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Large deviations for the empirical measure of random
polynomials: revisit of the Zeitouni-Zelditch theorem.

Raphaël Butez∗

September 30, 2015

Abstract

This article revisits the work by Ofer Zeitouni and Steve Zelditch on large devia-
tions for the empirical measures of random orthogonal polynomials with i.i.d. Gaussian
complex coefficients, and extends this result to real Gaussian coefficients. This article
does not require any knowledge in geometry. For clarity, we focus on two classical
cases: Kac polynomials and elliptic polynomials.
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1 Introduction
We study three different models of random polynomials, orthogonal polynomials, Kac
polynomials, and elliptic polynomial, the two last being examples of orthogonal polyno-
mials. The coefficients are i.i.d. random variables which can be either:

Complex Gaussian coefficients ak = bk + ick where
(
bk
ck

)
∼ N (0, 1

2I2)

Real Gaussian coefficients ak ∼ N (0, 1
2).

We will always refer to those two possibilities as the complex and real case. In all the
article, we assume that the ak’s are independent. Given (R0, . . . , Rn) a basis of Cn[X] we
consider the random polynomials:

Pn = a0R0 + a1R1 + · · ·+ anRn. (1)

In order to study the zeros z1, . . . , zn of the random polynomials Pn we introduce their
empirical measure:

µn = 1
n

n∑
i=1

δzi . (2)

We will focus on three classes of random polynomials corresponding to different choices of
the polynomials Rj ’s:

Orthogonal polynomials Rk orthonormal family in L2

Kac polynomials Rk = Xk

Elliptic polynomials Rk =
√(n

k

)
Xk

The study of the zeros of random polynomials started with articles by Kac [Kac48],
Littlewood and Offord [LO39], Hammersley [Ham56] which focused on the number of real
zeros. The literature about random polynomials is vast, we refer to the book by Bharucha-
Reid and Sambandham [BRS86] and the article by Tao and Vu [TV14] for a nice account
of the classical results. The study of the complex roots was initiated by Polya, Sparo and
Sur. Recently, the minimal condition to obtain the convergence of (µn)n∈N was given by
Kabluchko and Zaporozhets [KZ13].

The purpose of this article is to revisit the article of Zeitouni and Zelditch [ZZ10]. They
prove that the empirical measures of the zeros of random orthonormal polynomials with
respect to a scalar product in L2 and complex Gaussian coefficients satisfy a large deviation
principle in the projective space CP1. Here we revisit their proof of their theorem in an
elementary way although the techniques used are mainly a reformulation of their work.
Using a compactification technique based on inverse stereographic projection, we prove a
large deviation principle for the push-forward problem on a sphere of R3 and then obtain
the result in C. The proof adapts to the case of real coefficients, which allows us to extend
the theorem. The compactification technique was first introduced by Zelditch in [ZZ10],
and discovered again independently by Hardy [Har12] in order to prove a large deviation
principle for Coulomb gases with weakly confining potential. The compactification method
was also used by Bloom in [BLW14] in a more general framework.

Large deviations for empirical measures of random polynomials are only known for
Gaussian complex coefficients [ZZ10], which is the subject of the present work, and for
exponential coefficients in the Kac case studied by Ghosh and Zeitouni in [GZ13]. All
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these cases rely on the ability to compute the law of the roots of Pn. These results should
be compared with their equivalent in random matrix theory: the Ginibre ensemble, real or
complex. Many authors used the link between Coulomb gases and eigenvalues of random
matrices to obtain large deviation principles as in Ben Arous and Guionnet [BAG97],
Ben Arous and Zeitouni [BAZ98], Hiai and Petz [HP00]. In a more general setup, large
deviation principle for empirical measures of a Coulomb gas are valid. See for example
[CGZ14] for a similar result in any dimension with general repulsion, Hardy [Har12], or
Bloom [BLW14].

Orthogonal polynomials

Given a probability measure ν and a continuous function φ, we consider the scalar products
on Cn[X]:

〈P,Q〉 =
∫
P (z)Q(z)e−nφ(z)dν(z). (3)

Let R0, . . . , Rn be an orthonormal basis for this scalar product, we define

Pn =
n∑
k=0

akRk. (4)

We call K the support of ν. We assume that its compactification by inverse stereographic
projection is non-thin at all the points of its closure. This notion comes from potential
theory and is detailed in [Ran95, p. 78]. We can understand it as the requirement that
the support of ν is not too degenerated. For instance, if the support of ν is connected and
has more than one point, it is non-thin at all its points [Ran95, Thoerem 3.8.3 p 79]. It
also holds if it has a finite number of connected components with more than one point.
On the other hand, a polar set is thin at every point. We define the Berstein-Markov
property which was introduced in [ZZ10]. This property is the key of the proof of the
large deviations upper bound.

Definition 1.1 (Bernstein-Markov property). We say that the couple (φ, µ) satisfies the
Bernstein-Markov property if, for every ε > 0, there exists a constant Cε > 0 such that,
for any n ∈ N and for any polynomial P ∈ Cn[X] we have:

sup
z∈K
{|P (z)|2e−nφ(z)} ≤ Cεeεn‖P‖2L2

where K is the support of the measure ν.

We define the Hamiltonian:

HO(z1, . . . , zn) = − 1
n2

∑
i 6=j

log |zi − zj |+
n+ 1
n2 log

∫ n∏
i=1
|z − zi|2e−nφ(z)dν(z). (5)

In the complex case, the distribution of the roots (z1, . . . , zn) of Pn is given by:

1
Zn

exp (−βnHO(z1, . . . , zn)) d`Cn(z1, . . . , zn). (6)

where `Cn is the Lebesgue measure on Cn, and Zn is a constant. βn is the inverse of
a temperature, so we can see 1/βn as a cooling scheme. In this article, we will always
consider:

βn = n2
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which corresponds to the distribution of the roots of random polynomials. We can see
(z1, . . . , zn) as a system of particles in interaction. The term

− 1
n2

∑
i 6=j

log |zi − zj |

corresponds to a repulsion between the particles and is compensated by the confinement

n+ 1
n2 log

∫ n∏
i=1
|z − zi|2e−nφ(z)dν(z).

This model is very close to the classical Coulomb gas model, where the confinement takes
the simpler form

∑n
i=1 V (zi), which does not involve any interaction between the parti-

cles. This non-interaction property can be seen as linearity with respect to the empirical
measure via the relation:

1
n

n∑
i=1

V (zi) =
∫
V (w)dµn(w) = 〈V, µn〉.

The confinement term associated to the Hamiltonian (5) is more complicated, but can still
be compared to a classical potential thanks to the Jensen inequality.

The study of the real case is interesting only if the polynomials Rk’s are real. In
the real case, the distribution of the roots is not absolutely continuous with respect to the
Lebesgue measure of Cn as the probability to have a real root is positive. This distribution
is given by the following mixture:

bn/2c∑
k=0

1
Zn,k

exp
(
−βn

1
2HO(z1, . . . , zn)

)
d`n,k(z1, . . . , zn). (7)

where we defined, `R and `C being the Lebesgue measures on R and C,

d`n,k(z1, . . . , zn) = d`R(z1) . . . d`R(zn−2k)d`C(zn−k) . . . d`C(zn) (8)

and where Zn,k are constants. The first n − 2k particles are on the real line and with k
pairs of complex numbers and their conjugates. In the complex case, all the results of this
article are valid for any sequence satisfying

βn � n.

In the real case, additional assumptions are needed, they are given in (40), (46) and (51).
Those asumptions correspond to a uniform control of the normalizing constants

In this article, the term weak topology corresponds to the topology of convergence
in distribution, which is the weak topology associated to continuous and bounded test
functions. This topology is associated to the Bounded Lipschitz metric d defined as:

∀µ, ν d(µ, ν) = sup
f

∣∣∣∣∫ fµ−
∫
fdν

∣∣∣∣
where the surpremum is taken over functions bounded by 1 and 1-Lipschitz.
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Theorem 1.2 (Large deviation principle for complex orthogonal polynomials). Let µn be
the empirical measure of the gas (6). Let us define IO :M1(C)→ R ∪ {∞}:

IO(µ) = −
∫∫ (

log |z − w| − 1
2 log(1 + |z|2)− 1

2 log(1 + |w|2)
)
dµ(z)dµ(w)

+ sup
z∈K

[∫
log |z − w|2 − log(1 + |w|2)dµ(w)− φ(z)

]
.

When
∫

log(1 + |w|2)dµ(w) <∞ then we have:

IO(µ) = −
∫∫

log |z − w|dµ(z)dµ(w) + sup
z∈K

[∫
log |z − w|2dµ(w)− φ(z)

]
If the couple (φ, ν) satisfies the Bernstein-Markov property (1.1) then (µn)n∈N satisfy a
large deviation principle inM1(C) with the weak topology, speed βn and good rate function
IO − inf IO . This means that for any Borel set A ⊂M1(C) we have:

− inf
IntA

(IO−inf IO) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ − inf
CloA

(IO−inf IO).

Theorem 1.3 (Large deviation principle for real orthogonal polynomials). Let µn be the
empirical measure of the gas (7). If the couple (φ, ν) satisfies the Bernstein-Markov prop-
erty, then (µn)n∈N satisfies a large deviation principle in M1(C) with the weak topology,
speed βn and good rate function:

ĨO(µ) =
{1

2(IO(µ)− inf IO) if µ is invariant under the map z 7→ z̄

∞ otherwise.

This means that for any Borel set A ⊂M1(C) we have:

− inf
IntA

ĨO ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ − inf
CloA

ĨO.

Those last two theorems imply that, in both cases, almost surely:

d(µn,Argmin(IO)) −−−→
n→∞

0 (9)

where Argmin(IO) is the unique minizer of function IO. This is a consequence of the
Borel-Cantelli Lemma used with the sets {µ ∈ M1(C) | d(µ,Argmin(IO)) > ε}. The
minimizer is the equilibrium measure of the support of ν, see [ZZ10, Lemma 30].

Kac polynomials

The most important example of orthonormal polynomials are Kac polynomials:

Pn = ao + a1X + · · ·+ anX
n. (10)

The canonical basis is orthonormal with respect to the scalar product on Cn[X]:

〈P,Q〉 =
∫
P (z)Q(z)dνS(z) (11)
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where νS is the uniform measure on S, the unit circle of C. The sequence (µn)n∈N converges
almost surely weakly towards the measure νS . Although this result is quite ancient, we
can deduced it from (9). We define the Hamiltonian:

H(z1, . . . , zn) = − 1
n2

∑
i 6=j

log |zi − zj |+
n+ 1
n2 log

∫ n∏
i=1
|z − zi|2dνS(z) (12)

In the complex case, the distribution of the roots is given by the Gibbs measure:

1
Zn

exp (−βnH(z1, . . . , zn)) d`Cn(z1, . . . , zn) (13)

In the real case, the distribution of the roots is the mixture:

bn/2c∑
k=0

1
Zn,k

exp
(
−βn

1
2H(z1, . . . , zn)

)
d`n,k(z1, . . . , zn) (14)

where the Zn,k are constants.

Theorem 1.4 (Large deviations for complex Kac polynomials). Let µn be the empirical
measure of the gas (13). Let us define I :M1(C)→ R ∪ {∞}:

I(µ) = −
∫∫ (

log |z − w| − 1
2 log(1 + |z|2)− 1

2 log(1 + |w|2)
)
dµ(z)dµ(w)

+ sup
z∈S

∫ (
log |z − w|2 − log(1 + |w|2)

)
dµ(w).

When
∫

log(1 + |z|2)dµ(z) is finite, this function can be simplified to:

I(µ) = −
∫∫

log |z − w|dµ(z)dµ(w) + sup
z∈S

∫
log |z − w|2dµ(w).

The random sequence (µn)n∈N satisfies a large deviation principle inM1(C) with the weak
topology and with speed βn and good rate function I. For any Borel set A ⊂ M1(C) we
have:

− inf
IntA

I ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ − inf
CloA

I. (15)

Theorem 1.5 (Large deviations for real Kac polynomials). Let µn be the empirical mea-
sure of the gas (14), then the random sequence (µn)n∈N satisfies a large deviation principle
inM1(C) for the weak topology with speed βn and good rate function Ĩ where:

Ĩ(µ) =
{1

2I(µ) if µ is invariant under the map z 7→ z̄

∞ otherwise.

This means that for any Borel set A ⊂M1(C) we have:

− inf
IntA

Ĩ ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ − inf
CloA

Ĩ .
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Elliptic polynomials

We will see how the study of Kac polynomials can be adapted to prove a large deviation
principle for the empirical measure associated to the roots of polynomials of the form

Pn =
n∑
k=0

ak

(
n

k

)1/2

Xk.

The polynomials
√
n+ 1

(
n

k

)1/2

Xk are orthonormal for the scalar product on Cn[X]:

〈P,Q〉 =
∫
P (z)Q(z) 1

(1 + |z|2)n
d`C(z)

π(1 + |z|2)2 .

As multiplying a polynomial by a constant does not change the zeros, the factor
√
n+ 1

is omitted. It is known that the random sequence (µn)n∈N converges almost surely weakly
towards

d`C(z)
π(1 + |z|2)2

which is called the complex Cauchy measure1. It can be seen as a consequence of (9). We
define the Hamiltonian:

HE(z1, . . . , zn) = − 1
n2

∑
i 6=j

log |zi − zj |+
n+ 1
n2 log

∫ ∏n
i=1 |z − zi|2

(1 + |z|2)n
d`C(z)

π(1 + |z|2)2 (16)

and the Gibbs measure associated to the distribution of the roots in the complex case:
1
Zn

exp (−βnHE(z1, . . . , zn)) d`Cn(z1, . . . , zn). (17)

In the real case, the roots form a mixture of Coulomb gases distributed with respect to:
bn/2c∑
k=0

1
Zn,k

exp
(
−βn

1
2HE(z1, . . . , zn)

)
d`n,k(z1, . . . , zn) (18)

where the Zn,k are constants.

Theorem 1.6 (Large deviation principle for complex elliptic polynomials). Let µn be the
empirical measure of the gas (17). Let us define IE :M1(C)→ R ∪ {∞}:

IE(µ) = −
∫∫ (

log |z − w| − 1
2 log(1 + |z|2)− 1

2 log(1 + |w|2)
)
dµ(z)dµ(w)

+ sup
z∈C

[∫ (
log |z − w|2 − log(1 + |w|2)

)
dµ(w)− log(1 + |z|2)

]
.

When
∫

log(1 + |z|2)dµ(z) <∞, we can write:

IE(µ) = −
∫∫

log |z − w|dµ(z)dµ(w) + sup
z∈C

[∫
log |z − w|2dµ(w)− log(1 + |z|2)

]
.

(µn)n∈N satisfies a large deviation principle in M1(C) with the weak topology and with
speed βn and good rate function IE− inf IE. This means that for any Borel set A ⊂M1(C)
we have:

− inf
IntA

(IE−inf IE) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ − inf
CloA

(IE−inf IE).
1or Fubini-Study measure
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Theorem 1.7 (Large deviation principle for real elliptic polynomials). Let µn be the
empirical measure of the gas (18). (µn)n∈N satisfies a large deviation principle inM1(C)
with the weak topology, speed βn and good rate function:

ĨE(µ) =
{1

2(IE(µ)− inf IE) if µ is invariant under the map z 7→ z̄

∞ otherwise.

This means that for any Borel set A ⊂M1(C) we have:

− inf
IntA

ĨE ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ lim
n→∞

1
βn

logP(µn ∈ A) ≤ − inf
CloA

ĨE .

Outline of the article

We will give a full proof of the results for Kac polynomials, and then we will show how
to adapt the proof for elliptic and orthogonal polynomials. The proofs of the previous
theorems are similar, and will follow these steps:

1) Compute the distribution of the roots on Cn;

2) Use of inverse stereographic projection to push-forward every object on S2, the
sphere in R3 centered on (0, 0, 1

2) and of radius 1/2;

3) Prove a large deviation principle inM1(S2);

4) Use of contraction principle to obtain the large deviation principle inM1(C).

We use inverse stereographic projection because, asM1(S2) is compact, a weak large devi-
ation principle is equivalent to a full large deviation principle, without proving exponential
tightness. [DZ09, Lemma 1.2.18]

In Section 2 we introduce the objects that will be studied in the article. In Section 3
we give a dettailed proof of the result for Kac polynomials following the steps given above.
Section 4 is about elliptic polynomials. As the proof is nearly the same, we focus on what
should be changed to import the proof from the previous section. In Section 5 we prove
the general result that was originally proved by Zeitouni and Zelditch in [ZZ10] and we
extend it for real Gaussian coefficients.

In contrast, the article [ZZ10] has a more geometric and intrisinc approach. The scalar
product (3) is related to a notion of curvature on CP1. The zeros are seen as elements
of CP1 and the rate function is expressed in terms of Green function and Green energy
associated to this geometric setup.

2 Definitions and notations
We give some definitions that will be useful in the article.

Definition 2.1 (Logarithmic potential, logarithmic energy). We call the logarithmic po-
tential of a measure µ ∈M1(C) the function:

Uµ : z 7→
∫
− log |z − w|dµ(w).

We also define the logarithmic energy of a measure µ ∈M1(C):

E(µ) = −
∫∫

log |z − w|dµ(z)dµ(w)

8



and J :M1(C)→ R ∪ {∞} defined by

J(µ) = sup
z∈S

∫
log |z − w|µ(w)

where S is the unit circle in C.
Definition 2.2 (Discrete logarithmic energy.). Let µn =

∑n
i=1 δzi then we write:

E 6=(µn) = − 1
n2

∑
i 6=j

log |zi − zj | = −
∫
6=

log |z − w|dµn(z)dµn(w) (19)

where
∫
6=
stands for the off-diagonal integral .

We will use the same notation for measures on C or on S2.
Let us define now the inverse stereographic projection that will be the key tool in this

article.
Definition 2.3 (Inverse stereographic projection). Let S2 be the sphere in R3 of center
(0, 0, 1/2) and radius 1/2. We call the point N = (0, 0, 1) the north pole. Let T : C→ S2

the inverse stereographic projection

T (z) =
(
<(z)

1 + |z|2 ,
=(z)

1 + |z|2 ,
|z|2

1 + |z|2

)
.

We have the following relations, valid for any z and w in C:

|z − w|2 = |T (z)− T (w)|2

(1− |T (z)|2)(1− |T (w)|2) (20)

1− |T (z)|2 = 1
1 + |z|2 (21)

where if x ∈ R3, |x| is its Euclidean norm and when z is a complex number, |z| is its
modulus. The same notation holds for the norm in C and the norm in R3.

The first relation can be found in [AN07, lemma 3.4.2], and the second relation is
obtained from the first one by squaring, taking the limit as w tends to infinity and using
the Pythagorean theorem.

To avoid confusions between what lies in C and what lies in R, we will only use the
letters z, w for complex numbers and the letters x, y for vectors in R3.
Definition 2.4 (Push-forward of the objects on the sphere). We define the push-forward
by T of the empirical measure:

µ̄n = T ∗µn = 1
n

n∑
i=1

δT (zi).

Let µ ∈M1(S2), we call its logarithmic potential on the sphere the function:

UµS2(x) =
∫
− log |x− y|dµ(y).

UµS2 takes its values in [−∞,∞). We define onM1(S2) the function:

ES2(ν) = −
∫∫

log |x− y|dν(x)dν(y).

The function UµS2 is called logarithmic potential. It inherits its name from Uµ as it is
the analog formula on the sphere. The name logarithmic potential is not really appropriate
as this notion is already defined on the sphere in potential theory, but it is convenient as
the formulas are the same.

9



(0, 0, 0)

N = (0, 0, 1)

z

w

T (z)

T (w)

Figure 1: Inverse stereographic projection.

3 Large deviations for Kac polynomials
This section deals with the Coulomb gases (13) and (14). We prove Theorems 1.4 and 1.5.

3.1 Step 1: Distribution of the roots

Theorem 3.1 (Distribution of the roots in for the complex case). Let Pn =
∑n
k=0 akX

k,
the law of (z1, . . . , zn) is absolutely continuous with respect to the Lebesgue measure on Cn
with density:

1
Zn

∏
i<j |zi − zj |2

(
∫ ∏N

i=1 |z − zi|2dνS)n+1
= 1
Zn

exp
(
−βn

[
E6=(µn) + n+ 1

n2 log
∫ n∏

i=1
|z − zi|2dν(z)

])

where Zn is a normalizing constant.

Proof. Let p(z) = zn + bn−1z
n−1 + · · ·+ b0 =

n∏
i=1

(z − zi). Then the transformation

F : Cn → Cn
(z1, . . . , zn) 7→ (b0, . . . , bn−1)

has Jacobian determinant
∏
i<j |zi − zj |2 [HKPV09, Lemma 1.1.1]. We compute the law

of the random vector (z1, . . . , zn, an). The density of the law of (a0, . . . , an) is

1
πn+1 e

−
∑n

k=0 |ak|2

We consider now the change of variables:

G : Cn+1 → Cn+1

(z1, . . . , zn, an) 7→ (a0, . . . , an−1, an)

whose Jacobian determinant is |an|2n
∏
i<j |zi − zj |2, as bi = ai/an. Hence, the law of

(z1, . . . , zn, an) is absolutely continuous with respect to the Lebesgue measure on Cn+1.

10



We want to rewrite the density of the random vector (a0, . . . , an) with the new variables
(z1, . . . , zn, an). We notice that if P =

∑n
k=0 akX

k then:
n∑
k=0
|ak|2 =

∫
|P (z)|2dνS(z) =

∫
|an|2

n∏
k=1
|z − zk|2dνS(z) (22)

where νS is the uniform probability measure on the unit circle of C. This relation comes
from the fact that the canonical basis of C[X] is orthonormal for the scalar product (11).
The density of the law of (z1, . . . , zn, an) is:

|an|2n
∏
i<k |zi − zj |2

πn
exp

(
−|an|2

∫ n∏
k=1
|z − zk|2dνS(z)

)
.

We only have to integrate in the variable an to obtain the law of (z1, . . . , zn).

Theorem 3.2 (Distribution of the roots in the real case.). The distribution of the random
vector (z1, . . . , zn) of the roots of Pn in the real case is given by:

bn/2c∑
k=0

2kΓ(n+1
2 )

k!(n− 2k)!π(n−1)/2

∏
i<j |zi − zj |

(
∫ ∏n

i=1 |z − zi|2dνS)(n+1)/2d`n,k(z1, . . . , zn).

This law can be re-written as:
bn/2c∑
k=0

1
Zn,k

exp (−βnH(z1, . . . , zn)) d`n,k(z1, . . . , zn)

where

Zn,k = k!(n− 2k)!π
n+1

2

2kΓ(n+1
2 )

.

The density in the real case is nearly the same as in the complex case, except for the
factor 1/2 in the exponent. In the complex case, the vector of the zeros is an element of
R2n while in the real case, we can see the zeros as an element of Rn.

Proof. As the random vector (a0, . . . , an) has a joint distribution:

1
(π)

n+1
2

exp
(
−

n∑
k=0
|ak|2

)
da0 . . . dan.

we can use Zaporozhets’ computation [Zap04] in order to express the distribution of
(z1, . . . , zn, an). We use again the relation (22) in order to simplify the expression of
the distribution of the roots and we obtain:

bn/2c∑
k=0

2k

k!(n− 2k)!π
n+1

2
|an|n

∏
i<j

|zi−zj |e
−

∫
|an|2

n∏
i=1
|z − zi|2dνS(z)

d`n,k(z1, . . . , zn)d`C(an).

We integrate with respect to an, which ends the proof.

Remark 3.3 (Symmetries of the problem). It is easy to check that the law of the zeros is
invariant under rotation as a Gaussian vector is invariance by rotation. The distribution
of the zeros is also invariant under the mapping z 7→ 1/z. This comes from the fact that
(a0, . . . , an) has the same distribution as (an, . . . , a0), but if we call z1, . . . , zn the zeros of∑n
k=0 akX

k, then the zeros of
∑n
k=0 an−kX

k are 1/z1, . . . , 1/zn.

11



Proposition 3.4 (Uniform control of Zn,k for βn = n2). Let Zn,k given in 3.2, we have:

lim
n→∞

sup
k∈{1,...,n}

1
n2 | logZn,k| = 0

which implies that

lim
n→∞

1
βn

log max
k

Zn,k = lim
n→∞

1
βn

log min
k
Zn,k = 0.

Proof of Proposition 3.4. Using the triangular inequality and bounding k by n gives:

1
n2 | logZn,k| ≤

1
n2 logn! + 1

n2 logn! + n+ 1
2n2 log π + n

n2 log 2 + 1
n2 log Γ(n+ 1

2 )

The upper bound is uniform in k and tends to 0 as n goes to infinity, which proves the
result.

This control over the Zn,k constants is very important. This is the reason why we
are able to prove large deviations in the real case. For general βn, we cannot prove lage
deviations without assuming that those limits exist and are equal, not necessarily to zero.
This will become clearer in Section 3.3.4. See [BAZ98] and [GZ13] for similar results.

3.2 Step 2: Large deviations on the unit sphere

In order to prove the large deviation principles, we are going to use a compactification
method introduced in [Har12]. When the potential does not grow faster than a logarithm
at infinity, the standard proofs of large deviations principles do not hold. More precisely,
exponential tightness of the sequence of measures cannot be proved using the standard
techniques presented in [BAG97], [BAZ98], [HP00]. The gas we are studying is also weakly
confining as the confinement term grows at infinity like log(1 + |z|2) in each variable.

Using the inverse stereographic projection T (2.3) we will push the problem on the
sphere S2 in R3. As the sphere is a compact set, it is sufficient to prove a weak large
deviation principle instead of a full one.

Remark 3.5 (Push Forward). In this article, we will use the notation T ∗µ for the push-
forward of the measure µ by the function T .

Definition 3.6 (Measure on S2). We call LC the push-forward of the Lebesgue measure
of C on S2 by T and LR the push-forward of the Lebesgue measure on R by T , where R is
seen as a subspace of C. We will use the notation:

dLn,k(x1, . . . , xn) = dLR(x1) . . . dLR(xn−2k)dLC(xn−k) . . . dLC(xn).

Proposition 3.7 (Pushing the complex case on the sphere). Let (z1, . . . , zn) be the zeros
of Pn in the complex case, then the law of (T (z1), . . . , T (zn)) is absolutely continuous with
respect to the push forward by T of the Lebesgue measure on C with density:∏

i<j |xi − xj |2

(
∫ ∏n

j=1 |x− xj |22ndT ∗νS(x))n+1 ×
n∏
i=1

(1− |xi|2)2.

We call κn the finite measure:

κn =
n∏
i=1

(1− |xi|2)2dLC(x1) . . . dLC(xn).

12



This law can be written in the form:

1
Zn

exp

−βn
E6=(µ̄n) + n+ 1

n2 log
∫ n∏

j=1
|x− xj |22ndT ∗νS(x)

 dκn. (23)

Remark 3.8 (Identification of the uniform measure on S2). The measure (1−|x|2)2dLR(x)
on S2 is proportional to the uniform measure on the sphere. Indeed if we push forward this
measure by the stereographic projection T−1 we obtain the measure 1

(1+|z|2)2d`C(z) which
is proportional to the complex Cauchy measure, which is known to be the projection of the
uniform measure on the sphere.

Proof of proposition 3.7. We will now push the zeros of Pn on the sphere S2. We compute
the law of the vector (T (z1), . . . , T (zn)). We use the relations (20) to obtain:

∏
i<j

|zi − zj |2 =
∏
i<j

|T (zi)− T (zj)|2

(1− |T (zi)|2)(1− |T (zj)|2)

and that:

(∫ N∏
i=1
|z − zi|2dνS(z)

)n+1

=


∏n
i=1(1− |T (zi)|2)∫ n∏

i=1
|T (z)− T (zi)|2(1− |T (z)|2)−ndνS(z)


n+1

.

We notice that on the unit circle of C, the function z 7→ |T (z)|2 is constant equal to 1/2,
so we can write:∏

i<j |zi − zj |2

(
∫ ∏N

i=1 |z − zi|2dνS(z))n+1
=

∏
i<j |T (zi)− T (zj)|2

(
∫ ∏n

i=1 |T (z)− T (zi)|22ndνS(z))n+1 ×
n∏
i=1

(1− |T (zi)|2)2.

(24)

Proposition 3.9 (Pushing the real case on the sphere). Let (z1, . . . , zn) be the zeros of
Pn in the real case, then the law of (T (z1), . . . , T (zn)) is:

bn/2c∑
k=0

1
Zn,k

∏
i<j |xi − xj | ×

∏n
i=1(1− |xi|2)

(
∫ ∏N

i=1 |x− xi|22ndT ∗νS)(n+1)/2
dLn,k(x1, . . . , xn)

We call ρn,k the finite measure:

dρn,k =
n∏
i=1

(1− |xi|2)dLn,k(x1, . . . , xn).

This law can be written:
bn/2c∑
k=0

1
Zn,k

exp
(
−βn

[
1
2E6=(µn)− n+ 1

2n2 log
∫ N∏

i=1
|x− xi|22ndT ∗νS(x)

])
dρn,k. (25)

The proof of this proposition is exactly the same as the one of Proposition 3.7.
The measure T ∗νS is the uniform measure on the equator of the sphere S2. Seeing

those measures on the sphere emphasizes the symmetries of the problem as the invariance
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with respect to inversion corresponds to the exchange of north and south pole of the
sphere.

ρn is a finite measure. As ρn is a product measure, we only have to see that every
measure is finite. There are two types of measures in this product:

(1− |x|2)dLR(x) = 1
1 + |x|2dx

which is finite on R and

(1− |x|2)(1− |y|2)dLC(x) = 1
(1 + |z|2)(1 + |z̄|2)d`C(z)

where x and y are the inverse stereographic projection of
We now state the large deviation principle on the sphere S2.

Definition 3.10 (Rate function inM1(S2)). For any measure ν ∈M1(S2) we define:

JS2(ν) = sup
x∈T (S)

∫
log |x− y|2dν(y) + log 2 (26)

IS2(ν) = E(ν) + JS2(ν) (27)

Proposition 3.11 (Complex Kac case on the sphere). Let µ̄n be the empirical measure of
the gas (23), then (µ̄n)n∈N satisfies a large deviation principle in M1(S2) with the weak
topology, speed βn and good rate function IS2. This means that for any Borel set A in
M1(S2)

− inf
IntA

IS2 ≤ lim
n→∞

1
βn

logP(µ̄n ∈ A) ≤ lim
n→∞

1
βn

logP(µ̄n ∈ A) ≤ − inf
CloA

IS2 .

Proposition 3.12 (Real Kac case on the sphere). Let µ̄n be the empirical measure of
the gas (25), then (µ̄n)n∈N satisfies a large deviation principle in M1(S2) with the weak
topology, speed βn and good rate function ĨS2 where:

ĨS2(µ) =
{1

2IS2(µ) if T−1∗µ is invariant under z 7→ z̄

∞ otherwise.

This means that for any Borel set A inM1(S2)

− inf
IntA

ĨS2 ≤ lim
n→∞

1
βn

logP(µ̄n ∈ A) ≤ lim
n→∞

1
βn

logP(µ̄n ∈ A) ≤ − inf
CloA

ĨS2 .

3.3 Step 3: Proof of the Large Deviations Principles

We now prove the Proposition 3.11 and Proposition 3.12. We start by studying the rate
function, then we prove the lower and upper bound for the gas without the normalizing
constants Zn and Zn,k. Finally, we obtain the full large deviation principle.

3.3.1 Study of the rate function on the sphere

Next proposition is the key of all the rest of the work and comes from [ZZ10, Lemma 26].

Proposition 3.13 (Rate function IS2).
1)JS2 is continuous for the weak topology ofM1(S2) and is bounded.
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2)I2
S is well defined onM1(S2), takes its values in [0,∞].

3) IS2 is lower semi-continuous.
4) IS2 is strictly convex.

Proof of Proposition 3.13. First, we notice that since S2 is a compact set in R, the function
(x, y) 7→ log |x − y| is bounded above on S2 × S2. Hence, the function ES2 is bounded
from below and JS2 is bounded from above. We cannot conclude yet that the function
IS2 is well defined. We will see that since JS2 is continuous on the compactM1(S2), it is
bounded and IS2 is well defined and takes its values in (−∞,∞].

Fix M ∈ R and define logM (x) = log(x) ∨ (−M). The function (x, y) 7→ logM |x − y|
is continuous on S2 × S2. We define:

UνM (x) = −
∫

logM |x− y|dν(y)

EMS2(ν) = −
∫∫

logM |x− y|dν(x)dν(y)

JMS2(ν) = sup
x∈T (S)

∫
logM |x− y|2dν(y) + log 2

IMS2(ν) = EMS2(ν) + JS2(ν).

We will now prove the upper semi-continuity and lower semi-continuity of the function
JS2 .

• Upper semi-continuity

The map W : (x, µ) 7→ UµM (x) is continuous because the function (x, y) 7→ logM |x− y|
is uniformly continuous. As T (S) is compact, JMS2 is also continuous. Indeed, if µn → µ
weakly, then there exist a sequence (xn)n∈N such that for any n,W (xn, µn) = JMS2(µn). Let
c be an accumulation point of the sequence (JMS2(µn))n∈N. One can extract a convergving
subsequence of (xn)n∈N and call x∞ its limit. Taking the limit of the inequality

W (xn, µn) ≥W (x, µn)

for any fixed x shows that c = JMS2(µ). Hence, JMS2 is continuous. Now let µn → µ weakly
inM1(S2), we have:

JS2(µn) ≤ JMS2(µn) −−−→
n→∞

JMS2(µ)

If we take the limit superior of the last inequality we obtain:

lim
n→∞

JS2(µn) ≤ JMS2(µ)

To conclude, we want to let M go to infinity, but we have to justify the exchange between
the limit and the supremum. In order to do that, we use a short lemma given below:

Lemma 3.14. Let (fM )M∈R+ be a decreasing sequence of continuous functions defined on
a compact set K, converging point-wise towards a function f . Then we have:

lim
M→∞

sup
z∈K

fM (z) = sup
z∈K

f(z).

15



Proof. It is easy to show that the function M 7→ supz∈K fM (z) is decreasing and is
bounded below by supz∈K f(z). Hence we obtain lim

M→∞
supz∈K fM (z) ≥ supz∈K f(z).

To prove the other inequality, fix ε > 0, then, as fM (x) decreases towards f(x), we have:

∀x ∈ K,∃Mx > 0 such that ∀M ≥Mx, f(x) ≥ fM (x) ≥ f(x) + ε.

As fMx is continuous at x, there is an δx such that for all y ∈ B(x, δx) : f(x) − ε ≤
fMx(y) ≤ f(x) + 2ε. As the sequence fM is decreasing, this relation is also satisfied for
all M ≥ Mx. As K is compact, we can extract a finite family {x1, . . . , xp} such that
K ⊂ ∪B(xi, δi). We set M∞ = maxi=1...pMxi so we have:

∀M ≥M∞, ∀y ∈ K,∃i ∈ {1, . . . , p} | f(xi)− ε ≤ fM (y) ≤ f(xi) + 2ε.

This last statement implies that supK fM (z) ≤ supK f(z) + 2ε and ends the proof.

We apply the lemma and we end the proof of the upper semi-continuity:

lim
n→∞

JS2(µn) ≤ JS2(µ).

• Lower semi-continuity

This is where the notion of non-thinness is involved. We will use the fact that the support
of T ∗νS is non thin at all its points. Suppose that µn −−−→

n→∞
µ. We want to show that

limn→∞ JS2(µn) ≥ JS2(µ). We know that JS2(µ) < ∞. If JS2(µ) = −∞ then there is
nothing to prove. For any ε > 0 we introduce the set:

Aε = {x ∈ S2 | −2Uµ(x) + log 2 ≥ JS2(µ)− ε}.

For any ε, Aε is closed by upper semi-continuity of −Uµ. Let x0 be a point where −Uµ
reaches its maximum on the equator T (S). We want to find a measure of positive and
finite mass ν supported on Aε∩T (S) such that Uν is a continuous function, for any ε. We
can find such a measure as soon as the capacity of Aε∩T (S) is positive [ST97, Chapter 1,
Corollary 6.11]. If for some ε0 > 0 the set Aε∩T (S) had zero capacity, it would be thin at
any point [Ran95, Theorem 3.8.2 p79]. By the definition of the set Aε0 , the complement
of Aε ∩ T (S) in T (S) is thin at x0. Then, as the union of two thin sets at x0 is thin at x0,
T (S) is thin at x0. This is absurd as the equator is non-thin at all its points (as connected
set, [Ran95, Theorem 3.8.3]).

Now that we obtained the existence of ν, we can end the proof. Thanks to Fubini’s
theorem, we have:

lim
n→∞

∫
−Uµn(x)dν(x) = lim

n→∞

∫
−Uν(x)dµn(x)

=
∫
−Uν(x)dµ(x)

=
∫
−Uµ(x)dν(x).

Since the support of ν is included in Aε, we have:∫
lim
n→∞

JS2(µn)dν(x) ≥ lim
n→∞

∫
−2Uµn(x)dν(x) + log 2 ≥

∫
(JS2(µ)− ε) dν(x).

We end the proof by noticing that ν has positive mass and that ε is arbitrary.
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• Conclusion

As JS2 is continuous on the compact M1(S2), it is bounded and the function IS2 is
well defined.

For each fixed x, the functions µ 7→ UµM (x) and µ 7→ EMS2(µ) are continuous onM1(S2).
Since ES2 = infM EMS2 , ES2 is a lower semi-continuous function. IS2 is lower semi-continuous
as the sum of a continuous and lower semi-continuous functions.

It is well known that the classical interaction energy E is a convex function [Dei00],
[HP00, Proposition 5.3.2]. For an measure with finite energy, we can write:

ES2(µ) = E((T−1)∗µ) +
∫

log(1 + |z|2)d(T−1)∗µ.

Since the function ν 7→
∫

log |1 + |z|2|dν is linear we have the convexity of ES2 . On the
other hand, JS2 is the supremum of linear functions so is convex.

3.3.2 Large deviations upper bound

We will prove the upper bound for the non-normalized measures, the normalizing constant
will be treated once we have both upper and lower bound.

• Bernstein-Markov inequality

We need to prove a Bernstein-Markov inequality for the measures νS and T ∗νS .

Theorem 3.15 (Bernstein-Markov for νS). Let N ∈ N, then for all P ∈ CN [X] we have:

sup
z∈S1
|P (z)| ≤

√
N‖P‖L2

where ‖P‖2L2 =
∫
|P (z)|2dνS(z). In particular, for all ε > 0, there is a constant Cε such

that for all P ∈ CN [X] we have:

sup
z∈S1
|P (z)| ≤ CεeεN‖P‖L2 .

Proof. We start from the following identity:

Pn(z) =
∫
Pn(w)

n∑
k=0

zkw̄kdνS(w).

Then by the Schwarz inequality we obtain:

sup
z∈S
|Pn(z)| ≤ sup

z∈S

√√√√ n∑
k=0
|z|2k‖Pn‖L2(νS) ≤

√
n‖Pn‖L2(νS).

Lemma 3.16. For all ε > 0, there exists an integer N0 such that for all n > N0 we have:

1
n

log
∫
e2n

∫
C log |z−w|dµn(w)dνS(z) ≥ 2 sup

z∈S

∫
C

log |z − w|dµn(w)− ε.
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Proof of Lemma 3.16.∫
e2n

∫
C log |z−w|dµn(w)dνS(z) =

∫ n∏
i=1
|z − zi|2dνS(z).

Thanks to the Bernstein-Markov inequality, we have:(∫ n∏
i=1
|z − zi|2dνS(z)

)1/n

≥
(

supz∈S
∏n
i=1 |z − zi|2

Cε/2e−nε/2

)1/n

.

We take the logarithm of this expression to obtain:

1
n

log
∫
e2n

∫
C log |z−w|dµn(w)dνS(z) ≥ 2 sup

z∈S

∫
C

log |z − w|dµn(w)− ε/2 + logCε/2
n

taking n > N0 sufficiently large ends the proof of the lemma.

In fact, this inequality is used to prove the large deviations upper bound on C. To
prove the large deviations upper bound on S2, we need an analog of this inequality.

Lemma 3.17. For all ε > 0, there exists an integer N0 such that for all n > N0 we have:

1
n

log
∫
e2n

∫
C log |x−y|dT ∗µn(y)dT ∗νS(x) ≥ 2 sup

x∈T (S)

∫
log |x− y|dT ∗µn(y)− ε.

Proof. We start from Lemma 3.16 and lift it up on the sphere:

1
n

log
∫ n∏

i=1

|T (z)− T (zi)|2

(1− |T (z)|2)(1− |T (zi)|2)dνS(z) ≥

sup
z∈S

∫
C

log |T (z)− T (w)|2

(1− |T (z)|2)(1− |T (w)|2)dµn(w)− ε+ logCε
n

.

In terms of push-foward measures we obtain:

1
n

log
∫ n∏

i=1
|x− xi|dT ∗νS(z) ≥ sup

x∈T (S)

∫
C

log |x− xi|dT ∗µn(w)− ε+ logCε
n

.

• Large deviations upper bound in the complex case

We prove the upper bound part of the large deviation principle in the complex case.
Let σ ∈M1(S2), we prove that:

lim
δ→O

lim
n→∞

1
βn

logP(µ̄n ∈ B(σ, δ)) ≤ −IS2(σ).

Proving this inequality is sufficient to obtain the upper bound as S2 is a compact set.
Indeed, a weak large deviation principle implies a full large deviation principle when we
have exponential tightness, which is automatic on a compact set.

If we write
A1 = ZnP(µ̄n ∈ B(σ, δ))
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then we have for any M > 0 and for any δ > 0, using Lemma 3.17:

A1 =
∫

1µ̄n∈B(σ,δ) exp
(
−βn

[
E6=(µ̄n) + n+ 1

n2 log
∫ n∏

i=1
|x− xj |22ndT ∗νS(x)

])
dκn

≤
∫

exp
(
−βn

[
E 6=(µ̄n) + n+ 1

n2 log
∫ n∏

i=1
|x− xj |22ndT ∗νS(x)

])
dκn

≤
∫

exp

−βn
− 1

n2

∑
i 6=j

logM |xi − xj |+
n+ 1
n

(JS2(µn) + ε)

 dκn
≤
∫

exp
(
−βn

[∫∫
6=
− logM |x− y|dµ̄n(x)dµ̄n(y) + n+ 1

n
(JS2(µn) + ε)

])
dκn.

We now observe the following:

1
n2

∑
i 6=j

logM |xi − xj | =
∫∫
6=

logM |x− y|dµ̄n(x)dµ̄n(y)− M

n
= EMS2(µ̄n). (28)

We also notice that:
1
βn

log
∫

1dκn −−−→
n→∞

0. (29)

Indeed, as κn is a product of finite measures, we have 1
n log

∫
1dκn = log

∫
1dκ1. Then, by

taking the logarithm and the superior limit we obtain:

lim
n→∞

1
βn

logZnP(µ̄n ∈ B(σ, δ)) ≤ sup
B(σ,δ)

−IMS2 + ε

As IMS2 is a continuous function, we have when δ converges towards 0:

lim
δ→0

lim
n→∞

1
βn

logZnP(µ̄n ∈ B(σ, δ)) ≤ −IMS2(σ) + ε.

We end the proof of the upper bound by letting M → ∞ (and using the monotone
convergence theorem) and then letting ε→ 0. We will get rid of the normalizing constant
once we have proved the lower bound.

• Large deviations upper bound in the real case

We prove the same bound as previously in the real case. The proof is nearly the same
and we will omit what is exactly the same in the two cases. The only difference is that
the law of the roots of Pn in the real case is not absolutely continuous with respect to a
product measure, but is a mix between such measures.

As in the complex case, we want to prove that:

lim
δ→O

lim
n→∞

1
βn

logP(µ̄n ∈ B(σ, δ)) ≤ −1
2IS2(σ).

We begin with

P(µ̄n ∈ B(σ, δ)) =
bn/2c∑
k=0

1
Zn,k

In,k,δ

where
In,k,δ =

∫
1µ̄n∈B(σ,δ)

∏
i<j |xi − xj |

(
∫ ∏n

i=1 |x− xi|22ndT ∗νS)(n+1)/2 ρn,k. (30)
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We will prove the upper-bound for each of the In,k,δ uniformly in k which will be
sufficient to prove the upper bound for the non-normalized measure. The constants will
be treated once we will have the full large deviation principle.

The estimates used in the complex case do no rely on the complex structures but only
on “algebraic” inequalities so the same computations on the In,k,δ can be done. As the
formulas are the same, we obtain the same bounds.

In,k,δ ≤
∫

1µ̄n∈B(σ,δ) exp
(
−βn

[
1
2E6=(µ̄n) + n+ 1

2n2 log
∫ N∏

i=1
|x− xi|22ndT ∗νS(x)

])
dρn,k

≤
∫

exp
(
−βn

[
1
2E 6=(µ̄n) + n+ 1

2n2 log
∫ N∏

i=1
|x− xi|22ndT ∗νS(x)

])
dρn,k

≤
∫

exp

−βn
− 1

2n2

∑
i 6=j

logM |xi − xj |+
n+ 1

2n (JS2(µn) + ε)

 dρn,k
≤
∫

exp
(
−βn

[
−1

2

∫∫
6=

logM |x− y|dµ̄n(x)dµ̄n(y) + n+ 1
2n (JS2(µn) + ε)

])
dρn,k.

We need to check that
1
βn

log
∫
ρn,k −−−→

n→∞
0.

Just like in the complex case, this is only a consequence of the fact that ρn is a product
measure.

Using again (29), we apply logarithm to both sides of the inequality, divide by βn to
find:

lim
n→∞

1
βn

log(In,k,δ) ≤ sup
B(σ,δ)

−ĨMS2 + ε.

By the monotone convergence theorem, we let M → ∞ and then ε → 0 which ends the
proof of the inequality. As the upper bound is uniform in k, it ends the proof of the lower
bound.

3.3.3 Large deviations lower bound.

In this section we prove the lower bound of the large deviation principle. We notice that
the rate function is the sum of a lower semi-continuous function ES2 and of the continuous
function JS2 . The continuity of JS2 allows us to treat only the logarithmic energy, which
is well known in potential theory.

• Large deviations lower bound in the complex case

Let σ ∈M1(S2), we prove that:

lim
δ→0

lim
n→∞

1
βn

logZnP(µ̄n ∈ B(σ, δ)) ≥ −IS2(σ).

We can assume that the measure σ satisfies IS2(σ) <∞ as if the rate function is infinite
this bound holds clearly. We notice that it is equivalent to have ES2 < ∞. In particular,
such a measure σ has no atom (and σ({N}) = 0). For any (x1, . . . , xn), we have:

1
n

log
∫ n∏

i=1
|x− xj |22ndT ∗νS(x) ≤ JS2(µ̄n). (31)
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If we write:
A1 = ZnP(µ̄n ∈ B(σ, δ))

then we have, for any ε > 0, if δ is small enough, using (31):

A1 =
∫

1µ̄n∈B(σ,δ) exp
(
−βn

[
E6=(µ̄n) + n+ 1

n2 log
∫ n∏

i=1
|x− xj |22ndT ∗νS(x)

])
dκn

≥
∫

1µ̄n∈B(σ,δ) exp
(
−βn

[
E 6=(µ̄n) + n+ 1

n
JS2(µ̄n)

])
dκn

≥ exp
(
−βn

[
n+ 1
n

(JS2(σ) + ε)
]) ∫

1µ̄n∈B(σ,δ) exp (−βnE 6=(µ̄n)) dκn.

The last inequality comes from the continuity of JS2 . To study the right integral, we will
use the stereographic projection T−1. Thanks to the relation (20) we obtain:

∑
i 6=j

log |xi − xj | =
∑
i 6=j

log |T−1(xi)− T−1(xj)| − (n− 1)
n∑
i=1

log(1 + |T−1(xi)|2).

Pushing back the measure κn leads to:∫
1µ̄n∈B(σ,δ) exp (−βnE6=(µ̄n)) dκn

=
∫

1µn∈T−1B(σ,δ) exp
(
−βn

[
E6=(µn)− n+ 1

n2

n∑
i=1

log(1 + |zi|2)
])

d`Cn(z1, . . . , zn).

We reduced the problem to prove the large deviations lower bound for a Coulomb gas in
C with potential V (z) = log(1 + |z|2) and temperature βn. We will prove in Proposition
3.18 that T ∗ is an homeomorphism from M1(C) to M1(S2) | µ({N}) = 0} so the set
T−1∗B(σ, δ) is a neighborhood of T−1∗σ.

The proof of the lower bound can be found in [HP00, chapter 5 page 220]. We give a
proof for the sake of completeness.

We can restrict the proof to the case where σ is absolutely continuous with respect
to the Lebesgue measure and with density bounded from above and below with rectangle
support. Indeed, as the function − log |z−w|+ 1

2 log(1 + |z|2) + 1
2 log(1 + |w|2) is bounded

from below, we can assume that σ is supported in a rectangle, as we can approximate σ
with

1[−m,m]2

σ([−m,m]2)σ. Convolution with a smooth probability density φε supported in [−ε, ε]2
ensure us the existence of a positive density with respect the Lebesgue measure. The
functional:

E : µ 7→
∫∫
− log |z − w|+ 1

2 log(1 + |z|2) + 1
2 log(1 + |w|2)dµ(z)dµ(w)

is lower semi-continuous, hence we have for ε small enough:

E(φε ∗ σ) ≥ E(σ)

so we can restrict to measures with positive densities. Those two remarks put together
allow us to assume that the measure σ is supported in a rectangle [a, b] × [c, d] with a
density h with respect to the Lebesgue measure on C satisfying for all z ∈ [a, b]× [c, d]:

1
C
≤ h(z) ≤ C
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a x1 xm−1 b

c

d

y1,1

yl1,1

Rm,lm
R1,j1

R1,1 Rm,1

Figure 2: Division or the support in rectangles with n = 17. So we divide the support in
4 columns which we divide in 4 or 5 rectangles to obtain the total number of 17 pieces.

for some constant C > 0. For each n ∈ N, let m = b
√
nc. Let x0 = a < x1 < · · · < xm = b

such that for each j ∈ {0, . . . , n− 1}

σ([xj , xj+1]× [c, d]) = 1
m
.

We have cut the support in vertical slides of equal mass. We divide each slide in rectangles
of equal mass (see Figure 2)and we adjust their number in order to have a total of n parts.
As m2 ≤ n ≤ m(m + 2), we can find l1, . . . , lm satisfying

∑n
k=1 lk = n and for each

j ∈ {0, n − 1} a set of points yj,0 = c < yj,1 < · · · < yj,lj = d such that for every
i ∈ {0, . . . , n− 1} and every j ∈ {0, li − 1} we have:

σ([xi−1, xi]× [yj−1, yj ]) = 1
mli

.

This construction gives us a set of rectangles. For each one of them, we consider the
smaller rectangle with same center as the original one but homothetic with ratio 1

2 (see
Figure 2 for an illustration). We call them Ri,j = [x′i−1, x

′
i]× [y′j−1, y

′
j ]. As the density h is

bounded from above and from below we see that the diameter of the rectangles uniformly
tends towards 0 as n goes to infinity. More precisely we have:

lim
n→∞

max
i,j

diam(Ri,j)→ 0.

We will need to control the area of each rectangle, we want this area no to go to zero too
fast such that the product of the areas of the rectangles is negligible compared to e−βn .
One can easily check that for each i, j we have, for some constant C1 depending only of h:∫

Ri,j

dσ(z) ≥ C1
n
.
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We label the n rectangles R1, . . . , Rn (and R′1, . . . , R′n)and we define:

∆n = {(z1, . . . , zn) ∈ Cn | ∀1 ≤ i ≤ n, zi ∈ R′i}.

Let f be a bounded 1-Lipschitz function. For any n and any (z1, . . . , zn) ∈ ∆n we have:∣∣∣ ∫ f(z)dσ(z)−
∑
i,j

1
mli

f(zi,j)
∣∣∣ ≤∑

i,j

∫
Ri,j

|f(z)− f(zi,j)|dσ(z)

≤
∑
i

∫
Ri,j

|z − zi|dσ(z)

≤ max
i,j

(diamRi,j) −−−→
n→∞

0

and for any bounded function f :

1
n

∑
i,j

f(zi,j)−
∑
i,j

1
mli

f(zi,j) −−−→
n→∞

0.

Hence, for any fixed δ, if n is large enough, for any (z1, . . . , zn) ∈ ∆n:

1
n

n∑
i=1

δzi ∈ B(σ, δ).

We define
∆n =

⋃
p∈σn

{(z1, . . . , zn) ∈ Cn | (zp(1), . . . , zp(n)) ∈ ∆n}.

We only made the definition of ∆n symmetric, as there was no reason for z1 to be at the
top left corner of the support. It is clear that we still have, for any δ and n large enough,
and for any (z1, . . . , zn) ∈ ∆n, 1

n

∑n
k=1 δzk

∈ B(σ, δ). Notice that:

Vol(∆n) = n!Vol(∆n) ≥ n!
(
C1
n

)n
which implies, as βn � n

lim
n→∞

1
βn

logVol(∆n) = 0.

Then we have, for n large enough:∫
1µn∈T−1B(σ,δ) exp

(
−βn

[
E 6=(µn) + n+ 1

n2

n∑
i=1

log(1 + |zi|2)
])

d`Cn(z1, . . . , zn)

≥
∫

1∆n exp
(
−βn

[
E 6=(µn) + n+ 1

n2

n∑
i=1

log(1 + |zi|2)
])

d`Cn(z1, . . . , zn)

≥ exp

−βn
n+ 1

n2

n∑
k=1

max
z∈R′i

log(1 + |z|2)− 1
n2

∑
i 6=j

min
z∈R′i,w∈R

′
j

log |z − w|

Vol(∆n).

To obtain the lower bound, it is sufficient to prove that we have:

lim
n→∞

n∑
k=1

max
z∈R′i

log(1 + |z|2) =
∫

log(1 + |z|2)dσ(z) (32)
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and that

lim
n→∞

1
n2

∑
i 6=j

min
z∈R′i,w∈R

′
j

log |z − w| ≥
∫∫

log |z − w|dσ(z)dσ(w) = E(σ). (33)

The fist limit is easy to prove as z 7→ log(1 + |z|2) is uniformly continuous on the support
of σ (which is a rectangle) and is deduced from the definition of the Riemann integral.

As dn = maxi,j diam(Ri,j) is of order 1√
n
and minR′i,R′j |z−w| is also of order 1√

n
, then,

thanks to the bound:
max
Ri,Rj

|z − w| ≤ 2dn + min
R′i,R

′
j

|z − w| (34)

there exists a constant A > 0 such that

A min
z∈R′i,w∈R

′
j

|z − w| ≥ max
z∈Ri,w∈Rj

|z − w|. (35)

This relation is the reason why we reduced the sizes of the rectangles in the construction
so that we can control the distance between the rectangles. To end the proof we notice
that, for any ε > 0, we have:

lim
n→∞

1
n2 #{i 6= j |

maxz∈Ri,w∈Rj |z − w|
minz∈R′i,w∈R′j |z − w|

≤ 1 + ε} = 1. (36)

Indeed, for any fixed ε > 0, the cardinal of the complement of the set considered above is
O(n) as this condition is verified as soon as the rectangles are not too close.

We call
B = E(σ)−

∑
i 6=j

log
(

min
z∈R′i,w∈R

′
j

|z − w|
)

1
mli ×mlj

.

Since ∫∫
log |z − w|dσ(z)dσ(w) ≤

∑
i 6=j

log max
z∈Ri,w∈Rj

|z − w| 1
mli ×mlj

(37)

then for every i, n ≤ mli then, for every ε > 0, then we have :

B ≤
∑
i 6=j

log
(

max
z∈Ri,w∈Rj

|z − w|
) 1
mli ×mlj

−
∑
i 6=j

log
(

min
z∈R′i,w∈R

′
j

|z − w|
)

1
mli ×mlj

≤
∑
i 6=j

log
(

maxz∈Ri,w∈Rj |z − w|
minz∈R′i,w∈R′j |z − w|

)
1

mli ×mlj

≤ 1
n2

∑
i 6=j

log
(

maxz∈Ri,w∈Rj |z − w|
minz∈R′i,w∈R′j |z − w|

)

≤ 1
n2 #{i 6= j |

maxz∈Ri,w∈Rj |z − w|
minz∈R′i,w∈R′j |z − w|

≤ 1 + ε} log(1 + ε)

+ 1
n2

[
1−#{i 6= j |

maxz∈Ri,w∈Rj |z − w|
minz∈R′i,w∈R′j |z − w|

}
]

logA.

Then we take the limit superior in both sides, and the limit when ε→ 0

E(σ)− lim
n→∞

1
n2

∑
i 6=j

log
(

min
z∈R′i,w∈R

′
j

|z − w|
)

1
mli ×mlj

≤ lim
n→∞

1
n2

∑
i 6=j

log
(

maxz∈Ri,w∈Rj |z − w|
minz∈R′i,w∈R′j |z − w|

)
= 0

which ends the proof of the lower bound in the complex case.
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• Large deviations lower bound in the real case

In this section, we prove the lower bound of the large deviation principle of Proposition
3.12. We define the non-normalised measures:

Pn,k(x1, . . . , xn) = exp
(
−βn

1
2H(x1, . . . , xn)

)
dLn,k(x1, . . . , xn)

and

P̃ =
bn/2c∑
k=0

Pn,k.

These measures are not probability measures, as we omitted the factors Zn,k. We will
recover the lower bound for the initial measure afterwards, using a uniform control over
the constants Zn,k. We prove that for any σ ∈M1(S2):

lim
δ→O

lim
n→∞

1
βn

P̃(µ̄n ∈ B(σ, δ)) ≥ −IS2(σ).

We can assume that the measure σ satisfies ĨS2(σ) <∞ as if the rate function is infinite
this bound holds clearly. We notice that it is equivalent to have ES2(σ) <∞ and the push-
forward of σ by the inverse stereographic projection is invariant under conjugation.

The strategy adopted here is very similar to what was done in [BAZ98] for the real
Ginibre ensemble. The distribution of (z1, . . . , zn) is a mixture between several distribu-
tions, each distribution being related to the number of real zeros. For any ε > 0, if δ is
small enough, using (31) and as JS2 is continuous:

P̃(µ̄n ∈ B(σ, δ))

=
bn/2c∑
k=0

∫
exp

(
−βn

[
1
2E6=(µ̄n)− n+ 1

2n2 log
∫ N∏

i=1
|x− xi|22ndT ∗νS(x)

])
1µ̄n∈B(σ,δ)dρn,k

≥
bn/2c∑
k=0

∫
exp

(
−βn

[1
2E6=(µ̄n)− n+ 1

2n JS2(µ̄n)
])

1µ̄n∈B(σ,δ)dρn,k

≥ exp
(
−βn

[
n+ 1
n

(JS2(σ) + ε)
]) bn/2c∑

k=0

∫
exp

(
−βn

1
2E 6=(µ̄n)

)
1µ̄n∈B(σ,δ)dρn,k

≥ exp
(
−βn

[
n+ 1
n

(JS2(σ) + ε)
]) ∫

exp
(
−βn

1
2E 6=(µ̄n)

)
1µ̄n∈B(σ,δ)dρn,bn/2c.

As we deal with a lower bound, we can only consider the last term of the sum, correspond-
ing to zero or one real root (if n is even or odd). Like in the complex case, we use the
inverse stereographic projection to express the last integral:∫

1µ̄n∈B(σ,δ) exp
(
−βn

1
2E6=(µ̄n)

)
dρn,bn/2c

=
∫

1µn∈T−1B(σ,δ) exp
(
−βn

[
1
2E 6=(µn)− n+ 1

2n2

n∑
i=1

log(1 + |zi|2)
])

d`n,bn/2c(z1, . . . , zn).

Notice that when n is odd, the first coordinate is always real. Like in the complex case,
we reduced the proof of the lower bound to the proof of the lower bound for a Coulomb
gas in the plane with potential log(1 + |z|2), except that this gas must have at most one
particle on the real axis (depending on n). Strategy of the proof is exactly the same as
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previously: for regular measures (supported in a rectangle with density with respect to
the Lebesgue measure bounded from above and from below), we prove the lower bound
by approximating the measure with an atomic measure whose atoms can be anywhere in
well chosen rectangles. To perform the approximation, we have to show that we can still
make this construction respecting the invariance under conjugation and the fact that we
must have at most one real root.

When n is even, we cut the upper half of the support in boxes of mass 1
2b
√
nc and take

the half-sized sub-boxes (the Ri’s and the R′i’s), illustrated in Figure 3. Then we describe
the lower part of the support by considering the conjugates of the rectangles R̄i and R̄′i.
We define

∆n = {(z1, . . . , zn) ∈ Cn | ∀1 ≤ i ≤ n, zi ∈ R′i}

and the rest of the construction is exactly the same.

d

c = −d

(0, 0)

a b

y1,l1−1

x1

R1,1

R̄1,1

R1,l1

R̄1,l1

Rm,1

Rm,lm

R̄m,1

R̄m,lm

Figure 3: Division or the support in rectangles, n even. Here n = 18, we divide the
support in 4 columns. Then we divide the columns in order to obtain a total number of
18 rectangles.

When n is odd, the construction is nearly the same, except that we must place one
point on the real line. We divide the upper half of the support into columns of equal mass

1
2b
√
nc , then we divide each column in rectangles of equal mass such that the total number

of rectangles is n+1
2 . We consider the conjugates of the rectangles so that we have cut the

support of σ in rectangles of known mass respecting the symmetry by conjugation (Figure
4). Finally, on the 1st column, we consider the union of the two rectangles touching the
real axis. Hence, we have a partition of the support in n rectangles. Now we can consider
the smaller rectangles like we used to do, except for the one crossing the real axis for which
we only keep the intersection of the smaller rectangle with R, represented by a thicker line
in Figure 4.

We can also define ∆n = {(z1, . . . , zn) ∈ R× Cn−1 | ∀1 ≤ i ≤ n, zi ∈ R′i} which differs
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from the previous construction only by the fact that the first variable is real, and

∆n = {(z1, . . . , zn) ∈ R× Cn−1 | ∃p ∈ σ{2, . . . , n}, (z1, zp(2), . . . , zp(n)) ∈ ∆n}.

The rest of the inequalities are valid for this construction and it allows us to end the

c = −d

(0, 0)

y1,1

d

a bx1

R1,1

R1,l1

R̄1,l1

Rm,1

Rm,lm

R̄m,1

R̄m,lm

Figure 4: Division of the support in rectangles, n odd. Here n = 17 we divide the support
in 4 columns. The thick line corresponds to the first rectangle, which is flat.

proof of the lower bound in the real case.

3.3.4 Large deviation principle for normalized measures.

In this subsection we obtain the full large deviation principle on the sphere by treating the
normalizing constants. This technique is classical in large deviations for Coulomb gases.
Unfortunately, the real case is less direct than the complex case and requires some control
over the Zn,k constants. Here we have an explicit formula for the constants Zn and Zn,k
in Theorem 3.2.

As limn→∞
1
βn

logZn = 0, the large deviation principle holds for the normalized mea-
sures. For any open O set inM1(S2), we have:

− inf
O
IS2 ≤ lim

n→∞

1
βn

logZnP(µ̄n ∈ O) ≤ lim
n→∞

1
βn

logZnP(µ̄n ∈ O) ≤ − inf
clo(O)

IS2 . (38)

By taking O =M1(S2) we get:

lim
n→∞

1
βn

logZn = − inf
ν∈M1(S2)

IS2(ν) = 0. (39)
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In this case, we know that the rate function I reaches its minimum for the uniform measure
on the equator as we know that the random sequence µn converges almost surely weakly
towards the uniform measure on the unit circle. As IS2(T ∗νS) = I(νS) = 0 it will imply
the (already known) almost sure weak convergence of (µn)n∈N towards νS . This ends the
proof of Proposition 3.11.

In the real case, we have to check that

lim
n→∞

min
k
Zn,k = lim

n→∞
max
k

Zn,k = − inf ĨS2 = 0. (40)

This is true when βn = n2 (see Proposition 3.4). For general βn, we have to assume that
(40) is true. Then for any set A ∈M1(S2) we have:

lim
n→∞

1
βn

log
bn/2c∑
k=0

1
Zn,k

Pn,k(A) ≤ lim
n→∞

− 1
βn

log min
k
Zn,k − inf

cloA
IS2 (41)

and

lim
n→∞

1
βn

log
bn/2c∑
k=0

1
Zn,k

Pn,k(A) ≥ lim
n→∞

− 1
βn

log max
k

Zn,k − inf
int(A)

IS2 (42)

which proves the full large deviation principle inM1(S2).

3.4 Step 4: Going back on the plane

We have proved large deviation principles for the real and complex case on the sphere. The
next proposition is taken from [Har12, Lemma 2.1]. We recall that the point N = (0, 0, 1)
is the north pole of the sphere.

Proposition 3.18 (Correspondence between C and S2 \ {N}). T ∗ is an homeomorphism
fromM1(C) to {µ ∈M1(S2) | µ({N}) = 0}.

Proof. As T is a continuous function, µ 7→ T ∗µ is continuous for the weak topology. As
T is a bijection from C to S2 \ {N}, it follows that T ∗ is a bijection with inverse (T−1)∗.
We only have to prove the continuity of (T−1)∗. Let (νn)n∈N be a sequence of measures
in {ν ∈ M1(S2) | ν({N}) = 0} that converges in {ν ∈ M1(S2) | ν({N}) = 0}. Let ν∞
the limit of this sequence. By outer regularity of ν∞ and the Portmanteau theorem, for
any ε, there is an open set B such that:

lim
n→∞

µn(B) ≤ µ(B) ≤ ε.

The last inequality shows that the sequence ((T−1)∗νn)n is tight. It is easy to see that
((T−1)∗µn)n converges vaguely towards (T−1)∗ν∞ hence weakly.

Proposition 3.19 (Rate functions). For any measure µ ∈M1(C) , IS2(T ∗µ) = I(µ).

Proof of Proposition 3.19.

−
∫∫

log |z − w|dµ(z)dµ(w) + 2 sup
z∈S1

∫
log |z − w|dµ(w)

= −
∫∫ (

log |T (z)− T (w)| − 1
2(log(1− |T (z)|2) + log(1− |T (w)|2)

)
dµ(z)dµ(w)

+ 2 sup
z∈S1

∫ (
log |T (z)− T (w)| − 1

2(log(1− |T (z)|2) + log(1− |T (w)|2)
)
dµ(w).
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Hence we obtain:

I(µ) = −
∫∫

log |T (z)− T (w)|dµ(z)dµ(w) + 2 sup
z∈S

∫
log |T (z)− T (w)|dµ(w) + log 2

= IS2(T ∗µ).

From the large deviation principles proved on the sphere, we can now deduce the large
deviation principles on the plane for the complex case.

Proof of Theorem 1.4. Thanks to the inclusion principle [DZ09, lemma 4.1.5], the random
sequence (T ∗µn)n∈N satisfies a large deviation principle in

{µ ∈M1(S2) | µ({N}) = 0}

with speed βn and good rate function IS2 . Then by the contraction principle [DZ09,
Theorem 4.2.1] along (T−1)∗, the sequence (µn)n∈N satisfies a large deviation principle
with the same speed and good rate function I thanks to Proposition 3.19. The function I
is a good rate function as we have already proved that IS2 is a good rate function.

Proof of Theorem 1.5. In the real case, the proof is exactly the same. We use the inclusion
principle and the contraction principle to obtain a large deviation principle with speed βn
and good rate function Ĩ (using Proposition 3.19 again).

4 Large deviations for Elliptic polynomials
In the last section we saw a large deviation principle for the empirical measures of zeros
of random Kac polynomials. In this section, we study the gases (17) and (18). We prove
Theorems 1.6 and 1.7 following the same steps as previously.

4.1 Step 1: Distribution of the roots.

Theorem 4.1 (Distribution of the roots of elliptic polynomials). The family of polyno-
mials

√
n+ 1

(n
k

)1/2
Xk are an orthonormal basis in Cn[X] for the scalar product:

〈P,Q〉 =
∫
P (z)Q(z) 1

(1 + |z|2)n
d`C(z)

π(1 + |z|2)2 .

In the complex case the distribution of the roots of Pn =
∑n
k=1

(n
k

)1/2
akX

k is given by:

1
Zn

∏
i<j |zi − zj |2(∫ ∏n

k=1 |z − zi|2 1
(1+|z|2)n

d`C(z)
π(1+|z|2)2

)n+1d`Cn(z1, . . . , zn)

where
Zn = πn−1

n!|An|2

is a normalizing constant and where |An|2 is the Jacobian of the change of variables from
the canonical basis of Cn[X] to the orthonormal basis (R0, . . . , Rn). This distribution can
be written:

1
Zn

exp (−βnHE(z1, . . . , zn)) d`Cn(z1, . . . , zn).
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In the real case, the distribution of the roots is given by:

bn/2c∑
k=0

1
Zn,k

∏
i<j |zi − zj |(∫ ∏n

k=1 |z − zi|2 1
(1+|z|2)n

d`C(z)
π(1+|z|2)2

)(n+1)/2d`n,k(z1, . . . , zn)

where

Zn,k = k!(n− 2k)!π
n+1

2

2kΓ(n+1
2 )|An|

and |An| is the Jacobian of the changes of variables from the canonical basis of Rn[X] to
the orthonormal basis (R0, . . . , Rn). This distribution can also be written

bn/2c∑
k=0

1
Zn,k

exp
(
−βn

1
2HE(z1, . . . , zn)

)
d`n,k(z1, . . . , zn).

These polynomials are handled by the article of Zeitouni and Zelditch [ZZ10] with the
complex Cauchy (Fubini-Study) measure and the weight φ(z) = log(1 + |z|2).

Proof of Theorem 4.1. First we prove that the polynomials
√
n+ 1

(n
k

)1/2
Xk are an or-

thonormal basis in Cn[X]. As the weight and the measure are radial, it is clear that this
family is orthogonal. We only have to compute the norm of each polynomial:∫

C

|z|2k

(1 + |z|2)n+2d`C(z) =2π
∫
R+

r2k+1

(1 + r2)n+2dr

=π
∫
R+

uk

(1 + u)n+2du

=π k

n+ 1

∫
R+

uk−1

(1 + u)n+1

=π(n+ 1)
(
n

k

)−1

.

The computation of the distribution of the roots of random elliptic polynomials with
complex coefficients is a change of variables.

Let (z1, . . . , zn) be the zeros of Pn =
∑n
k=0 ak

(n
k

)1/2
Xk, then we consider

G(z1, . . . , zn, an) = (a0, . . . , an).

To compute the Jacobian determinant of G, we use the following decomposition:

(z1, . . . , zn, an) G //

U ((

(a0, . . . , an)

(b0, . . . , bn)
V
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where U is the function giving the coefficients in the canonical basis of Pn from its roots
and leading coefficient and V is the change of basis from the canonical basis to the basis(n
k

)1/2
Xk. We have already seen that Jac(U) = |an|2n

∏
i<j |zi − zj |2. We could compute

the Jacobian determinant of V , but we will just call this quantity |An|2.Hence, the real
Jacobian determinant of G is:

|Jac(G)|2 = |An|2|an|2n
∏
i<j

|zi − zj |2.
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The end of the proof is the same as for Kac polynomials, the density of the random vec-
tor (a0, . . . , an) being e−‖P‖

2

πn+1 , we only have to integrate the distribution of (z1, . . . , zn, an)
to obtain the announced distribution for the complex case.

In the real case, we use Zaporozhets’ computation [Zap04] to obtain the distribution
of (z0, . . . , zn, an) in function of the distribution of the coefficients in the canonical basis
(b0, . . . , bn) and we use the additional change of variables from the canonical basis to the
basis

√
n+ 1

(n
k

)1/2
Xk. The real Jacobian determinant of this change of variables is |An|,

so we obtain the distribution of (z1, . . . , zn, an):

bn/2c∑
k=0

|An|2k

k!(n− 2k)!π
n+1

2
|an|n

∏
i<j

|zi − zj |

× exp
(
−
∫
|an|2

∏n
j=1 |z − zj |2

(1 + |z|2)n
d`C(z)

π(1 + |z|2)2

)
d`n,k(z1, . . . , zn)d`C(an).

and we integrate with respect the variable an.

4.2 Step 2: Large deviations in M1(S2)
Proposition 4.2 (Pushing elliptic polynomials on the sphere). Let (z1, . . . , zn) be the zeros
of Pn in the complex case, then the law of (T (z1), . . . , T (zn)) is absolutely continuous with
respect to the push forward by T (2.3) of the Lebesgue measure on C with density:∏

i<j |xi − xj |2

(
∫ ∏n

j=1 |x− xj |2dνS2(x))n+1 ×
n∏
i=1

(1− |xi|2)2

where νS2 is the uniform measure on S2. Recall that κn is defined in Proposition 3.7. This
law can be written in the form:

1
Zn

exp

−βn
− 1

n2

∑
i 6=j

log |xi − xj |+
n+ 1
n2 log

∫ n∏
j=1
|x− xj |2dνS2(x)

 dκn.
Proof. The proof is nearly the same as the proof of Proposition 3.7. We use the relations
(20) and (21): ∏

i<j

|zi − zj |2 =
∏
i<j

|T (zi)− T (zj)|2

(1− |T (zi)|2)(1− |T (zj)|2)

and

∫ n∏
k=1
|z − zi|2

1
(1 + |z|2)n

d`C(z)
π(1 + |z|2)2 =

∫ n∏
i=1
|T (z)− T (zi)|2

(1− |T (z)|2)2d`C(z)
π∏n

i=1(1− |T (zi)|2)

to obtain the density: ∏
i<j |T (zi)− T (zj)|2

(
∫ ∏n

i=1 |T (z)− T (zi)|2dνS2)n+1

n∏
i=1

(1− |T (zi)|2)2.
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Proposition 4.3 (Pushing the real case on the sphere). Let (z1, . . . , zn) be the zeros of
Pn in the real case, then the law of (T (z1), . . . , T (zn)) is:

bn/2c∑
k=0

1
Zn,k

∏
i<j |xi − xj | ×

∏n
i=1(1− |xi|2)

(
∫ ∏N

i=1 |x− xi|2dνS2(x))(n+1)/2
dLn,k(x1, . . . , xn).

Where ρn,k is like in Proposition 3.9. This law can be written:

bn/2c∑
k=0

1
Zn,k

exp
(
−βn

[
1
2E6=(µn)− n+ 1

2n2 log
∫ N∏

i=1
|x− xi|2dνS2(x)

])
dρn,k.

The proof of this proposition is the same as Proposition 4.3. We can now state theorem
on the sphere.

Proposition 4.4 (Large deviation principle inM1(S2)). In the complex case, the sequence
of empirical measures satisfy a large deviation principle with speed n2 inM1(S2) with good
rate function IE,S2 − inf IE,S2 where

IE,S2(µ) = −
∫∫

log |x− y|dµ(x)dµ(y) + sup
x∈S2

∫
log |x− y|2dµ(y).

In the real case, the sequence of empirical measures also satisfies a large deviation principle
with speed n2 and good rate function:

ĨE,S2(µ) =
{1

2(IE,S2(µ)− inf IE,S2) if µ is invariant under the map z 7→ z̄

∞ otherwise.

Definition 4.5. We define JE :M1(C)→ R by:

JE(µ) = sup
z∈C
{
∫

log |z − w|2dµ(w)− log(1 + |z|2)} (43)

and JE,S2 :M1(S2)→ R by:

JE,S2(µ) = sup
x∈S2

∫
log |x− y|2dµ(y). (44)

4.3 Step 3: Proof of the large deviation principles

Proposition 4.6 (Rate function IE,S2).
1) The function JE,S2 is a continuous function for the weak topology of M1(S2) and is
bounded.
2) The function IE,S2 is well defined onM1(S2), takes its values in [0,∞] and is finite as
soon as the logarithmic energy is finite.
3) IE,S2 is lower semi-continuous.
4) IE,S2 is strictly convex.

Proof of Proposition 4.6. The proof is exactly the same as the proof of Proposition 3.13.
We only have to check that S2 is a compact set in S2, which is non-thin at all his points,
which is true.
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4.3.1 Large deviations upper bound.

The only thing we need to import the proof of the large deviation principle for non-
normalized measures in the Kac case is the Bernstein-Markov inequality that was crucial
to prove the upper bound.

Lemma 4.7 (Bernstein-Markov for elliptic polynomials). Let n ∈ N, then for all P ∈
Cn[X] we have:

sup
C

|P (z)|2

(1 + |z|2)n ≤ (n+ 1)‖P‖2L2

where ‖P‖2L2 =
∫
|P (z)|2 1

(1+|z|2)n
d`C(z)

π(1+|z|2)2 .

proof of Lemma 4.7. Let Kn(z, w) =
∑n
i=0(n+ 1)

(n
k

)
zkw̄k. Then we have:

∀P ∈ Cn[X], P (z) =
∫
P (w)K(z, w) 1

(1 + |w|2)n
dw

π(1 + |w|2)2 = 〈P,K(., w)〉

Then by the Cauchy-Schwarz inequality we get, for all z ∈ C:

|P (z)|2 ≤ ‖P‖L2

∫
|Kn(z, w)|2 1

(1 + |w|2)n
dw

π(1 + |w|2)2 = ‖P‖L2(n+ 1)Kn(z, z).

Considering that ‖Kn(z, )‖2L2 = (n+ 1)Kn(z, z) = (n+ 1)(1 + |z|2)n we get:

sup
C

|P (z)|2

(1 + |z|2)n ≤ (n+ 1)‖P‖2L2 .

From this Bernstein-Markov inequality, we deduce the analogue for this model of
Lemma 3.16 and Lemma 3.17 and we can easily prove the upper bound for non-normalized
measures for elliptic polynomials in both real and complex cases.

4.3.2 Large deviations lower bound

As we know that JE,S2 is a continuous function inM1(S2), the proof of the lower bound
is exactly the same. The same inequalities hold and we can reduce the problem to the
classical lower bound for a Coulomb gas with confining potential log(1 + |z|2).

4.3.3 Large deviation principles for normalized measures.

In the complex case, we use the same trick of using the inequalities for the whole space
(see (39)) to obtain:

lim
n→∞

1
βn

logZn = lim
n→∞

1
βn

logZn = − inf IE,S2

so we obtain the full large deviation principle for normalized measures in M1(S2). Due
to the definition of Zn given in Theorem 4.1, we have:

lim
n→∞

1
βn

log |An|2 = lim
n→∞

1
βn

log |An|2 = − inf IE,S2 . (45)
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In the real case, we need a uniform estimate of the Zn,k. Thanks to the formula given in
Theorem 4.1 and the limits given in Proposition 3.4, we notice that equation (45) implies
that:

lim
n→∞

1
βn

minZn,k = lim
n→∞

1
βn

maxZn,k = lim
n→∞

1
βn

log |An| = −
1
2 inf IE,S2 (46)

and this allows us to prove the large deviation principle in the real case for normalized
measures like in (41). For general βn we need to assume that (46) is true as we canot
obtain a uniform controlin k of the constants Zn,k. To control the constants Zn, k we use
(45) which comes from the analysis of the complex case. This proof relies the explicit
formulae for the constants Zn,k which are not available in general.

4.4 Step 4: Going back on the plane.

The only thing to check is that the rate function given by the contraction principle is the
rate function that was announced in the theorem. Using the relations (20) and (21) in the
definition of the rate function IE,S2 easily ends the proof.

We end the proof of the large deviations principles as in Section 3.3.4, using the uniform
estimates on the Zn,k.

5 General result of Zeitouni and Zelditch
In this section, we give the general statement of the result obtained by Zeitouni and
Zelditch in [ZZ10] and we extend it to the case of real coefficients. We deal with the gases
(6) and (7) associated to the orthogonal polynomials (4).

5.1 Step 1: Distribution of the roots

Theorem 5.1 (Distribution of the roots of Pn). In the complex case, the distribution of
the random vector (z1, . . . , zn) is:

1
Zn

exp
(
−βn

[
E 6=(µn) + n+ 1

n2 log
∫ n∏

i=1
|z − zi|2e−nφ(z)dν(z)

])
d`Cn(z1, . . . , zn)

where
Zn = πn−1

n!|An|2

and |An|2 is the Jacobian of the change of variables from the canonical basis of Cn[X] and
the orthonormal basis (RO, . . . , Rn).

When the polynomials R0, . . . , Rn have real coefficients, in the real case, the distribution
of (z1, . . . , zn) is given by:

bn/2c∑
k=0

1
Zn,k

exp
(
−βn

1
2HO(z1, . . . , zn)

)
d`n,k(z1, . . . , zn)

where

Zn,k = k!(n− 2k)!π
n+1

2

2kΓ(n+1
2 )|An|

.
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Proof of Theorem 5.1. The proof is the same as the proof of Theorem 4.1. We consider
G(z1, . . . , zn, an) = (a0, . . . , an) where the ai are the coefficients in the orthonormal basis.
Then we use the same decomposition:

(z1, . . . , zn, an) G //

U ((

(a0, . . . , an)

(b0, . . . , bn)
V
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and the same calculation holds to obtain:

|Jac(G)|2 = |An|2|an|2n
∏
i<j

|zi − zj |2

where |An|2 is the real Jacobian determinant of the change of basis of Cn[X]. In the real
case, when the Rk’s are real polynomials, we can also do the same calculations, using
[Zap04].

5.2 Step 2: Large deviations on the sphere

Proposition 5.2 (Pushing orthogonal polynomials on the sphere). Let (z1, . . . , zn) be the
zeros of Pn in the complex case, then the law of (T (z1), . . . , T (zn)) is absolutely continuous
with respect to the push forward by T (2.3) of the Lebesgue measure on C with density:∏

i<j |xi − xj |2

(
∫ ∏n

j=1 |x− xj |2e−nφ̃(x)dT ∗ν(x))n+1
×

n∏
i=1

(1− |xi|2)2.

where φ̃(x) = φ(T−1(x)) + log(1−|x|2). If κn is defined as in Proposition 3.7 then we can
write this law in the form:

1
Zn

exp

−βn
E6=(µ̄n) + n+ 1

n2 log
∫ n∏

j=1
|x− xj |2e−nφ̃(x)dT ∗ν(x)

 dκn.
Proposition 5.3 (Pushing the real case on the sphere). Let (z1, . . . , zn) be the zeros of
Pn in the real case, then the law of (T (z1), . . . , T (zn)) is:

bn/2c∑
k=0

1
Zn,k

∏
i<j |xi − xj | ×

∏n
i=1(1− |xi|2)

(
∫ ∏n

j=1 |x− xj |2e−nφ̃(x)dT ∗ν(x))(n+1)/2
dLn,k(x1, . . . , xn).

If we define ρn,k as in Proposition 3.9, this distribution can be written:

bn/2c∑
k=0

1
Zn,k

exp

−βn
1

2E 6=(µ̄n)− n+ 1
2n2 log

∫ n∏
j=1
|x− xj |2e−nφ̃(x)dT ∗ν(x)

 dρn,k.
Definition 5.4. We define JO :M1(C)→ R by:

JO(µ) = sup
z∈C
{
∫

log |z − w|2dµ(w)− φ(z)} (47)

and JO,S2 :M1(S2)→ R by:

JO,S2(µ) = sup
x∈S2
{
∫

log |x− y|2dµ(y)− φ̃(x)}. (48)
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5.3 Steps 3 and 4

• Rate function. If we look at the proof of the large deviation principles for Kac
polynomials and elliptic polynomials on the sphere, we see that the good definition
of the rate function relies on the continuity of the function JO,S2 . The proof of the
continuity of this function is the same as in the previous cases under the assumptions
that the support of T ∗ν non-thin at all its points, which is one of our hypothesis.
We replace the function −Uµ bu the function −Uµ + φ̄. Note that the set Aε would
be replaced in general by the set:

Aε = {x ∈ S2 | −2Uµ(x) + φ̄ ≥ JO,S2(µ)− ε}.

• Upper Bound. The proof of the large deviations upper bound relies on the Bernstein-
Markov property (1.1), which is assumed to be true.

• Lower Bound. As JO,S2 is continuous, we can reproduce exactly the proof of the
lower bound for Kac polynomials.

In order to prove the large deviation principle for the normalized measures, we use the
same technique as in (39) and (45). We prove asymptotics for Zn and we deduce a
uniform control over the constants Zn,k. This control is necessary to mimic the work of
Section 3.3.4. Using the large deviations principle for non-normalized measures with the
setM1(S2), we have:

lim
n→∞

1
βn

logZn = lim
n→∞

1
βn

logZn = − inf IO,S2 . (49)

Hence, doing exactly as in we obtain the full large deviation principle for normalized
measures in M1(S2). We also notice that, due to the definition of Zn given in Theorem
5.1, we have:

lim
n→∞

1
βn

log |An|2 = lim
n→∞

1
βn

log |An|2 = − inf IO,S2 . (50)

Remembering the definition of Zn,k from Theorem 5.1 and the estimates given in Propo-
sition 3.4, we have:

lim
n→∞

1
βn

minZn,k = lim
n→∞

1
βn

maxZn,k = −1
2 inf IO,S2 . (51)

This allows us to prove the large deviation principle for normalized measures as in Section
3.3.4. For general βn we need to assume a uniform control over the constants Zn,k given
in (51).

We end the proof of the large deviations principle exactly in the same way as we did
in Section 3.3.4.

Once the large deviation principle proved inM1(S2), we can prove Theorem 1.2 and
Theorem 1.3.

Proof of Theorem 1.2. Thanks to the inclusion principle [DZ09, Lemma 4.1.5], the random
sequence (T ∗µn)n∈N satisfies a large deviation principle in

{µ ∈M1(S2) | µ({N}) = 0}

with speed βn and good rate function IO,S2 . Then by the contraction principle [DZ09,
Theorem 4.2.1] along T−1, the sequence (µn)n∈N satisfies a large deviation principle with
the same speed and good rate function IO thanks to Proposition 3.19. The contraction
principle ensures that the function IO is a good rate function as IO,S2 is a good rate
function.
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Proof of Theorem 1.3. In the real case, the proof is exactly the same as Theorem 1.2.
We use the inclusion principle and the contraction principle to obtain a large deviation
principle with speed βn and good rate function ĨO (using again Proposition 3.19).
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