersections be-
yond the branching points are possible. Small intersections of this
type must be allowed to ensure solutions are computable in a 4-
neighborhood configuration. For instance, there would be no non-
intersecting way to combine 5-seams into a single branching point.
This allowance is defined by an ε-neighborhood around the branch-
ing point which can be set by the user. We have found allowing an
intersection neighborhood of 1 or 2 pixels gives good results with
no visible artifacts from the intersection. The intersections in this
neighborhood are collapsed to be co-linear to the shortest of the
intersecting paths.

Intersections that occur outside of this ε-neighborhood must be re-
solved due to the inconsistent pixel labeling that they imply. Fig-
ure 12 (a, c) shows an example of intersections in a 4-way im-
age overlap. The areas highlighted in gray have conflicting im-
age assignments. Enforcing no intersections at the time of the seam
computation would complicate parallelism and be overly expensive.
This corresponds to a k-way planar Escape problem with multiple
energies (where k is the number of seams incoming to the branching
point) for which variants have been shown to be NP-complete [Xu
et al. 2006]. This could also lead to possible unstable interactions
since small movements may lead to extremely large changes in the
overall seam paths. The simplest solution is to choose one assign-
ment per conflict area. This is equivalent to collapsing the area and
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Figure 12: (a) Pairwise seams may produce invalid intersections or crossings in a multi-overlap, which leads to an inconsistent labeling
of the domain. The gray area on the top can be given the labels A or B and on the bottom either C or D. (b) Choosing a label is akin to
collapsing one seam onto the other. This leads to new image boundaries which were based on energy functions which do not correlate to
this new boundary. The top collapse results in a B-C boundary using an A-B seam (C-D seam for the bottom). (c and d) Our technique
performs a better collapse where each intersection point is connected to the branching point via a minimal path which corresponds to the
proper boundary (B-C). One can think of this as a virtual addition of a new adjacency mesh edge (B-C) at the time of resolution to account
for the new boundary.

making the two seams co-linear at points where they ”cross.” Each
collapse introduces a new image boundary for which the wrong en-
ergy function has been minimized, Figure 12 (a, b). In our tech-
nique, we perform a more sophisticated collapse.

For a given pair of intersecting seams, multiple intersections can
be resolved by only taking into account the furthest intersection
from the branching point in terms of distance on the seam. Given
that each seam divides the domain, this intersection can only occur
between seams that divide a common image. If presented with a
seam-to-seam intersection, we can easily compute the new bound-
ary which is introduced during the collapse. This is simply a resolu-
tion seam on an overlap between the images which are not common
between the intersection seams. The resolution seams connect the
intersection points with the branching points. Often, if multiple
resolution seams share the same overlap, as in Figure 12, only one
min-path calculation from the branching point is needed to fill in all
min-paths. The new resolution seams are constrained by the other
seams in the cluster in order to not introduce new intersections with
the new paths. The constraints are also given the ability to gradu-
ally increase the allowed intersection neighborhood beyond the user
defined ε-neighborhood in the chance that no solution path exists.
The crossings and intersections are collapsed in this neighborhood.
Due to the rarity of this occurrence, the routine adds minimal over-
head to the overall technique in practice. Order matters in both
finding the intersections and computing the resolution seams and
therefore must be consistent. We have found that ordering based
on the overlap size works well. Resolution seams and expanded ε-
neighborhood are considered to be temporary states. Figure 12 (c,
d) shows an example of an intersection resolution.

This technique robustly handles possible seam intersections at the
branching points. Most importantly, since we are only adjusting the
seam from the intersection point on, we can resolve each adjacency
mesh face in parallel. In addition, since the seam is not changed
outside of the multi-overlap within a cluster, the resolution is local
and will not cascade to a global resolution. However, it is possi-
ble for a user to introduce unresolvable intersections through added
constraints, as we will discuss in Section 4.

4 Interactive System

In this section, we outline how to create a light and fast interactive
system using the weaving technique. A simplified diagram of the
operation of the system is given in Figure 5. In Section 5 and the
companion video, we provide examples of this application editing
a variety of panoramas.

4.1 System Specifics

Input. The system inputs for our prototype are flat, post-registered
raster images with no geometry save the image offset. Any input
can be converted into this format and therefore it is the most gen-
eral. The initial image intersection computation is computed using
the rasterized boundaries. Due to aliasing, there may be many inter-
sections found. If the intersections are contiguous, they are treated
as the same intersection and a representative point is chosen. In
practice, we have found this choice has little effect on the seam
outside a small neighborhood (less than 10 pixels from the intersec-
tion). Therefore, the system picks the minimal point in this group
in terms of the energy. Pairs of intersections that are very close in
terms of euclidean distance (less than 20 pixels) are considered to
be infinitesimally small seams and are ignored.

The user is also allowed to dictate the energy function for the entire
panorama, image, or overlap. This can be done as an initial input
parameter or within the interactive program itself. Specifically, our
prototype allows the user to switch between pixel difference or gra-
dient difference energies.

Initial Parallel Computation. Parallel computation is accom-
plished using a thread pool equal to the number of available cores.
The initial dual seam tree and branching points computation can be
run trivially in parallel. In the presence of two adjacent faces in the
adjacency mesh, a mutex flag must be used on their shared seam
since both faces may attempt to write this data simultaneously. As
a final phase, each adjacency mesh face resolves intersections in
parallel. In order to compute these resolutions in parallel, we split
a seam’s data into three separate structures for the start, middle,
and end of the seam. The middle seam contains the original seam
before intersection resolution and its extent is maintained by point-
ers. The structure’s start and end are updated with the intersec-
tion resolution seams by the faces associated with their respective
branching points. Either vector can only be associated with one
face, therefore we run no risk of multiple threads writing to the
same location.

Each seam tree is stored as two buffers: one for node distance and
one which encodes the tree itself. The tree buffer encodes the tree
with each pixel referencing its parent. This can be done in 2 bits
(rounded to 1 byte for speed) for a 4 pixel neighborhood. Therefore,
for float distances we need only 5 bytes per pixel to store a seam
tree.

Seam Network Import. It is possible to import a seam network
computed with an alternative technique (such as Graph Cuts, see
Figure 13), and edit it with our system. Our import procedure
works as follows. Given a labeling of the pixels of the panorama,
the algorithm first extracts the boundaries of the regions. Then,
branching points (boundary intersections) are extracted. Next, each



Figure 13: Importing a seam network from another algorithm. The
user is allowed to import the result generated by Graph Cuts (left)
and adjust the seam between the green and purple regions to un-
mask a moving person (right). Note that this edit has only a local
effect, and that the rest of the imported network is unaltered.

boundary segment (bounded by two branching points) is identified
as a seam and the connected components of the resulting seam net-
work are identified. To be compatible with our framework, only the
seam networks made of a single connected component can be im-
ported. Thus we only consider the biggest connected component of
the network and small islands are discarded. Finally, our seam data-
structures are fed with the seam network and the adjacency mesh is
updated if necessary. Since the editing operations do not cascade
globally, a user can edit a problem area locally and maintain much
of the original solution if desired.

4.2 Interactions

Seam Bending. The adding of a constraint and its movement is
called a bending interaction in our system and operates as outlined
in Section 3.1. A user is allowed to add a constraint to a seam and
is provided instantly the optimal seam which must pass through
it. The constraint can be moved interactively to explore the seam
solution space. Intersections in any adjacency mesh face containing
the corresponding edge are resolved, which can be done in parallel.
Most importantly, given how the technique resolves intersections,
seams cannot change beyond the multi-overlap area in these faces.
Therefore, the seam resolution does not cascade globally.

Seam Splitting. Adding more than one constraint is akin to split-
ting the seam into segments. After a bending interaction, the seam
trees are split into four, where there were previously two. Two of
the trees (corresponding to the endpoints) are inherited by the new
seams. The two trees associated with the new constraint are identi-
cal, therefore only one tree computation is necessary. Splitting oc-
curs in our prototype when a user releases the mouse after a bending
interaction. Editing is locked for this seam until the corresponding
trees are resolved. This is a quick process and it is very rare for a
user to be fast enough to beat the computation.

Branching Point Movement. The user is given the ability to grab
and move the branching point associated with a selected face of the
adjacency graph As we’ve detailed in Section 3.1, a movement of
an endpoint is a simple lookup on its partner’s dual seam tree. As
the user moves a branching point, intersections for both the selected
face and all adjacent faces are resolved. Given that the intersection
resolution does not adjust seam geometry beyond the multi-overlap,
we need only to look at this 1-face neighborhood and not globally.
To enable further interaction, the seam trees associated with this
endpoint need to be recalculated after movement. When the user re-
leases the mouse, the seam tree data for all the endpoints associated
with the active seams for the face are recomputed as a background
process in parallel. Like splitting, editing is locked for each seam
until it completes the seam tree update.

Branching Point Splitting and Merging. The user can add and re-
move additional panorama seams by splitting and merging branch-

Figure 14: Improper user constraints are resolved or if resolution
is not possible given visual feedback. (left) Resolution of an in-
tersection caused by a user moving a constraint. (middle) Resolu-
tion of an intersection caused by a user moving a branching point.
(right) A non-resolvable case where a user is just provided a visual
cue of a problem.

ing points. Addition and removal of seams is equivalent to subdi-
viding and merging faces of the adjacency mesh. Improper requests
for a subdivision or merge correlate to a non-valid seam network
and are therefore restricted. If splitting is possible for a selected
branching point, the user can iterate and choose from all possi-
ble subdivisions of the corresponding face. To maintain consistent
seams, merging is only possible between branching points result-
ing from a previous split. In other words, merging faces associated
with different initial adjacency mesh faces would lead to an invalid
seam configuration since the corresponding images do not overlap.
If a seam is added, its dual seam tree is computed. In addition, the
other active seams associated with this face will need to be updated
much like a branching point movement.

Improper User Interaction. Given the editing freedom allowed
to users, they may move a seam into a non-consistent configura-
tion. Figure 14 illustrates some examples. Rather than constrain
the user, the prototype system either tries to resolve the improper
seams or if that is not possible give the user visual feedback indicat-
ing a problem configuration. For example, if the user introduces a
seam intersection, our intersection routine is launched to resolve it,
see Figure 14 (left). Crossing branching points, Figure 14 (middle),
can be resolved similarly. Figure 14 (right) illustrates a configu-
ration with no resolution. In this instance, the crossing edges are
collapsed and the user is given a visual hint that there is a problem.

5 Results

In this section, we detail the results in both the creation and editing
phases of our system. All results and videos were performed on
a 3.07 GHz Intel i7 4-core processor (with Hyperthreading) with
24 GB of memory. The large system memory was required in or-
der to run the Graph Cuts implementation, as is, on all datasets.
Panorama Weaving performed well for all datasets on all of the
authors’ systems including laptops with only 4 GB of memory.

5.1 Panorama Creation

We compare the panorama creation phase of our system to the
implementation provided by the authors of the Graph Cuts tech-
nique [Boykov et al. 2001; Boykov and Kolmogorov 2004; Kol-
mogorov and Zabih 2004] which many consider the exemplary im-
plementation. Both α expansion and swap algorithms were run un-
til convergence to guarantee minimal errors and the best time is re-
ported. Since this implementation has various ways of passing data
and smoothness terms, we tested all and report the fastest, which
is precomputed arrays for the costs with a function pointer acting
as a lookup. Not having an equally well-established in-core paral-
lel implementation for Graph Cuts, we use a serial version of our
algorithm for comparison. Timings for Graph Cuts are based on
the implementation’s reported runtime. Due to the parallel option
of Panorama Weaving, its timings are based on wall-clock time.
Datasets which contain more than simple pairwise overlaps were



Dataset MP Images PW-P PW-S GC-S E. Ratio
Crosswalk 16.7 4 1.3 7.2 369.6 0.995
Fall-5way 30.0 5 2.4 12.1 735.4 1.220
Skating 44.7 6 3.2 16.8 734.0 0.851

Lake 9.4 22 0.5 2.9 337.2 0.503
Graffiti 36.6 10 4.3 19.6 983.7 0.707
Nation 49.1 9 4.6 23.2 1168.7 0.800

Figure 15: Performance results comparing Panorama Weaving to
Graph Cuts for our test datasets that contain more than simple pair-
wise overlaps. Panorama Weaving run serially (PW-S) computes
solutions quickly. When run in parallel, runtimes are reduced to
just a few seconds. The energy ratio (E. ratio) between the final
seam energy produced by Panorama Weaving and Graph Cuts (PW
Energy / GC Energy) is shown. For all but one dataset (Fall-5way),
Weaving produces a lower energy result. It is comparable other-
wise. Panorama image sizes are reported in megapixels (MP).

Figure 16: Repairing non-ideal seams may give multiple valid
seam configurations. (top left) The initial seam configuration for
the Skating dataset (9400 x 4752, 6 images) based on gradient en-
ergy. (top right) Its two major problem areas. (bottom) Using our
technique a user can repair the panorama, but also has the choices
of two valid seam configurations. Panorama courtesy of City Es-
capes Nature Photography.

run at full resolution and the running times and energy compar-
isons are provided in Figure 15. Our technique produces lower en-
ergy seams for all but one example, Fall-5way, and even in this
case the techniques have comparable energy. In terms of perfor-
mance, serial Weaving computes its solution faster than the Graph
Cuts for all datasets (at the same resolution). As the Graph Cuts re-
sults show, a hierarchical approach would be necessary to achieve
similar performance by trading quality for speed. Parallel Weaving
further reduces the runtime down to mere seconds for all datasets
at full resolution. On average, we see that the scaling performance
between Weaving’s serial and parallel implementations to be about
a 5× speedup. This is in sync with the number of physical cores in
the test system. Hyperthreading is effective when data access is a
main bottleneck. A speedup corresponding to the number of physi-
cal cores should be expected when an algorithm is compute-bound
which is true for Weaving. Therefore our implementation is scaling
quite well on our test system.

5.2 Panorama Editing

We provide additional results of the interactive portion of our tech-
nique editing a variety of panoramas. Our companion video also

Figure 17: A panorama taken by Neil Armstrong during the Apollo
11 moon landing (Apollo-Armstrong: 6913 x 1014, 11 images).
(top) Registration artifacts exist on the horizon. (middle) Our sys-
tem can be used to hide these artifacts. (bottom) The final color-
corrected image. Panorama courtesy of NASA.

Figure 18: In this example (Graffiti: 10899 x 3355, 10 images),
(top) the user fixed a few recoverable registration artifacts and
tuned the seam location for improved gradient-domain processing,
yielding a colorful color-corrected graffiti. (bottom left) Our ini-
tial automatic solution (energy function based on pixel gradients).
(bottom right) The user edited panorama. The editing session took
two minutes.

shows the interactivity and versatility of our system in user ses-
sions. Images which are color-corrected were processed using gra-
dient domain blending [Pérez et al. 2003; Levin et al. 2004]

Editing Non-Ideal Seams. In Figure 1, the Nation dataset is a
highly dynamic scene of a busy intersection with initial seams that
pass through moving cars/people, see Figure 1(a). In addition, there
are various registration artifacts, see Figure 1(b). Before our tech-
nique, a user would consider this panorama unsalvageable or be
required to manually edit the boundary masks pixel-by-pixel. In
just a few minutes using our system, a user can produce an ap-
pealing panorama by adjusting seams to account for the moving
objects and pulling registration artifacts into areas which are less
noticeable. Figure 16 (top) shows the initial seam configuration for
the Skating dataset with two problem areas. The initial seams pass
through people who change position on the ice and produce either
an amalgamation of two positions of a single person or a partial
person. As shown in the companion video, repairing these seams
only takes a few seconds of interaction, see Figure 16 (bottom) for
edited results. Figure 17 illustrates how a user can correct regis-
tration artifacts that appear on the moon’s horizon in the Apollo-
Armstrong dataset. Each was repaired with a simple bend of the
panorama seam. In Figure 18, we provide an example of how a user
can fix registration artifacts of the dataset (Graffiti) while tuning
the seam location for improved results in the final color-correction.
For gradient-domain blending, smooth, low-gradient areas provide
the best results therefore the user placed the seams in the smooth



Figure 19: The color-corrected, user edited examples from Figure
2. The artifacts caused by the optimal seams can be repaired by a
user. Images courtesy of City Escapes Nature Photography.

Figure 20: A lake vista panorama (Lake: 7626 x 1231, 22 im-
ages) with canoes which move during acquisition. In all there are
6 independent areas of movement, therefore there are 64 possible
seam configurations of different canoe positions. Here we illustrate
two of these configurations with color-corrected versions of the full
panorama (left) and a zoomed in portion on each panorama (right)
showing the differing canoe positions. Panorama courtesy of City
Escapes Nature Photography.

wall locations, Figure 18 (bottom right). This editing session re-
quired just two minutes of interaction. Finally in Figure 19 we show
the color-corrected edits of the originally optimal, but non-visually
pleasing, seams of Figure 2 for the two datasets: Canoe and Lake
Path. Both interactions required only a few seconds of user input.

Multiple Valid Seams. Along with repairing non-ideal seams, Fig-
ure 1 and 16 (Nation and Skating) are also examples of a user choos-
ing between multiple valid seam configurations. In Figure 1 (c), the
initial seam calculation for the Nation dataset produces an inter-
section with 4 red stoplights, an inconsistent configuration. With
our system, a user can turn two stoplights green creating a more
realistic setting. Figure 16 (bottom) shows 2 valid seam configu-
rations the that user can choose while fixing the Skating dataset.
Figure 20 is a Lake vista with multiple dynamic objects moving in
the scene during acquisition. In all, there are 6 independent areas in
the panorama where a canoe, or groups of canoes, change positions
in overlap areas. Figure 20 shows two examples of alternative ed-
its. A user editing with our technique would have the choice of 64
valid seam combinations of canoes. In Figure 21, we show a user
iterating through valid splitting options of a 5-valence branching
point of the Fall-5way dataset. In this way, we allow users the free-
dom to add and remove seams as they see fit. Finally, the images
Crosswalk and Apollo-Aldrin in Figure 3 were created and edited in
our system to show how panoramas can have multiple valid seam
configurations.

6 Limitations

Our technique is versatile and can robustly handle a multitude of
panorama configurations. However, there is currently a limitation
on the configurations which we can handle. The adjacency mesh
data structure in its current form relies on the fact that the intersec-
tion of pairwise overlaps yields an area of exactly one connected
component (which is needed to guarantee the manifold structure
of the mesh). For example, less than one connected component
would arise in a situation where one overlap is completely incased
inside another and more than one can be caused by an overlap’s
area passing through the middle of another overlap. Both of these

Figure 21: Splitting a valence 5 branching point based on gradi-
ent energy of the Fall-5way dataset (5211 x 5177, 5 images): as
the user splits the pentagon, the resulting seams mask/unmask the
dynamic elements. Note that each branching point which has a va-
lence higher than 3 can be further subdivided.

cases break the pairwise seam network assumption. In addition, an
image whose boundary is completely enclosed by another image’s
boundary (100% overlap) is currently considered invalid. These are
pathological cases that we have yet to encounter in practice. Over-
all, the authors feel that these limitations are only temporary and
that the data-structures and methods outlined in this work are gen-
eral enough to support these cases as a future extension.

7 Conclusion

In this paper, we have introduced the Panorama Weaving technique
for (un)structured panorama seam editing. We have detailed a novel
approach for panorama seam creation which is light on resources,
fast, and easy to parallelize. More often than not, this technique
produces lower energy seams that the current state-of-the-art. In
addition, we’ve shown the necessity of an interactive seam tech-
nique to explore possible solutions. Weaving provides the first in-
teractive technique to enable this exploration. This powerful editing
capability allows the user to automatically extract energy minimiz-
ing seams given a sparse set of constraints. Our technique enables
users to have full and intuitive control of a panorama’s seams, al-
lowing the creation of a high quality panorama, tailored to a user’s
needs and preferences.
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