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Abstract This study focuses on the spatial distribution of mean annual and monthly precipitation in a small island

(1128 km2) named Martinique, located in the Lesser Antilles. Only 35 meteorological stations are available on the

territory, which has a complex topography. With a digital elevation model (DEM), 17 covariates that are likely to

explain precipitation were built. Several interpolation methods, such as regression-kriging (MLRK, PCRK, PLSK) and

external drift kriging (EDK) were tested using a cross-validation procedure.

For the regression methods, predictors were chosen by established techniques whereas a new approach is proposed

to select external drifts in a kriging which is based on a stepwise model selection by the Akaike Information Criterion

(AIC).

The prediction accuracy was assessed at validation sites with three di�erent skill scores. Results show that using

methods with no predictors such as inverse distance weighting (IDW) or universal kriging (UK) is inappropriate in such

a territory. EDK appears to outperform regression methods for any criteria, and selecting predictors by our approach

improves the prediction of mean annual precipitation compared to kriging with only elevation as drift. Finally, the

predicting performance was also studied by varying the size of the training set leading to less conclusive results for

EDK and its performance. Nevertheless, the proposed method seems to be a good way to improve the mapping of

climatic variables in a small island.

1 Introduction

Spatial climatic information is essential for many scienti�c studies of hydrology, agriculture, ecology, and environmental

sciences. However, the weather network is often sparse and not deployed on a regular grid, and so cannot provide good

spatial information to capture environmental variability. Spatial interpolation techniques are therefore an essential

tool in order to estimate precipitation over a domain, as they make it possible to predict the values at unmeasured

locations from observed points.

Various methods (geometric, statistical and geostatistical) can be used to map precipitation at high resolution.

For example, Xu et al. (2014) used inverse distance weighting (IDW) or ordinary kriging (OK) to estimate the spatial

distribution of daily rainfall. Like universal kriging (Bostan et al. 2012) or the Thiessen polygon (Goovaerts 2000), these

methods use only the observation locations, not covariates. It is well known however that precipitation is correlated

with environmental information, such as longitude, latitude, elevation or other geographical variables. Some spatial

methods can take this relation into account to achieve more accurate estimates (Castro et al. 2014; Borges et al.

2015). Multiple linear regression (MLR) is usually performed to relate precipitation to physical predictor variables

(Goovaerts 2000; Hwang et al. 2012; Kurtzman et al. 2009). Bessa� et al. (2013) showed that principal component

regression (PCR) or partial least squares (PLS) are also a good way to map climatic variables with predictors. In

most cases, kriging residuals derived from regressions signi�cantly improves the results of the method (Nalder and

Wein 1998; Branislav et al. 2013) and is usually called regression-kriging (RK). Kriging with external drift is also

a promising approach for predicting precipitation (Haberlandt 2007). According to these studies, the best method

to predict precipitation depends both on the variables to be mapped (daily or monthly precipitation) and on the

complexity of the land (mountainous or, �at land, etc). Thus, in order to determine the most accurate prediction, a

comparison between these methods is needed and is usually performed by cross-validation.
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The present study focuses on the performance of spatial techniques to map the annual and monthly mean pre-

cipitation in a small island (1128 km2) named Martinique, located in the Lesser Antilles (see Fig. 1(a)). It is well

known that, in this region, precipitation is strongly in�uenced by orography and the proximity of land (Smith et al.

2012) leading to great spatial variation. Using predictors for mapping precipitation therefore seems to be appropriate.

With a digital elevation model (DEM), 17 covariates which are likely to explain precipitation were built. Most of the

above-mentioned methods were tested via a cross-validation procedure on 35 meteorological stations. For the regres-

sion methods, predictors were chosen by established techniques whereas a new approach is proposed here to select

external drifts in kriging based on a stepwise model selection by the Akaike Information Criterion (AIC). Because of

the limited number of stations, local techniques presented in (Sun et al. 2015; Xie et al. 2011) were not tested.

The paper is sectioned as follows. A description of the data used (observation and predictors) is provided in Section

2. This is followed in Sections 3.1 and �3.2 by the interpolation techniques used in the study. The procedures to evaluate

the performance of these methods are mentioned in Section 3.3. Then, selection the predictors is described in Section

3.4. Section 4 presents the performance of the di�erent spatial methods in which two cross validation procedures were

performed. Finally, results are discussed in Section 5, followed by a summary in Section 6.

2 Data

Generally, a mapping method requires two types of data. The �rst one, which is essential, corresponds to observation

of the phenomenon we want to map. The second, which may or may not essential depending on the method used, is

some variables, such as elevation, that are known over the whole territory and which can explain the phenomenon;

these variables are called predictors in the following.

2.1 Observation

The precipitation data used in this study were provided by the French meteorological Institute (Météo-France). This

dataset contains monthly precipitation amounts from 1991− 2010. The rain gauge network consists of 37 rain gauges

that are distributed across the whole island (see Fig 1(b)) for a surface of 1128 km2. Note that for January and

December, 2 stations recorded no data during several days and were therefore removed from the database of mean

monthly precipitation. Only weather stations with complete records were included.

The main statistical values of precipitation are shown in Tab. 1 to summarize the spatial and temporal variability

of mean precipitation. The annual cycle comprises two seasons : the dry period between February and April and the

wet season between June and November in which monthly precipitations are at least twice as high as in the dry season.

The monthly precipitation can also vary considerably spatially (e.g. ratio > 6 in January). This variability can be

explained by the complex topography of the island of Martinique (See 1(c)). It should be mentioned that the locations

of the stations are not ideal: they are lacking in the mountainous area and are unevenly distributed on some coasts.

Mean monthly precipitation Elevation (m)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec An Stations SRTM

Min. 59.7 42.50 42.80 59.2 89.1 105.9 113.5 135.1 146.2 140.1 174.1 76.8 1185 2 0.35
1st Quartile 103.3 69.50 62.70 87.3 125.7 143.9 172.6 206.5 196.2 223.4 227.6 124.6 1784 19 49
Median 127.8 83.10 76.30 121.7 146.6 167.9 216.6 250.2 229.6 262.7 274.7 150.9 2027 48 127
Mean 154.8 96.55 93.54 131.0 164.8 193.7 238.0 259.8 251.6 283.0 308.5 181.3 2365 139 190

3rd Quartile 177.2 112.50 113.90 170.4 208.8 224.3 272.7 291.0 292.4 322.8 369.7 231.1 2852 224 271
Max 397.6 244.60 239.20 281.5 302.5 373.3 488.5 475.2 450.0 465.4 561.7 423.1 4697 510 1374

Nb. of stations 36 37 37 37 37 37 37 37 37 37 37 35 35

Table 1 Descriptive statistics of the monthly and annual precipitation (mm). The bottom line indicates, for each month, the
number of stations for which the monthly precipitation is known. The last two columns give descriptive statistics of elevation
for the 37 stations and for the Shuttle Radar Topography Model (SRTM) data (134142 points).

2.2 Building candidate predictors : physiographic variables

Building candidate predictors depends on the phenomenon to be mapped and is a fundamental step.

It is well known that the amount of rain that falls in the West Indies varies immensely from beach to mountain top,

so the distance to the coast seems to be a good predictor for precipitation. Three distances were taken into account

and are illustrated in Figure 2(g):

� dist_coast : Minimum Distance to a coast,

� dist_carib : Minimum Distance to the Caribbean Sea,

� dist_atlan : Minimum Distance to the Atlantic Ocean.



3

Anguilla

Barbuda

Antigua

Saint−Kitts

Montserrat

Guadeloupe

Dominica

Martinique

Saint−Lucia

Saint−Vincent

Barbados

Grenada

C
A

R
R

IB
E

A
N

 S
E

A

AT
LA

N
T

IC
 O

C
E

A
N

−63 −62 −61 −60

12
13

14
15

16
17

18

0 50 100 km

N

(a) West Indies (Martinique is circled)

0 5 10 15 km

−61.2 −61.1 −61.0 −60.9

14
.4

14
.5

14
.6

14
.7

14
.8

N

(b) location of the 37 stations

0

200

400

600

800

1000

1200

(c) SRTM elevation

Fig. 1 Location of Martinique in the West Indies (a). Location of the 37 stations in Martinique (b). Topography of Martinique
provided by SRTM data (c).

Besides, Martinique, like most of the islands of the Lesser Antilles, is characterized by a complex topography which

tends to enhance the rainfall due to synoptic disturbances by orographic e�ects (Smith et al. 2012). This means that

variables representing the topography should be a good way to predict precipitation.

A high resolution Digital Elevation Model (DEM) is needed to capture the complex topography of the island,

since with a too coarse DEM (for example a 1×1km2 resolution), mountains named locally pitons are smoothed, and,

hence the elevation of stations provided by the DEM and by metadata can di�er signi�cantly. That is why the SRTM

data (resolution ∼ 90m) which is available at http://www2.jpl.nasa.gov/srtm/ was used.

In (Daly et al. 2002), smoothed altitude was also tested in the precipitation model selection process. Three

predictors are introduced and illustrated in Figure 2(a):

� z90m : elevation at 90m resolution (SRTM data),

� zsmooth1 : Average elevation in a 1km neighborhood,

� zsmooth5 : Average elevation in a 5km neighborhood.

Agnew and Palutikof (2000) emphasized that the maximum elevation in a wedge is very useful in areas with dominant

wind directions, because the leeward slopes are drier and warmer than windward slopes. In the present study, the

North and South directions were not used since the main perturbations occurring in Martinique come from the Atlantic

Ocean (East of the island). Six other predictors were added :

� zxw1, zxw5, zxw10 : Maximum elevation in the West direction in a 1, 5, 10 km neighborhood (see Fig. 2(e)),

� zxe1, zxe5, zxe10 : Maximum elevation in the East direction in a 1, 5, 10 km neighborhood (see Fig. 2(c)),

Daly et al. (2002) also suggested using some characteristics of the terrain since the relationship between precipitation

and elevation can vary from one slope to another, depending on location and orientation :

� slope : slope evaluated with 4 neighbors (see Fig. 2(b)),

� curv : curvature evaluated with 4 neighbors (see Fig. 2(d)),

� aspect : aspect evaluated with 4 neighbors (see Fig. 2(f)),

This set of 15 physiographic variables was generated from the DEM coming from the SRTM data and explains, a

priori, spatial variability in the climate data. These variables can be easily generated with a geographical information

system. In our case, the R functions focal and terrain of the �raster� package (Hijmans 2014) were used.

Geographical positions (coordinates X and Y in the UTM 20N spatial reference) were also considered as predictors.

http://www2.jpl.nasa.gov/srtm/
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(a) Elevation : z90m, zsmooth1, zsmooth5 (b) slope

(c) Maximum elevation in East : zxe1, zxe5, zxe10 (d) curvature

(e) Maximum elevation in West : zxw1, zxw5, zxw10 (f) aspect

(g) distance to coast : dist_coast, dist_atlan, dist_carib

Fig. 2 Candidate predictors used in this study.
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3 Interpolation techniques used in this study

First, the interpolation techniques used in this study are brie�y presented and are separated into two groups: techniques

for which predictors (see Sec. 2.2) were used or not. In the following, the notations used are (here, the variable is the

mean monthly precipitation):

� n the number of sites where the variable is known (observed),

� si : a site with observation, i = 1..n,

� z(si) : the amount of the variable at site si,

� s0 : the location where we want to predict the amount of the variable,

� ẑ(s0) : the value predicted by the tested interpolation method at site s0,

� |si − sj | the Euclidean distance between si and sj ,

� Xj(s) : the amount of the predictor j at location s.

3.1 Without predictors

To apply the following methods, only observation and location of the variable are needed.

1. Inverse distance weighting of order d:

ẑ(s0) =

n∑
i=1

λi.z(si) with λi =
1/|si − s0|d∑n
i=1 1/|si − s0|d

(1)

In our case, d = 2 and this method is noted IDW

2. Kriging (simple, ordinary and universal):

Let Z∗(.) be the linear regression estimator (Z∗(s0) = ẑ(s0)) and Z(.) a random function where Z(si) = z(si).

Then, the value, ẑ(s0), can be written :

ẑ(s0) = µ(s0) +

n∑
i=1

ωi(s0).
(
z(si)− µ(si)

)
(2)

where µ(s0) and µ(si) are the expected values of Z∗(s0) and Z(si), respectively. The kriging weights, ωi(.) must

be determined to minimize the estimation variance, Var[Z∗(s0) − Z(s0)], while ensuring the unbiasedness of the

estimator, E[Z∗(s0) − Z(s0)] = 0. Under some assumptions, kriging is regarded as the best linear unbiased

estimator. To simplify, kriging can be based on a linear model for which the residuals are assumed to be spatially

dependent.

First, the trend, µ(.), of the random function Z(.) must be speci�ed among 3 types :

� µ(s) = m a known constant all over the studied area; this is simple kriging denoted SK

� µ(s) = µ a unknown constant which is considered to �uctuate locally maintaining stationarity within the local

neighborhood; this is the ordinary kriging denoted OK

� µ(s) smoothly varies within each local neighborhood and is modelled as a linear combination of functions of

the spatial coordinates; this is the universal kriging denoted UK

Then, a theoretical variogram is �tted on the empirical variogram determined by the sample values to determine

the weights, ωi(.). They are generated when the corresponding system of linear equations, depending on the type

of kriging, is solved.

These two methods are exact interpolators, that is to say, ẑ(si) = z(si) ∀i = 1..n.

3.2 Using predictors in interpolation

Contrary to the previous methods (IDW, SK, OK, UK), these methods use auxiliary information to explain the variable

we want to map. For example, as temperature commonly depends on the elevation, the goal is then to take into account

elevation, called a predictor, to estimate the temperature. Ideally, predictors must be known all over the domain. In

this way, 4 methods which can use auxiliary information as predictors are proposed :

Let p be the number of predictors selected.

1. Multiple linear regression (MLR):

ẑ(s) = a0 +

p∑
j=1

aj .Xj(s) (3)

where the coe�cients, aj are determined by the sample values and the least square method. Note that this method

imposes n > p. It is recommended to have n > p+ 40.
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2. Principal component regression (PCR):

The �rst step is to perform a principal component analysis (PCA) on the p predictors. The q chosen eigenvectors

PCj are then used as predictors in a MLR :

ẑ(s) = b0 +

q∑
j=1

bj .PCj(s) (4)

where the coe�cients, bj are determined by the sample values and the least square method. This method is often

used instead of MLR when n < p.

3. Partial least square regression (PLSR):

This method bears some relation to principal component regression, since the method consists in maximizing the

variance of predictors (Xi) and the correlation between predictors and the variable of interest.

4. External drift kriging (EDK):

This method is another type of kriging for which the trend µ(.) is a linear combination of functions of predictors or

external drifts. Note that UK is a particular case of EDK where the external drifts are only the spatial coordinates.

The three types of regression (MLR, PCR, PLS) are inexact interpolators, since the values ẑ(si) predicted by these

models di�er from observations z(si). The errors ẑ(si)− z(si), called residuals, follow a gaussian distribution centered

at 0. A simple kriging (SK), with µ = 0, can be performed on residuals leading to an exact interpolator. In most cases,

kriging residuals signi�cantly improves the results of the method (Nalder and Wein 1998; Bessa� et al. 2013) and is

usually called regression-kriging (RK). In our case, three types of regression were used and the fact of kriging residuals

will be noted MLRK, PCRK and PLSK.

Remark 1: Although normality is not a prerequisite for kriging, it is a desirable property. Kriging will only generate

the best absolute estimate if the random function �ts a normal distribution. In this way, applying a mathematical

function such as the natural logarithm or power function can be performed on data.

Remark 2: In theory, the predictors for MLR or EDK must be independent. Nevertheless, in practice, this assumption

is not really veri�ed. This is the case in the present study where an exhaustive list of predictors was preferred.

Remark3: EDK and MLRK seem to be similar but they lead to di�erent results (Hengl et al. 2003). Contrary to EDK,

the parameters of a MLR are estimated by the least square method in which spatial dependence is not taken into

account. With EDK, equations are solved at once whereas MLRK explicitly separates trend estimation from spatial

prediction of residuals. Note that, for MLRK, there is no danger of instability as is the case with the EDK system.

Besides, in theory, regression requires independent residuals but kriging relies on dependent residuals. For this reason,

generalized linear models can be an alternative but this method was not used here.

3.3 Choosing the spatial prediction method

Several interpolation methods were presented in Sections 3.1 and �3.2 with the pros and the cons related to each

option. From the same data, these methods can provide signi�cantly di�erent maps of the variable of interest (See Fig

3). Choosing the best method is therefore a key point in order to propose a map close to reality.

To achieve this, cross-validation is widely used. The goal is to estimate the expected level of �t of a model to a data

set that is independent of the data that were used to train the model. It consists in splitting the dataset into training

and validation data. For each split, the model is �tted to the training data, and predictive accuracy is assessed using

the validation data. There are di�erent types of cross validation. In our case, only two were used :

1. The Leave-One-Out (LOO) procedure involves using only one observation as the validation set and the n − 1

remaining observations as the training set. It requires learning and validating only Nsplit = n times. Then the

n ẑ(si) predicted values are compared to the n ẑ(si) observed values.

2. The repeated random sub-sampling validation involves using randomly p > 1 observations among n as the vali-

dation and the n − p remaining observations as the training set. In this study, the number of random splits was

�xed at Nsplit = 100. Then the (Nsplit × p) ẑ(si) predicted values are compared to the (Nsplit × p) z(si) observed
values.

The best model is the one which minimizes the error between predicted and observed values. To determine this, three

criteria were used and are de�ned below:

Let be z = 1
n

∑n
i=1 z(si), and, ẑ

′(si) = ẑ(si)− z, and, z′(si) = z(si)− z
� The Root Mean Square Error (RMSE) is expected to be close to 0.

RMSE =

√√√√ 1

n

n∑
i=1

(ẑ(si)− z(si))2 (5)
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� The Nash and Sutcli�e coe�cient of e�ciency (EF ≤ 1) is expected to be close to 1 (Nash and Sutcli�e 1970).

EF = 1−
∑n
i=1 (ẑ(si)− z(si))

2∑n
i=1 (z − z(si))2

(6)

� The Willmott index (0 ≤ D ≤ 1) is expected to be close to 1 (Willmott et al. 2012).

D = 1−
∑n
i=1 (ẑ(si)− z(si))

2∑n
i=1 (

∣∣∣ẑ′(si)∣∣∣− |z′(si)|)2 (7)

(a) Inverse distance weighting (IDW) (b) Ordinary kriging (OK) (c) Multiple linear regression (MLR)

Fig. 3 Mean annual precipitation distribution according to three di�erent interpolation methods.

3.4 Predictor selection

In Section 3.2, spatial prediction methods which use predictors were presented. In our case, 17 predictors were selected

to explain precipitation (see Section 2.2). The fact of taking a predictor into account or not has a signi�cant impact on

the prediction. The Pearson correlation coe�cient is widely used to show how a predictor is linked with the variable

of interest (see Tab. 2). However, choosing a model with predictors which have the greatest correlation is not suitable

because two predictors can be strongly correlated (e.g. z90m and zsmooth1) leading to a redundancy of information

which can penalize the mapping. Adding one predictor or another is a critical step in mapping.

aspect curv dist_atlan dist_caraib dist_coast slope z90m zsmoth1
0.11 0.07 0.21 0.23 0.79 0.29 0.83 0.87

zsmooth5 zxe10 zxe1 zxe5 zxw10 zxw1 zxw5
0.84 0.52 0.79 0.67 0.81 0.80 0.73

Table 2 Pearson correlation coe�cient between predictors and the mean annual precipitation (estimated with 35 values).

The Akaike Information Criterion (noted AIC) can be used to select a model1. Unlike the criteria presented in

Section 3.3, it handles the trade-o� between the goodness of �t of the model and the complexity of the model (number

of predictors) and is written as follows:

AIC = 2p − 2 ln(L) (8)

where p is the number of predictors and L the likelihood of the model. Given a set of candidate models for the data,

the preferred model is the one with the minimum AIC value. In the case n/p < 40 (where n denotes the sample size),

it is strongly recommended to use the corrected AICc:

AICc = AIC +
2p(p+ 1)

n− p− 1
(9)

1 Here, a model is de�ned by predictors
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The AIC can be linked with the RMSE criterion (Aertsen et al. 2009):

AIC = n ln(RMSE) + 2p (10)

Instead of testing all possible models, stepwise methods are widely used to select the best model. In our case,

forward selection was used. This involves starting with no predictor in the model, testing the addition of each predictor

using a chosen model comparison criterion, adding the predictor (if any) that improves the model the most, and

repeating this process until none improves the model. The comparison criterion di�ers from spatial prediction methods

:

� for MLR (2p di�erent models), the function �stepAIC� from the R package MASS was used (Venables and Ripley

2002).

� for PLS and PCR (p di�erent models), the exhaustive method was used : the LOO procedure is applied for each

model to estimate the RMSE. Then the model which minimized the AICc was considered as the best model.

� for EDK (2p di�erent models), forward selection was applied with the AICc as selection criterion (evaluated by

the RMSE) in performing the LOO procedure for each tested model. The initial model is equivalent to OK.

Remark: For the MLR, PLS and PCR methods, procedures to select predictors are widely used in the literature. For

the EDK, the proposed procedure is, as far as we know, a novelty.

3.5 Implementing the methods

All the methods were implemented in the software R (R Core Team 2012). For IDW and kriging, the package gstat

(Pebesma 2004) was used.

The package pls (Mevik et al. 2013) provides functions for regression methods such as PCR and PLS.

After predicting the mean annual and monthly precipitation with these methods, a set of map layers in raster

format was generated. These layers were based on grids, where each point represents the center of a 90m side square

(the resolution of the DEM, see Section 2.2 above). Finally, the raster package (Hijmans 2014) was used to illustrate

predicted maps (rasters) and to build predictors.

3.6 Theoretical and empirical models in kriging

The Matern model with the Stein representation (Stein 1999) was imposed for the kriging for which the semivariance

is

γ(h) = c0 + c1

(
1− 1

2ν−1Γ (ν)

(
2ν1/2h

r

)
νKν

(
2ν1/2h

r

))
(11)

where h is the separation distance, Kν is the Basset function, Γ is the gamma function, r is the range or distance

parameter (r > 0) which measures how quickly the correlations decay with distance, and ν is the smoothness parameter

(ν > 0). c0 corresponds to the nugget variance, and c0 + c1 to the sill variance. The Matern model was chosen since it

has great �exibility for modelling the spatial covariance (Minasny and McBratney 2005). Note, that the exponential

model γ(h) = c0 + c1 exp(−h/r) is a particular case of the Matern model (ν = 1/2).

The empirical variogram was calculated by the method of moments :

γ̂(h) =
1

N(h)

N(h)∑
i=1

[z(si)− z(si + h)]2 (12)

where N(h) is the number of pairs of observations separated by distance h.

Then, the theoretical model is automatically �tted to the empirical variogram by the weighted least squares by

minimizing the objective function :

O(θ) =
∑
d

Nd
d2

[γ̂(d)− γθ(d)]2 (13)

where Nd is the number of pairs for lag d (see Table 3), γ̂ the empirical variogram, and, γθ the Matern model with

parameter vector θ.

Note that, when a non-stationary (i.e. non-constant) mean is used as in UK and EDK, both for simulation and

prediction purposes, the variogram model de�ned is that of the residual process, not that of the raw observations.

In this study, no nugget e�ect and no anisotropy2 has been considered. For the interpolation neighborhood, global

prediction was used, meaning that for each prediction all the data values were used. In fact, kriging was performed

with the default options of the gstat R package.

2 because of the lack of points
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Nb of pairs (Nd) 6 14 18 14 20 20 24 27 35 23 36 37 20 30

Average distance (d) 2031 3216 4579 5904 7302 8531 9985 11413 12536 13776 15267 16489 17847 19145

Table 3 The number of point pairs and the average distance (in meters) of all point pairs considered to estimate variograms
(in kriging).

4 Results

All the methods described in Sections 3.1 and 3.2 were performed. Residual kriging improved the performance of the

methods MLR,PCR and PLS (not shown here). Kriging with only z90m as external drift was also performed, noted

z90mK. A log-transformation was also applied on observations in order to obtain more Gaussian data. In order to

simplify the tables and �gures, the results of only seven methods are mentioned further: IDW, UK, MLRK,PCRK,

PLSK, z90mK and EDK.

4.1 Predicting performance via the LOO procedure

Table 4 illustrates the performance of the di�erent predicting methods for the annual mean precipitation. First, the

gain of the log-transformation depends on the methods and is not really signi�cant. The methods with no predictors

(IDW and UK) show the worst results and using them on such a territory seems to be inappropriate. Using predictors

signi�cantly improves the prediction. Adding only the altitude in kriging (z90mK) provides better results than UK but

does not appear su�cient to fully explain the precipitation, as adding other predictors greatly improves the predicting

values. For example, MLRK in which the model is composed of seven predictors shows better results than kriging with

altitude. For PLSK, four eigenvectors su�ce to minimize the AICc. The regression kriging methods (MLRK, PCRK,

PLSK) have very similar good performances (RMSE∼280 and EF∼0.87). EDK, which uses only 2 predictors (see Table

5), seems to be the best method to predict mean annual precipitation (RMSE=223.3, EF=0.91). For information,

Figure 4 illustrates the empirical and the theoretical variograms for UK, z90mK, and EDK3. Residuals coming from

the trend of EDK seem to be more �ttable than those of UK or z90mK.

With log-transformation No transformation
RMSE D EF RMSE D EF

IDW 543.7 0.69 0.56 532.0 0.69 0.58
UK 484.0 0.73 0.65 495.5 0.73 0.63

MLRK 284.4 0.84 0.88 269.3 0.84 0.89
PCRK 295.0 0.84 0.87 290.3 0.84 0.87
PLSK 295.2 0.84 0.87 275.0 0.85 0.88
z90mK 386.8 0.778 0.782 388.7 0.77 0.77
EDK 223.3 0.85 0.91 235.0 0.85 0.91

Table 4 Skill scores de�ned in Section 3.3 of the di�erent interpolation methods estimated by the LOO-procedure for annual
mean precipitation. The cells in grey indicate the best predicting method according to the score.

The LOO procedure was also carried out for the twelve monthly mean precipitations (with no log-transformation)

and the results are shown in Fig. 5 . As for the annual precipitation, EDK seems to be the best method to predict mean

monthly precipitation,since for any month, the RMSE is the lowest with this method, whereas IDW and UK are not

appropriate. For other two criteria (EF and D), there are only three months in which MLRK seems to predict monthly

precipitation better. Nevertheless, EDK generally provides the best results. Note that, with a log-transformation of

data, EDK is much better and becomes the best method for any criterion and month.

4.2 Predictors chosen for EDK

Table 5 lists the predictors used in EDK for the di�erent months. The selected predictors di�er from one month to

another. The descriptive variable zxe1 is the one most often used to predict mean precipitation (9 out of 13 for the

Matern variogram), followed by dist_coast and zsmooth5. Note that z90m is never used; in addition, the choice of the

function to �t the variogram is introduced only from Section 4.5 below.

The number of predictors varies between one and three leading to a model in which the predictors are not strongly

correlated. Using the AICc criterion limits this number (See Fig. 6) while minimizing the RMSE should involve

choosing eight predictors for annual precipitation, only two are necessary with the AICc criterion. Note, that for

PCRK and PLSK, the optimal number of eigenvectors ranges from 4-8 depending on the month.

3 The residuals, after taking into account the di�erent trends, were used instead of the target variable to estimate variograms
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Fig. 5 Skill scores de�ned in �3.3 of the di�erent interpolation methods estimated by the LOO-procedure for the mean monthly
precipitation.

Note that the complexity of the model (characterized by 2p in Eq. 10) has a di�erent weight for the total AIC

depending on the observation range (which heavily impacts the RMSE) of the target variable. Nevertheless, the

number of predictors is the highest for February, the month in which the RMSE is the lowest. This comes from using

the logarithm of the RMSE which reduces the scale e�ect.

Pred. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
dist_coast × � × � × � × � × � × � � × �
zsmooth1 × ×
zsmooth5 × � × � × � � × � � ×

zxe1 × � × � × � × � × � × � � × � � × � × �
zxe5 × �
zxw10 × �
slope ×
Y × �

Table 5 External drifts (predictors) chosen to predict the mean monthly mean precipitation with EDK. The symbol × (resp.
�) indicates that the predictor is selected when the Matern (resp. exponential) variogram is imposed.
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4.3 Predicting performance according to the size of the training set

Here, we want to test the performance of mapping methods to predict the mean annual precipitation according to

the available data. The repeated random sub sampling validation was performed for the seven methods tested with

di�erent sizes of training set (n− p)4.
For PCRK (resp. PLSK), the number of eigenvectors was �xed at �ve (resp. four) (the optimum number according

to the LOO procedure). For EDK and MLRK, their models (predictors) were �xed at the beginning (de�ned by the

LOO procedure). Only the variograms or coe�cients were re-estimated for each random split.

Figure 7 illustrates the skill scores of the seven methods according to the size of the training set to predict the

mean annual precipitation. For each method, the performance decreases with the size of the training set, as expected.

Nevertheless, some methods seem to be more sensitive to the number of available data. For example, the performance

of IDW degrades only slightly, whereas MLRK, from a critical value, becomes the worst method. So applying this

method which showed good performances with the LOO procedure seems to be questionable, probably because the

number of stations is not much greater than the number of predictors. The behavior of PCRK and PLSK is very similar

while z90mK seems to be more robust than EDK. EDK appears to be the best method for a training set greater than

20, then PLSK becomes better.

4.4 Regionalization of the mean annual and monthly precipitation

Predictors are known on the whole territory at a 90m resolution. So, EDK can be performed in order to map the

mean monthly (or annual) precipitation at the same resolution in Martinique. These maps are illustrated in Fig. 8 (for

annual, February and September) and show the highest amounts of precipitation are located in the regions located at

the highest altitude. These amounts are questionable because of the gap between maximum DEM and station altitude

(see Table 1). Indeed, the predicted precipitations are extrapolated by EDK to regions with a higher altitude than the

highest altitude station (510m). A historical station, which was located at an elevation of 1010m (resp. 965m) according

to metadata (resp. DEM), documented the amount of annual precipitation during �ve complete years (1962-1966).

The observed mean annual precipitation at this high altitude station was 4642mm versus 5015mm from the predicted

map. This gap of 10% is relatively small but it cannot validate the extrapolation of precipitation. It only shows that

the predicted values at high altitude seem to be of the same order of magnitude as what can expected in reality.

4 n = 35 and the size of the validation set is p with p=1..20.
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Fig. 7 Skill scores de�ned in Section 3.3 of the di�erent interpolation methods according to di�erent sizes of training set for
the mean annual precipitation.

(a) Annual (b) February (dry season) (c) September (wet season)

Fig. 8 Mean annual and monthly (February and September) precipitation during 1991-2010 provided by EDK.

4.5 Sensitivity of the choice of the function to �t the variogram

Until now, in kriging, only Matern model with the Stein representation was used to �t the variogram because this

model is the most appropriate according to observation. In order to study the sensitivity of the method to this choice,

the same procedure (selecting predictors by the proposed method, estimating skill scores, mapping) was performed

by imposing the exponential model. For most months (9 out of 13), the selected predictors are the same for both

models (see Tab. 5). According to the LOO-procedure, the performances are similar : RMSE = 219.5 with an

exponential model versus 223.3 with a Matern model for the mean annual precipitation (and log-transformation) or

EF = 0.88 with exponential model versus 0.89 with the Matern model for the mean precipitation in February (and

log-transformation). Even if the selected predictors are not the same between the two models, the performances remain

similar (RMSE = 23 versus 26 for September). The impact of the model choice on the predicted maps are illustrated

in Fig. 9. When the predictors are identical for both models, the gap between the two models does not exceed 10%

(see Fig. 9(a) and 9(b)) whereas this gap rises to 20% when the predictors di�er between the two models (see Fig

9(c)).

5 Discussion

The choice of interpolation method depends on data type, area of interest and the spatial scale used. Here, we focused

on the mean monthly and annual precipitation in a small island with a complex topography and great spatial variation.

Several spatial methods which are widely used to interpolate mean climate data were tested via cross-validation.
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(a) Annual (b) February (dry season) (c) September (wet season)

Fig. 9 Sensitivity of the choice of variogram on the mean annual and monthly (February and September) precipitation: Delta
(in percentage) between the maps provided by EDK with a Exponential variogram and with the Matern variogram.

The principal novelty of the study resides in the predictor selection in EDK. In the literature, the external drifts

are often chosen according to a a-priori knowledge. Selecting predictors according to the proposed method improves

the predictive performance of EDK : EF = 0.91 versus EF=0.78 if elevation is the only predictor for the mean annual

precipitation (estimated by the LOO-procedure). The gain is similar for all criteria, not only RMSE which is the

criterion used to select predictors. The proposed procedure achieves to an accurate prediction of mean precipitation

with only one, two or three covariates. Besides, the chosen predictors are quite stable for each pluviometric regime. For

example, the months during the dry season (February to April) are characterized by the similar predictors : zsmooth5

and zxe1 even if the selection procedure for these months was performed independently, whereas in the wet season

(June to October), dist_coast is chosen for each month. This indicates that there is a climatological coherence in the

choice of predictors. Lastly, EDK seems to outperform regression methods such as MLRK, PCRK or PLSK. Overall,

the results for mean annual precipitation are notably good when compared to results reported by other studies (Hong

et al. 2005; Sun et al. 2015). Moreover, the proposed method to select predictors, performances, and the resulting

maps seems to be little in�uenced by the choice of the function to �t the variogram. The methods used in this paper

have also been tested on Guadeloupe (a very similar island to Martinique) leading to similar results : EDK was the

most accurate method according to the LOO-procedure and the chosen predictors were coherent and not numerous.

Clearly, this method seems to be a great opportunity to improve the accuracy of interpolations in such islands.

Applying this method to a larger territory with a large number of observations may not be straightforward: the

computation is more time-consuming than with other methods since a LOO-procedure must be performed for each

predictor to select the best one. Nevertheless, it has been used in France to map the parameters of a rainfall generator

(Carreau et al. 2013) with about 2000 rain gauge stations. Observations were split into four climatic zones (Cantet et al.

2011) in which the method was performed independently with a reasonable CPU-time. For regions with a (relatively)

complex topography such as �Mediterranean� and �Highland�, EDK clearly provides the most accurate prediction

according to a repeated random sub-sampling validation (as in Section 4.3 above) whereas, in �atter regions, the gain

of EDK is less pronounced.

6 Conclusion

In this paper, several spatial interpolation techniques were applied to map the annual and monthly mean precipitation

in a small complex topography territory. In our case, if physiographical variables are considered in spatial interpolation,

the prediction performances are improved. The cross validation shows that methods which incorporate predictors

(MLRK, PCRK, PLSK, z90mK and EDK) clearly outperform methods which consider only coordinates (IDW and

UK). This result can be explained by the variable of interest which is a long time scale precipitation estimated over

several years. Regression methods (MLRK, PCRK ans PLSK) seem to produce more accurate estimates than kriging

with only elevation as drift. However, according to the LOO-procedure, if the predictors selected by the proposed

procedure are incorporated in kriging, then EDK gives the best prediction. Note, that the choice of the function

used to �t the variogram has no signi�cant impact on the selected predictors, performances or resulting maps of

EDK. Nevertheless, the fact that the proposed method is in�uenced by the size of the observed sample (more than

PLSK but less than MLRK) means that the precautionary principle must be applied. Further investigation is needed

to completely validate this method. An alternative method might be to reinterpret distance in IDW (which is the

method that is the least in�uenced the sampling) as in (Ahrens 2006).
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