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Generalized Topological Simplification of Scalar Fields on Surfaces

Julien Tierny and Valerio Pascucci, Member, IEEE

Fig. 1. Given an input scalar field f (left), our combinatorial algorithm generates a simplified function g that provably admits only
critical points from a constrained subset of the singularities of f . Our approach is completely oblivious to the employed feature
selection strategy, while guaranteeing a small distance ||f − g||∞ for data-fitting purpose. Thus it supports application-dependent
simplification scenarios such as the removal of singularities based on local geometrical measures, interactive user selection or even
random selection. The topology of the resulting field is summarized with the inset Reeb graphs for illustration purpose.

Abstract— We present a combinatorial algorithm for the general topological simplification of scalar fields on surfaces. Given a
scalar field f , our algorithm generates a simplified field g that provably admits only critical points from a constrained subset of the
singularities of f , while guaranteeing a small distance ||f − g||∞ for data-fitting purpose. In contrast to previous algorithms, our
approach is oblivious to the strategy used for selecting features of interest and allows critical points to be removed arbitrarily. When
topological persistence is used to select the features of interest, our algorithm produces a standard ε-simplification.
Our approach is based on a new iterative algorithm for the constrained reconstruction of sub- and sur-level sets. Extensive exper-
iments show that the number of iterations required for our algorithm to converge is rarely greater than 2 and never greater than 5,
yielding O(n log(n)) practical time performances. The algorithm handles triangulated surfaces with or without boundary and is robust
to the presence of multi-saddles in the input. It is simple to implement, fast in practice and more general than previous techniques.
Practically, our approach allows a user to arbitrarily simplify the topology of an input function and robustly generate the corresponding
simplified function. An appealing application area of our algorithm is in scalar field design since it enables, without any threshold
parameter, the robust pruning of topological noise as selected by the user. This is needed for example to get rid of inaccuracies
introduced by numerical solvers, thereby providing topological guarantees needed for certified geometry processing. Experiments
show this ability to eliminate numerical noise as well as validate the time efficiency and accuracy of our algorithm. We provide a
lightweight C++ implementation as supplemental material that can be used for topological cleaning on surface meshes.

Index Terms—Scalar field visualization, scalar field design, topological simplification.

1 INTRODUCTION

As scientific data-sets become more intricate and larger in size, ad-
vanced data analysis algorithms are needed for their efficient visual-
ization. For scalar field visualization, topological analysis techniques
have shown to be practical solutions in various contexts by enabling
the concise and complete capture of the structure of the input data
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into high-level topological abstractions such as contour trees [5, 6],
Reeb graphs [16, 20], or Morse-Smale complexes [8, 13]. Moreover,
important advances have been made regarding the analysis of topo-
logical noise with the formalism of topological persistence [9]. Per-
sistence offers a simple extension to the existing topological abstrac-
tions, enabling their multi-resolution representations and consequent
progressive data explorations. However, since the notion of feature is
application-dependent, in many scenarios using persistence to prior-
itize topological cancellations can be inappropriate for selecting fea-
tures of interest (depending on the characteristics of the noise). For
this reason, users often employ ad-hoc feature identification strategies
that combine several criteria to determine which topological cancella-
tions should be considered signal or noise. For instance, Carr et al. [6]
introduced simplification metrics based on local geometrical measures
such as contour length, volume, hyper-volume, etc. For medical data,
for example, these metrics have been shown to be much more effective
than persistence.



While existing simplification schemes produce multi-resolution
representations of the topological abstractions, they do not perform an
actual simplification of the underlying scalar field. This can often be
useful for further analysis. Moreover, in contexts such as scalar field
visualization or design, it is desirable to obtain a simplified version
of the input field directly without having to compute a computation-
ally expensive topological abstraction. Also, the time complexities of
many topological abstraction algorithms are dependent on the num-
ber of critical points in the input field. Hence, simplifying the field
beforehand can also be beneficial for more sophisticated topological
analysis.

In this paper, we present a new combinatorial algorithm for the
general simplification of scalar fields on surfaces. Our algorithm is
simple, fast in practice, and more general than previous techniques.
Given a scalar field f , our algorithm generates a simplified function g
that provably admits only critical points from a constrained subset of
the singularities of f , while guaranteeing a small distance ||f − g||∞
for data-fitting purpose. In contrast to previous combinatorial ap-
proaches, our algorithm is oblivious to the strategy used for selecting
features of interest and allows critical points to be removed arbitrar-
ily (Fig. 1). In the special case where topological persistence is used
as a feature identification criteria, our algorithm generates a standard
ε-simplification [10]. The algorithm is simple to implement, handles
surfaces with or without boundary, and is robust to the presence of
multi-saddles (the input is not restricted to a true Morse function).
Extensive experiments show the generality of our algorithm as well
as its high performance. In particular, the iterative nature of the ap-
proach could require a large number of passes but in practice we have
not found example requiring more than five iterations (normally only
two are needed). For this reason the experimental results show an
O(n log(n)) practical performance.

To demonstrate the use of our approach, we present applications in
terrain simplification and scalar field design. We believe the latter ap-
plication to be particularly appealing as the algorithm, without any
threshold parameter, robustly removes topological noise that arises
from the use of numerical solvers in traditional scalar field design.
This additional quality control enables scalar field design with topo-
logical guarantees for certified geometry processing.

1.1 Related work
The direct simplification of scalar fields given topological constraints
is a subject that has only recently received attention. Existing tech-
niques can be classified into two (complementary) categories.
Numerical approaches aim at approximating a desired solution by
solving partial differential equations, where a subset of the input sin-
gularities are used as topological constraints while smoothness con-
straints are often used to enforce geometry quality. The first work
in this direction was presented by Bremer et al. [4], where simplified
Morse-Smale complexes are used to guide an iterative and localized
simplification of the field based on Laplacian smoothing. However,
the actual simplification process needs a (simplified) Morse-Smale
complex as an input, which is computationally expensive to obtain.
Moreover, it converges slowly and provides no error bounds on the
interior of the complex cells. In the context of geometry processing,
approaches have been presented for the computation of smooth Morse
functions with a minimal number of critical points [12, 15]. Patanè et
al. [17] presented a general framework for the topology-driven sim-
plification of scalar fields based on a combination of least-squares ap-
proximation and Tikhonov regularization. Weinkauf et al. [22] im-
proved the work by Bremer et al. [4] with bi-Laplacian optimization,
resulting in smoother (C1) output fields.

However, numerical approaches have several common drawbacks.
First, they are time consuming. Second, and more important, they are
prone to numerical instabilities, either due to (a) the poor quality of the
triangulation of the input domain, (b) the numerical sensitivity of the
geometrical operators employed in the system of equations, or (c) nu-
merical precision errors. As demonstrated in Sec. 5, these numerical
instabilities may often generate additional critical points in the out-
put field (potentially with high persistence), preventing it from strictly

conforming to the input topological constraints.
Combinatorial approaches aim at providing a solution with provable
correctness that is not prone to numerical instabilities. In a sense, they
can be complementary to numerical techniques by fixing the possible
numerical issues as a post-process. The first research in this direction,
on a related yet different problem, can be attributed to Edelsbrunner
et al. with the notion of ε-simplification [10]. Given a target error
bound ε, the goal of their algorithm is to produce an output field ev-
erywhere at most ε-distant from the input, such that all the remaining
pairs of critical points have persistence greater than ε. Their algorithm
can be seen as an extension of early work on digital terrain processing,
where only minimum-saddle persistence pairs were discarded [1, 19].
However, their algorithm is complicated and difficult to implement.
Moreover, as persistence pairs are processed in order of their highest
extremity, the same vertices are swept several times when cancelable
persistence pairs are nested. Recently, Attali et al. [2] and Bauer et
al. [3] presented independently a similar approach for ε-simplification
computation. By using radix sort with fixed word size, these algo-
rithms admit linear time complexity (in practice, O(n log(n)) with
a classical quick sort). Also, by locally reversing the gradient of the
field, the authors show that multiple persistence pairs can be cancelled
with only one procedure, even if they are nested [3]. However, these
approaches suffer from several drawbacks. First, their input is a filtra-
tion (or equivalently a Discrete Morse function [11]). Converting the
output of these algorithms into piecewise linear (PL) functions (which
is the standard scalar field representation for any application) requires
an important subdivision of the surface mesh (one new vertex per edge
and per face), which can increase the size of the mesh up to an order
of magnitude. In many applications, such an important domain subdi-
vision would not be acceptable. Also, these approaches only deal with
closed surfaces. The authors address this issue by artificially closing
each boundary component, which does not guarantee consistently pro-
cessed boundaries in the PL output once the surface is re-opened af-
terwards. In contrast, our algorithm works on PL functions defined on
surfaces with or without boundary. Additionally, it addresses a more
general problem for which ε-simplification is a special case.

1.2 Contributions
This paper makes the following new contributions:

1. Approach: An approach for the topological simplification of
scalar fields that does not rely on persistent homology. It yields
a simpler, more intuitive, and general setting. We enumerate the
critical points that are non-removable because of the topology
of the domain. We consequently derive a strategy that supports
the suppression of arbitrary removable critical points of the field.
This enables the development of a more general simplification
framework than previous approaches, for which ε-simplification
is a special case.

2. Algorithm: An iterative, combinatorial simplification algorithm
which is very simple to implement (only a few dozens of lines
of C++ code). Given a set of user constraints on the extrema of
the output function, our algorithm automatically identifies and
removes the optimal set of saddles with regard to ||f − g||∞,
hence guaranteeing a small distance between the input and the
output. In contrast to previous approaches, our technique works
directly on PL scalar field representations, is robust to multi-
saddles, and handles surfaces with or without boundary. The al-
gorithm uses no computationally expensive topological abstrac-
tion, such as a Morse-Smale complex or even a contour tree;
hence it is very fast in practice. Our extensive experiments on
approximated worst-case scenarios show that this iterative algo-
rithm rarely takes more than two iterations to converge.

3. Application: We introduce the foundations for a robust,
parameter-free, technique allowing intuitive scalar field design
with topological guarantees. The user can select an arbitrary set
of extrema to preserve with the guaranteed removal of all oth-
ers. This leads to a more intuitive user interaction that does not
require the user to understand sophisticated topological concepts
such as persistence. For traditional automated scalar field design,



Fig. 2. Scalar field on a terrain (left). A level set is shown in blue; a
contour is shown in white. Vertices can be classified according to the
connectivity of their lower (blue) and upper links (green). From left to
right: a minimum (a), a regular vertex (b), a saddle (c), a maximum (d).

numerical instabilities can easily lead to undesired topological
noise. Our approach can be used to automatically fix this prob-
lem by simplifying any extraneous critical points introduced due
to numerical instability. We provide a lightweight C++ imple-
mentation that can be used as a black-box post-process for fixing
such problematic situations.

2 PRELIMINARIES

This section briefly describes our formal setting and presents prelimi-
nary results. An introduction to Morse theory can be found in [14].

2.1 Background
The input to our algorithm is a piecewise linear (PL) scalar field
f : S → R defined on an orientable PL 2-manifold S. It has value on
the vertices of S and is linearly interpolated on the simplices of higher
dimension. Given an isovalue i, the level set L(i) is defined as the
inverse image of i onto S through f : L(i) = f−1(i). Each connected
component of L(i) is called a contour. The sub-level set L−(i) is de-
fined as the inverse image of the open interval (−∞, i) onto S through
f , L−(i) = {p ∈ S / f(p) < i}. Symmetrically, the sur-level set
L+(i) is defined by L+(i) = {p ∈ S / f(p) > i}. As i changes con-
tinuously in R, the points at which the topology of a contour changes
are called critical points. In the PL setting, those occur on vertices.
Critical points can be classified with simple and inexpensive opera-
tions (Fig. 2). The star St(v) of a simplex v is the set of simplices σ
that contain v as a face. The link Lk(v) of a simplex v is the set of
simplices in the closure of the star of v that are not also in the star:
Lk(v) = St(v)− St(v). The lower link Lk−(v) of v is the subset of
Lk(v) containing only simplices with all their vertices lower in func-
tion value than v: Lk−(v) = {σ ∈ Lk(v) / ∀u ∈ σ : f(u) < f(v)}.
The upper link Lk+(v) is defined by: Lk+(v) = {σ ∈ Lk(v) / ∀u ∈
σ : f(u) > f(v)}.

Definition 1 (Critical Point) A vertex v of S is regular if and only
if both Lk−(v) and Lk+(v) are simply connected, otherwise v is a
critical point of f .

If Lk−(v) is empty, v is a minimum. Otherwise, if Lk+(v) is empty,
v is a maximum. If v is neither regular, nor a minimum nor a max-
imum, it is a saddle. Critical points can be classified by their index.
For surfaces, minima, saddles, and maxima have index 0, 1 and 2 re-
spectively. A sufficient condition for the above classification is that all
the vertices of S admit distinct f values (no degenerate flat plateaus),
which can be obtained easily with symbolic perturbation (Sec. 3). To
simplify the discussion, we assume in the following that all of the sad-
dles of f are simple (f is then a Morse function [14]) and that S is
processed on a per connected component basis.

2.2 General simplification of scalar fields on surfaces
Definition 2 (General Topological Simplification) Given a field f :
S → R with its set of critical points Cf , we call a general simplifica-
tion of f a scalar field g : S → R such that the critical points of g
form a sub-set of Cf : Cg ⊆ Cf (with identical indices and locations).

It is often additionally desired that ||f − g||∞ is minimized for data-
fitting purpose. In other words, general simplification consists in con-
structing a close variant of the input field f from which a set of critical
points has been removed. We describe the possible removals:

Fig. 3. Non removable critical points: (a) A global minimum and a global
maximum have to be maintained for the field not to be constant. (b)
2 gS saddles cannot be removed. Each boundary component has 2
non-removable global stratified extrema, which turn into non-removable
saddles (c) or (possibly) exchangeable extrema (d).

Closed surfaces The Morse-Euler relation defines a dependency be-
tween the number of critical points of f and χS (the Euler character-
istic of S), where CIf is the set of critical points of f of index I:

χS =
∑

I∈{0,1,2}

(−1)I |CIf | = #min(f) −#saddles(f) + #max(f) (1)

It follows that removing only one extremum, such that the total number
of critical points strictly decreases, implies the removal of one saddle
(to maintain χS invariant) and reciprocally. In other words, the re-
moval of the saddles of f are dependent on the removal of its extrema.
Certain saddles of f cannot be removed:

χS = 2− 2gS = #min(f) −#saddles(f) + #max(f) (2)

It follows that f counts exactly 2gS non-removable saddles, located
along the gS handles of the surface (Fig. 3(b)).
Surfaces with boundary The above properties are valid for surfaces
with boundary. In addition, for each boundary component B ⊆ ∂S,
certain saddles cannot be removed. Let fB be the restriction of f to
B, and CfB its critical points that we call stratified critical points. By
construction, B is a closed PL 1-manifold. Then:

χB =
∑

I∈{0,1}

(−1)I |CIfB | = #min(fB) −#max(fB) = 0 (3)

It follows that B has an even number of stratified critical points. These
cannot be regular points of f on S. For instance, if a maximum of
fB is only surrounded on the interior of S by vertices with higher f
values (Fig. 3(c), right), its lower link is by construction not simply
connected; therefore it turns into a saddle of f . If it is only surrounded
by vertices with lower f values (Fig. 3(d), right), then it turns into
a maximum of f (otherwise it is a multi-saddle but f is assumed so
far to have only simple saddles). The symmetric property holds for
the minima of fB. Since f is required to admit distinct values for each
vertex, fB admits a pair of global stratified extrema (Fig. 3(c), middle).
Consequently, each boundary component of S necessarily has a pair
of critical points of f . If these two points are extrema, they can be
removed only if they are not the only extrema of f , leaving a necessary
saddle in place in exchange. Otherwise, these necessary critical points
are non-removable saddles of f (Fig. 3(c), left). In conclusion, the
removal of the saddles of f is completely dependent on the removal
of its extrema, and for particular cases (summarized in Fig. 3) certain
critical points are non-removable.

2.3 Surface scalar field constrained topology
As discussed in the previous sub-section, the removal of the saddles
of f is dependent on the removal of its extrema. Then, given the sets
of input constraints C0g and C2g (the extrema of g), the target of gen-
eral simplification is to constrain the topology of the level lines of f
such that the output field g is close to f and admits as saddles a valid
subset of C1f (such that the Morse-Euler relation still holds, Eq. 1). To
constrain the topology of the level lines L(i) of f , our strategy is to
constrain the topology of both the sub- and sur-level sets of f (L−(i)
and L+(i) respectively), which is more practical to achieve. We show
in the following that, for surfaces, controlling the connectivity only of



Fig. 4. Given a Morse function f− admitting one maximum and several
minima (left inset), the number of connected components of the sub-
level set (in blue) increases when passing a minimum (b), decreases
when passing a removable saddle (c) and does not change when pass-
ing the non-removable saddles (d, e) and the maximum (f).

L−(i) and L+(i) is sufficient to enforce the removal (or the preserva-
tion) of the removable critical points of f .

Let f− : S → R be a Morse function with only one maximum and
several minima (Fig. 4). Let β0(X ) be the number of connected com-
ponents of X . Since f− has only one maximum, β0(L+(i)) = 1 for
all the i values under the maximum (each vertex of L+(i) has a non-
empty upper link and thus admits a connected path to the maximum).
Minima A minimum at isovalue i has an empty lower link; then there
exists no connected path on L−(i) linking this minimum to other
lower minima. Thus, as i changes continuously in R, when passing
through a minimum of f−, a new connected component of L−(i) has
to be created and β0(L−(i)) increases (Fig. 4(b)).
Regular vertices The lower link of a regular vertex at isovalue i is
made of one connected component. Then, (a) it cannot merge distinct
components of L−(i) and (b) there exists connected paths on L−(i)
linking it to lower minima. Thus, passing through a regular point does
neither (a) decrease nor (b) increase β0(L−(i)).
Interior saddles By construction, the lower link of a simple saddle
on the interior of S is made of two connected components (Fig. 2(c)).
These components can either be linked to (a) the same or to (b) distinct
connected components of L−(i). In the latter case (b), β0(L−(i))
decreases when passing the saddle. In the former case (a), neither
β0(L+(i)) nor β0(L−(i)) changes (β0(L+(i)) = 1 for all i be-
low the maximum). However, since f− is Morse, L(i) changes its
topology at the saddle. In the interior of surfaces, the only possible
topological change of L(i) is a change of β0(L(i)). Saddles which
change β0(L(i)) while preserving β0(L+(i)) and β0(L−(i)) have
been shown to correspond to the saddles opening or closing the loops
of the Reeb graph of the function [20] and for surfaces, these loops
correspond to the handles of the surface [7]. Thus, the only interior
saddles of f− for which β0(L−(i)) does not change are the 2gS non-
removable saddles (Fig. 3(b) and Fig. 4(d)).
Boundary saddles Simple boundary saddles can be classified in two
categories. In the first case (called join saddles), the lower link is
made of two components (each lying on the same boundary compo-
nent B ⊆ ∂S) and the upper link of one (Fig. 4(e)). The second case
(split saddles) is symmetric: the lower link is made of one compo-
nent and the upper link is made of two components on the bound-
ary. Since β0(L+(i)) = 1 (f− has only one maximum) and since
their lower link is made of only one component, neither β0(L+(i))
nor β0(L−(i)) changes when passing split saddles. For a join saddle,
noted sj , the two components of the lower link can either be linked
to (a) the same or to (b) distinct connected components of L−(i). In
the latter case (b), β0(L−(i)) decreases when passing sj . Otherwise
(a), neither β0(L−(i)) nor β0(L+(i)) changes and there exists a con-
nected path onL−(i) connecting the two components of the lower link
of sj . This path encloses the boundary component B on which sj lies
(Fig. 4(e)). This implies that {B − sj} ⊂ L−(i) since L+(i) is made
of only one component (the presence of a vertex on B with a value
higher than i would then imply that β0(L+(i)) > 1). Thus, sj is the
stratified global maximum of f−B . In other words, for each boundary
component B ⊆ ∂S, the only join saddle of f− for which β0(L−(i))
does not change is a non-removable saddle (Fig. 3).
Maximum The lower link of a maximum is made of only one con-

nected component. Then, a maximum cannot merge or create a new
component of L−(i). Thus β0(L−(i)) does not change when passing
through a maximum (Fig. 4(f)).

The symmetric properties hold for a Morse function f+ : S → R
admitting only one minimum and several maxima. Since the input
fields are assumed to be Morse functions, when passing through a
given critical point, only one topological event can occur at a time on
the level set [14], which enables the viewing of each critical point as
an instance of the cases reviewed above. Then, in conclusion, the only
critical points of the field for which both β0(L−(i)) and β0(L+(i))
do not evolve are the non-removable saddles due to the topology of
S (Sec. 2.2); for the removable critical points of f , either β0(L−(i))
or β0(L+(i)) changes. Thus, it is possible to constrain the topology
of the output field g by only controlling the connectivity of L−(i) and
L+(i). The next section presents an algorithm exploiting this property.

3 ALGORITHM

Our algorithm naturally follows from the properties discussed in
Sec. 2. Given the constraints C0g and C2g , it iteratively reconstructs the
corresponding sub- and sur-level sets, while removing the optimal set
of saddles with regard to the L∞ norm. The remainder of this section
is organized as follows. The algorithm, which consists in alternat-
ing sub- and sur-level set constrained reconstruction, is described in
Sec. 3.1, where it is shown to converge to an output field whose topol-
ogy conforms to the input constraints C0g and C2g . Then, in Sec. 3.2, the
properties of the algorithm are discussed.

Algorithm 1: Sub-level set constrained reconstruction
input : Scalar field f : S → R (with n scalar (f ) and offset (O) values);
input : Set of minima constraints to enforce C0g ;
output: Scalar field g : S → R with enforced minima in C0g .

begin1
// T : set of vertices (self-balancing binary search tree).2
T ← ∅;3
// i: time (integer) when a vertex was last processed.4
i← 0;5

6
// Initialize T with the minima constraints.7
foreach m ∈ C0g do T ← {T +m};8

9
repeat10

v ← argminx∈T f(x);11
T ← {T − {v}};12
mark v as visited;13
// Add unvisited neighbors.14
T ← {T ∪ {vn ∈ Lk(v) | vn is not visited}};15
A[i]← v;16
i← i + 1;17

until T = ∅;18
19

// Scalar and offset value update, for all the vertices.20
// Make the ordering on g (scalar and offset values) consistent with the order of visit.21
for j ← 0 to n do22

if j 6= 0 && f(A[j]) < g(A[j − 1]) then23
g(A[j])← g(A[j − 1]);24

else25
g(A[j])← f(A[j]);26

O(A[j])← j;27
end28

3.1 Algorithm description
In the following, we start by describing the algorithm for sub-level set
constrained reconstruction.
Sub-level set constrained reconstruction The pseudo-code for sub-
level constrained reconstruction is given in Algorithm 1. To guarantee
that the input field admits distinct values on each vertex, symbolic
perturbation is used. In addition to its scalar value, each vertex v is
associated with an integer offset (notedO(v)) initially set to the actual
offset of the vertex in memory. When comparing two vertices (for
critical point classification for instance), if these share the same scalar
value, their order is disambiguated by their offset O. Algorithm 1
modifies both vertex scalar values and offsets.

The algorithm starts by pushing the minima constraints C0g into a
self-balancing binary search tree (noted T , line 8) ordered by scalar
value and offset. Then, the sub-level sets are iteratively reconstructed



Fig. 5. Removing the lowest minimum (small box on the input) by sub-level set constrained reconstruction (in blue). The algorithm enforces the
minima constraints while implicitly removing saddles.

(line 10 to 18), one vertex at a time, in a flooding fashion: the unvis-
ited neighbors of the visited vertex are added to T and the vertices of
T are uniquely visited in increasing order of scalar value (and offset)
until the entire domain is processed. For instance, Fig 5 shows the
removal of the lowest minimum of f . Hence, all the minima of f have
been added to C0g except for the global minimum. The corresponding
flooding is progressively shown in the middle of Fig. 5, where the vis-
ited and unvisited vertices appear in blue and green respectively. The
resulting order of visit of each vertex is stored in the arrayA. The last
step of the algorithm (line 22 to 27) traverses A and updates the ver-
tex scalar values and offsets such that the order defined by the output
field is equivalent to the order of visit of the vertices (then the sub-
level sets L−(i) of the output field indeed correspond to the iteratively
reconstructed sub-level sets). As shown in Fig. 5 (right), this strategy
for function value update has the effect of flattening the output in the
vicinity of the removed minima.

Since the sub-level sets are grown by adding the vertices of T with
smallest function value first, if a connected component of L−(i) were
to hit a minimum constraint m ∈ C0g before the latter was popped out
of T , this would imply that m had a neighbor with lower initial func-
tion value, through which the component entered the link of m. This
implies that m was not a minimum in the input, which is an invalid
constraint. Then, for each m ∈ C0g , m is visited before the vertices
of its link; hence the vertices of C0g are all minima in the output. The
other vertices which do not belong to C0g can only be visited by the it-
erative growth of L−(i), after that one of the vertices of their link has
been visited. Hence, their lower link is not empty in the output and the
vertices m ∈ C0g are then the only minima of the output (Fig. 5).

When passing a saddle s of the input which used to join distinct
components of sub-level sets, if only one component of L−(i) hits the
saddle, this implies that the minimum which created initially the other
component does not belong to the constraints C0g . Then, the compo-
nent of L−(i) traverses s and continues to grow by visiting vertices
with smallest values first, eventually sweeping the removed minimum
(Fig. 5(b)-(d)). Otherwise, s is maintained as a saddle in the output.

Hence, the algorithm implicitly removes saddles given the extrema
constraints and guarantees a valid topology of the output. Note that,
since the algorithm visits the vertices of T with smallest value first,
the saddle removed with one minimumm is the lowest saddle s which
used to join the sub-level set component created by m in the input
(i.e. the next saddle from m up the join tree [5]): thus the algorithm
minimizes |f(m)−f(s)| when removing one saddle s along with one
minimum m. Since the update of function value will lift m up to the
level of s (g(m)← f(s), line 22 to 27 of algorithm 1), ||f−g||∞ will
be equal to |f(m)− f(s)| (for instance, in Fig. 6, B is lifted up to the
level of E). Thus the algorithm removes the optimal set of saddles with
regard to ||f − g||∞, hence guaranteeing a small distance between the
input and the output (for the regions where no simplification is needed,
the function is unaltered).
Sur-level set constrained reconstruction The constraints C2g are en-

Fig. 6. Sub-level set constrained reconstruction can introduce residual
maxima (red spheres): in (a), all the neighbors of D are visited before it,
hence yielding a maximum (b). Symmetrically, in (b), all the neighbors of
B are visited before it, yielding a minimum (c). Alternating sub- and sur-
level set reconstruction reduces the (offset) function difference between
the residual extrema and their corresponding saddle (cf. vertex ordering,
bottom), and converges to the removal of all the residuals.

forced with the symmetric algorithm: the vertices of C2g are initially
pushed in T and the vertices of T are visited in decreasing order of
function value (the update of the function values is also symmetric).
Overall algorithm As shown in Fig. 6, while algorithm 1 guaran-
tees that the constraints C0g will be the only minima of the output, it
does not guarantee that C2g will be the only maxima. When the re-
constructed sub-level set removes a saddle, the algorithm visits the
vertices of lowest function value in priority, possibly leaving islands
of non-visited vertices behind (Fig. 6(a)), yielding residual maxima in
the output function (Fig. 6(b)). The symmetric remark goes for the
sur-level set reconstruction regarding minima constraints. To remove
these residuals, our overall algorithm successively alternates sub- and
sur-level set reconstructions until C0g and C2g are the only extrema. We
show in the following that this process converges.
Convergence Algorithm 1 lifts up the minima to remove, since they
are visited after their associated saddle (Fig. 6(a)). Then, when remov-
ing a minimumm (B, Fig. 6(a)), residual critical points can only occur
higher than the minimum’s associated saddle (E, Fig. 6(a)), but lower
than its next vertices in the global vertex ordering (F and G, Fig. 6(a)).
Symmetrically, sur-level set reconstruction pushes down the maxima
to remove. Then new residual critical points (B and D, Fig. 6(c)) occur
lower than the residual saddle of the previous step (C, Fig. 6(b)), but
still higher than the original (E, Fig. 6(a)). Alternating sub- and sur-
level set reconstruction will keep on reducing the function range where
the residual extremum and its corresponding saddle appear. Eventually
these will be consecutive in the global vertex ordering (Fig. 6, bottom)
leaving no more room for new residuals at the next iteration.
From symbolic to numerical perturbation After convergence, it
may be useful to convert the symbolic perturbation (vertex offset
O(v)) into numerical perturbation, to represent the output field g with
a numerical value only for each vertex. The final arrayA (algorithm 1)



Fig. 8. Running times (log scale) for the simplification of random functions, with a random constraint selection (C0g , C2g ), 50 runs per data-set.

Fig. 7. Simplifying a saddle with high multiplicity (a): 4 components of
sub- and sur-level sets merge in the saddle (inset Reeb graph: sub- and
sur- level sets are marked in blue and green respectively). Removing
one extremum (box in (a)) decreases the number of components of the
lower and upper links by 1 (b). Removing other extrema (box in (b))
eventually decreases this number to 2, yielding a simple saddle (c).

is traversed in increasing order and whenever a vertex is at the same
value (or lower) than its predecessor (g(A[i]) ≤ g(A[i − 1])), its
function value is increased by an arbitrarily small value ξ: g(A[i])←
g(A[i−1]) + ξ. This numerical perturbation should be restricted only
where it is needed (flat regions of g) to maintain ||f − g||∞ to a small
value. For instance, in Fig. 6, the vertices D, B and C should all have
a final function value in the interval (f(E), f(F )). Hence, ξ should
be smaller than δf

n
, where δf is the smallest (non-zero) function value

absolute difference in the input and n is the number of vertices in S.

3.2 Algorithm properties
Relation to ε-simplification The implicit pairing performed by our
algorithm is compatible with the pairing of critical points based on
persistence: given one extremum removal, it pairs a minimum (re-
spectively, a maximum), with its closest saddle up the join tree [5]
(respectively, down the split tree). Moreover, given one extremum re-
moval, ||f − g||∞ will be equal to the absolute difference in function

value between the extremum and its paired saddle (line 22 to 27 of
algorithm 1). For instance in Fig. 6, B is paired with E and ||f − g||∞
is equal to |f(B) − f(E)|. Thus, if the input constraints are selected
according to topological persistence (the persistence of the pairs as-
sociated with each critical point of C0g and C2g is higher than ε), then
||f − g||∞ ≤ ε.
Non-Morse inputs Multi-saddles may occur in the input, preventing
f from being a Morse function. For these, the lower and upper links
can be made of more than two components. Our algorithm handles
these degenerate cases with no modification: removing one extremum
associated with a multi-saddle will simply decrease the saddle’s mul-
tiplicity in the output by one (Fig. 7).

4 RESULTS AND DISCUSSION

In this section, we present practical results of our algorithm obtained
with a C++ implementation on a computer with an i7 CPU (2.93 GHz).

4.1 Time requirement

The algorithm uses no computationally expensive topological abstrac-
tion, such as a Morse-Smale complex or even a contour tree. Therefore
each iteration is extremely fast in practice. Given a surface with n ver-
tices, inserting and removing a vertex from the self-balancing binary
search tree T takes O(log(n)) time. Each vertex is uniquely visited.
Thus, the complexity of an iteration is O(n log(n)), irrespectively of
the number of critical points to remove. In theory, the number of it-
erations required for the algorithm to converge could possibly be non-
negligible. Given one extremum removal, after each reconstruction,
the distance in the global vertex ordering which separates a new resid-
ual extremum from its corresponding saddle decreases at least by one
(this distance is illustrated by a black arrow in Fig. 6, bottom). As this
distance can initially be close to the number of vertices in the mesh,
n reconstructions could be required, yielding an O(n2 log(n)) worst
case complexity, irrespectively of the number of removed extrema.



Fig. 10. Simplifying the Grand Canyon ((a), 500k vertices, 65,526 critical points, bottom) with a location driven feature selection. The terrain
is decomposed into three geographically meaningful regions: the canyon, its north rim and its south rim (in black, green, blue, (a) bottom).
(b) Maintaining only one minimum and removing all the critical points from the canyon (16,756 critical points remain) emphasizes the topological
features of the rims and simulates a massive flooding of the canyon. (c) Removing all the critical points from the rims (2,296 remaining) emphasizes
the topological features inside the canyon in a way that is suited for an interactive fly-through within the canyon. An ε-simplification with compatible
L∞ norm (d) completely discards the features irrespectively of their location (zoom insets) while yielding a worse average data fitting (Avg(|f−g|)).

Fig. 9. In the special case where the critical points in C0g and C2g are
all more persistent than ε, our algorithm produces an ε-simplification
(||f − g||∞ ≤ ε). Both the (vertex) position and the function value of
the remaining removable critical points are preserved after simplification
(top insets), even in the presence of multi-saddles (6 in the input). The
topology of the resulting field is summarized with the inset Reeb graph
for illustration purpose (input surface: 725k vertices).

Traditionally, random scalar fields are considered as relevant ap-
proximations of worst-case scenarios. Moreover, considering multiple
instances increases the chances to get a proper worst-case approxi-
mation. We show in Fig. 8 the average and maximum running times
(in log scale) for the algorithm to achieve convergence on a set of
meshes (including examples with high genus, up to 116), for which
50 instances of random fields have been considered and for which the
constraints C0g and C2g are random subsets of the fields’ extrema. In
particular, critical points from C0f are uniquely added to C0g in random
order until |C0g | is equal to a random fraction of |C0f | (the constraint set
C2g is constructed similarly). For most data-sets, the average number
of required iterations is smaller than or equal to 2 and the maximum
number of iterations is never greater than 5. This shows that, from a
practical point of view, the number of required iterations is negligible

with regard to n, hence yielding O(n log(n)) practical running time.
In our experiments, the algorithm took at most 10.7 seconds to com-
pute on a mesh with 1 million vertices (6.3 million simplices total).

4.2 Discussion
A unique aspect of our algorithm is its ability, given the constraints C0g
and C2g , to automatically identify and remove the optimal set of sad-
dles with regard to the L∞ norm. Moreover, this is accomplished
without the need to carry a union-find data-structure unlike previ-
ous techniques. Although this data-structure has nearly linear time
complexity in theory, practically it could cause slowdowns by a non-
negligible constant factor, given the algorithm’s low resource require-
ment. Also, after simplification, the (vertex) position of the remain-
ing critical points is preserved. In the special case where the critical
points of C0g and C2g are selected based on topological persistence, the
algorithm produces a standard ε-simplification, as shown in Fig. 9. In
contrast to previous approaches, our algorithm directly works on a PL
representation of the field, which is more acceptable application-wise.
Importantly, it is also more general as critical points can be removed
arbitrarily (at the exception of the non-removable critical points sum-
marized in Fig. 3), irrespectively of the employed feature-selection
strategy.

4.3 Limitations
Given our formulation of general simplification (Sec. 2.2), for specific
constraint configurations, the value of the remaining critical points
may change after simplification. For instance, if the lowest minimum
in C0g is initially higher than the highest maximum in C2g , the algo-
rithm will change their values to satisfy the topological constraints.
Also, when removing only one extremum from the boundary, it will
be replaced by a boundary saddle if it is associated by the algorithm
(with regard to the L∞ norm) with an interior saddle (Fig. 7). This is
due to the fact that the number of critical points must be even on each



boundary component (Sec. 2.2), which may be counter-intuitive from
a user’s perspective. Moreover, whereas our algorithm removes the op-
timal set of saddles with regard to ||f−g||∞ given some extrema con-
straints, our strategy for function value update (which is purely based
on flooding) does not guarantee a minimization of ||f−g||∞, although
the resulting L∞ norm is close to the theoretical minimum. In the con-
text of persistence driven simplification, Bauer et al. [3] showed that
optimality could be reached by a combination of carving (i.e. pulling
the saddles halfway towards their associated extremum) and flooding
(i.e. pushing the extrema halfway towards their associated saddle) at
the expense of no longer guaranteeing a function value lock on the
maintained critical points. By simplifying all the pairs less persistent
than ε, their approach yields ||f − g||∞ ≤ ε

2
. In contrast, like in [10],

our approach yields ||f − g||∞ ≤ ε but locks the maintained critical
points in terms of function value. However, in the context of gen-
eral simplification, the optimal balance between carving and flooding
will be more difficult to evaluate, as it is no longer a local decision
which depends only on the pair of removed critical points (excessive
carving could break the enforcement of near-by extrema located in the
vicinity of the removed saddles). Finally, like any combinatorial ap-
proach, our algorithm provides strong guarantees on the topology of
the output at the expense of its geometrical smoothness. Unlike pre-
vious combinatorial algorithms using carving [2, 3, 10], our algorithm
uses flooding only. Hence, it does not suffer from the usual artifacts
of carving (visible thin paths linking sets of removed critical points),
but from those of flooding (flat regions in the output, Fig. 5, right). In
our experiments, we found that these artifacts were usually little no-
ticeable, unless the features removed by the user span a large region
of the domain (Fig. 5, right). If smoothness is desired, our approach
can be combined with a numerical technique (cf. Sec. 1.1) to provide
smooth outputs that still benefit from the topological guarantees of our
algorithm (see Sec. 5.2).

5 APPLICATIONS

To demonstrate the utility of our algorithm, we present two applica-
tions benefiting from a general scalar field simplification approach.

5.1 Terrain simplification with ad-hoc feature selection

Topological simplification of terrains can be particularly useful for to-
pographic analysis or water flow simulations as discussed by Bremer
et al. [4]. However, the original topological persistence measure can
be unsatisfactory for selecting features in such a context, as the charac-
terization of features of interest is application dependent and at times
can also be data-set dependent. Fig. 10 exemplifies this observation
on the Grand Canyon elevation data-set, which initially counts 65,526
critical points. The Grand Canyon can be decomposed in three major
regions from a geographic point of view: the canyon itself, its north
rim and its south rim. These regions (in black, green and blue respec-
tively in Fig. 10(a)) have been initially extracted by segmenting the
image along high elevation gradient and interactively completed by
the user. Based on this initial decomposition, we present two simpli-
fication scenarios. First, in Fig. 10(b), the topology of only the rims
has been emphasized: only the lowest minimum above 53% of the
total elevation difference has been maintained, the critical points in-
side the canyon have been selected for removal and all the maxima on
the rims above 53% of elevation have been maintained. In less than
2 seconds, our algorithm constructs the corresponding flooded Grand
Canyon, while enforcing the preservation of the selected topological
features on the rims. A contrary scenario would consist in emphasizing
the peaks inside the canyon. For instance, the result of such a simplifi-
cation strategy can drive a mesh simplification procedure for an inter-
active fly-through within the canyon. In that case (Fig. 10(c)), only the
global minimum has been maintained and all the maxima outside of
the canyon have been selected for removal. Note that in comparison,
a standard ε-simplification with compatible L∞ norm (Fig. 10(d)) is
unsatisfactory as it completely discards the topological features irre-
spectively of their location (zooms in Fig. 10), while yielding a worse
average data-fitting (Avg(|f − g|)).

Fig. 11. Solving the Laplace equation with topological guarantees
(transparent spheres are Dirichlet constraints). The combinatorial
Laplacian (a) satisfies the topological properties of the solution, but it
has a poor geometrical accuracy (level lines, top). The cotangent weight
Laplacian (b) provides an improved geometrical approximation (top) but
is numerically sensitive and generates invalid additional singularities (in-
set zooms). Our algorithm can be applied as a post-process (c), with no
threshold parameter, to remove these inconsistent critical points. The
resolution of the equation took 0.14 s. (surface: 25k vertices), while
the combinatorial simplification took 0.02 s. (1 iteration). Our algorithm
provides a solution (c) which both benefits from the geometrical approx-
imation quality of cotangent weights (||f − g||∞ = 0.12%) and from the
topological stability of the combinatorial Laplacian.

5.2 Scalar field design with topological guarantees
Many geometry processing problems involve numerically sensitive
tasks such as partial differential equation resolution, gradient field in-
tegration, or scale-space computation. In many cases, the topology
of the numerical solution is a major consideration. In meshing for
instance, extraordinary vertices often correspond to singularities and
these important constraints must be respected. However, numerical
noise often occurs and can alter the topology of the solution. We illus-
trate this issue with the Laplace equation subject to Dirichlet boundary
conditions. Beyond its ubiquity in geometry processing, this equation
plays an important role in electromagnetism, astronomy and fluid dy-
namics. Given a finite set of extrema constraints D along with cor-
responding target values, the solution f to this equation is defined as
follows:

f(di) = fdi ∀di ∈ D (4)
∆f(v) = 0 ∀v /∈ D (5)

where ∆ stands for a discretization of the Laplacian operator on sur-
faces. An important property of this equation is that the Dirichlet con-
straints D should be the only extrema of the solution.

However, since the Laplacian is a second-order operator, it is dif-
ficult to discretize for piecewise linear functions. Hence several dis-
cretization strategies have been proposed (see [21] for a comprehen-
sive discussion). Fig. 11 shows the solution of this equation for two
discretizations of the operator, obtained by least-squares optimiza-
tion with the penalty method [23]. The combinatorial Laplacian [21]
(Fig. 11(a)) is a straightforward discretization which exhibits robust
topological properties. However, as it is strongly biased by the dis-
cretization of the mesh, it fails at generating smooth level sets. In
contrast, the discretization based on cotangent weights [18] produces
much smoother level sets. However, in practice, surface triangulations
often include many sharp triangles. As edge angles get closer to zero,
the numerical error on their tangent evaluation can be arbitrarily am-
plified when used as the denominator for the cotangent computation,
hence yielding an error of arbitrarily high amplitude in the solution in
the vicinity of sharp triangles. As shown in Fig. 11(b), this numerical



error generates additional critical points (with non-zero persistence),
which prevents the solution from conforming to its formal description.

Our algorithm can be used in a straightforward manner to fix these
numerical instabilities by using the Dirichlet constraints as topologi-
cal constraints (C0g and C2g ). In practice, our algorithm is around an
order of magnitude faster than the actual numerical optimization (us-
ing CholMod). Thus it can be used as a post-process with a negligible
computation time overhead. Note that since our algorithm uses no
threshold parameter, it can be used in a robust manner, irrespective of
the amplitude of the numerical error. As shown in Fig. 11(c), our al-
gorithm automatically removes topological noise while minimally af-
fecting the function. Therefore, our approach can be used to generate
a solution with both the geometrical accuracy of the cotangent weight
Laplacian and the topological robustness of the combinatorial Lapla-
cian, yielding a solution with topological guarantees that is exploitable
for certified geometry processing.

Note however that due to its combinatorial nature, our algorithm
will locally break the harmonicity of the function in the vicinity of the
removed critical points by flattening the area. This drawback has only
a local impact and a small amplitude (in Fig. 11(c), ||f − g||∞ =
0.12%) and thus will be acceptable for most applications (like quad-
mesh design for example). However, it might be a limitation in spe-
cific applications where harmonicity is a critical feature that must be
enforced everywhere, like harmonic parameterization for instance.

6 CONCLUSION

In this paper, we have presented a combinatorial approach for the gen-
eral simplification of piecewise linear scalar fields on surfaces. By
abstracting our approach from the concepts of persistent homology,
we believe to have presented a simpler, more intuitive and more gen-
eral description of scalar field topological simplification. Also, we
enumerated all the configurations for which critical points were non-
removable given the topology of the domain, for surfaces with or with
out boundary. From this, we derived a strategy that allows for the
arbitrary suppresion of the removable critical points of the field.

We presented a simple iterative algorithm for general topological
simplification which, given some constraints on the extrema of the
output field, implicitly identifies and removes the optimal set of sad-
dles with regard to the L∞ norm, hence guaranteeing a small distance
||f − g||∞. Although it is iterative, extensive experiments on approx-
imated worst-case scenarios showed that the algorithm rarely takes
more than 2 iterations to converge. The algorithm uses no compu-
tationally expensive topological abstraction, such as a Morse-Smale
complex or even a contour tree; hence it is very fast in practice. It
can be used as a complement to existing numerical approaches to pro-
vide strict topological guarantees on the output. In contrast to previous
combinatorial approaches, our approach works directly on a PL rep-
resentation of the field (which is more acceptable application-wise),
is robust against multi-saddles, and handles surfaces with or without
boundary. Moreover, our approach solves a more general problem, for
which ε-simplifications have been shown to be a special case.

We demonstrated the utility, accuracy, and efficiency of our con-
tribution in two applications. In the context of scalar field design,
we showed that our algorithm could combine the practical individ-
ual advantages of different discretizations of the Laplace operator,
hence providing, without any threshold parameter, topological guaran-
tees for certified geometry processing. Other numerical problems on
surfaces, including other partial differential equation systems, gradi-
ent field integration or scale-space computations can benefit from this
post-processing black-box and we refer the reader to the C++ code
provided in appendix for usage examples.

A natural direction for future work is the extension of this approach
to volumetric data-sets. However, as the dimension of the domain in-
creases, new types of saddle points appear and more subtle topological
transitions occur on the level sets. Hence, enforcing the connectivity of
the sub- and sur-level sets is insufficient; the genus of the iso-surfaces
also needs to be efficiently controlled.
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