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Abstract
Purpose – The purpose of this paper is to focus on the advanced solution of the parametric non-linear
model related to the Rayleigh-Benard laminar flow involved in the modeling of natural thermal
convection. This flow is fully determined by the dimensionless Prandtl and Rayleigh numbers. Thus, if
one could precompute (off-line) the model solution for any possible choice of these two parameters the
analysis of many possible scenarios could be performed on-line and in real time.
Design/methodology/approach – In this paper both parameters are introduced as model extra-
coordinates, and then the resulting multidimensional problem solved thanks to the space-parameters
separated representation involved in the proper generalized decomposition (PGD) that allows
circumventing the curse of dimensionality. Thus the parametric solution will be available fast
and easily.
Findings – Such parametric solution could be viewed as a sort of abacus, but despite its inherent
interest such calculation is at present unaffordable for nowadays computing availabilities because
one must solve too many problems and of course store all the solutions related to each choice of both
parameters.
Originality/value – Parametric solution of coupled models by using the PGD. Model reduction
of complex coupled flow models. Analysis of Rayleigh-Bernard flows involving nanofluids.
Keywords Nanofluids, Model order reduction, Parametric solutions, PGD, Rayleigh-Benard model,
Proper generalized decomposition
Paper type Research paper

1. Introduction
Several systems and industrial processes are based on natural convection, justifying
the impressive volume of work devoted to its understanding and efficient solution
during more than one century. These problems, quite simple in appearance, exhibit
many surprises related to their intricate nature and many issues concerning their
numerical solution.

In Aghighi et al. (2013) we addressed the transient solution of the Rayleigh-Bénard
flow model within a non-incremental framework. For that purpose the
different fields involved in the model (the components of the velocity v(x, t) and
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temperature θ(x,t) fields) were approximated by using a space-time separated
representation:

u x; y; tð Þ �
Xi¼N

i¼1

Xu
i x; yð ÞUYu

i tð Þ (1)

v x; y; tð Þ �
Xi¼N

i¼1

Xv
i x; yð ÞUYv

i tð Þ (2)

and:

y x; y; tð Þ �
Xi¼N

i¼1

X y
i x; yð ÞUYy

i tð Þ (3)

Functions Xu
i , X

v
i and X y

i were calculated by solving a series of two-dimensional (2D)
boundary value problems and functions Yu

i , Y
v
i and Yy

i by solving a series of initial
value problems (see Aghighi et al., 2013, for additional details on the solution
procedure). Separated representations are involved in the so-called proper generalized
decomposition (PGD) methods. The interested reader can refer to some recent reviews
on these techniques (Chinesta et al. 2010b, 2011a, b) and the references therein.
This non-incremental strategy allowed significant CPU time savings (Aghighi et al.,
2013).

The present work constitutes a step forward toward an efficient solution of
such coupled non-linear models that govern many systems of industrial interest.
The Rayleigh-Bénard flow problem is fully determined by the dimensionless Prandtl Pr
and Rayleigh Ra numbers. Thus, if one could precompute (off-line) the model solution
for any possible choice of Pr and Ra, then the analysis of many possible scenarios could
be performed on-line and in real time. Moreover, one could explore all the parametric
domain and evaluate the impact of any change in the fluid and process conditions.
Such parametric solution could be viewed as a sort of computational vademeucm, but
despite its inherent interest such calculation is at present unaffordable for nowadays
computing availabilities because one must solve too many problems and of course store
all the solutions related to each parameters choice.

In this paper we propose an alternative route: Pr and Ra numbers will be introduced
as extra-coordinates, and then the resulting multidimensional problem solved thanks
to the space-parameters separated representation involved in the PGD that allows
circumventing the curse of dimensionality in the solution of highly multidimensional,
parametric and/or coupled models as illustrated in our former works (Ammar et al.,
2006, 2007, 2010a; Mokdad et al., 2007; Pruliere et al., 2009; Chinesta et al., 2010a, 2013)
and the references therein. The calculation of such a parametric solution, in the
non-linear coupled case, by using the PGD constitutes the first original contribution
of the present work. The use of the PGD is not the only route for constructing such
parametric solution. An alternative route consists in using reduced bases. Interested
readers can refer to Maday and Ronquist (2002), Maday et al. (2002), Veroy and Patera
(2005), Rozza et al. (2008) and the references therein. Reduced bases were successfully
applied for simulating the Rayleigh-Bénard flow model in Herrero et al. (2013) within
a framework quite different to the one here considered.

In our former work (Aghighi et al., 2013) we computed a transient solution in
a non-incremental manner without considering any parameter as extra-coordinate.
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Thus, the solution was transient but not parametric. In the present work we succeeded
to compute a parametric solution of a non-linear flow model where the nonlinearities
come from both the inertia term and the thermo-mechanical coupling. It constitutes a
first result in that sense. Moreover, the solution procedure is extremely efficient. In fact,
we considered 1,000 nodes for discretizing each one of the parametric coordinates, Pr
and Ra, that implies a total number of 106 flow scenarios. We can imagine that solving
one million of non-linear models is not an easy task, however, when using the PGD
solver, the computing time is not significantly affected by the mesh involved in
the parametric representation because as proved later the problems involved by each
parameter is algebraic and 1D. Thus, in few minutes, and by using a standard laptop,
the PGD solver calculates a solution that contains the equivalent of one million of
2D non-linear solutions.

In what follows we start by introducing the main ideas of the PGD. The PGD
will be then applied in Section 3 for solving the parametric Rayleigh-Bénard flow
model. Section 4 presents some numerical results concerning Newtonian fluids and
more in particular suspensions involving nano-particles (also known as nanofluids).

It is generally admitted that nanofluids can be considered more as a single-phase
fluid than a two-phase fluid. For low particles volume fractions the rheology seems not
dependent on the applied shear rate and then the nanofluid can be considered in first
approximation as a Newtonian fluid with a viscosity depending on the particles
diameter and its volume fraction. Many works make use of this assumption (Massimo,
2011; Abouali and Ahmadi, 2012; Alloui et al., 2011; Cianfrini et al., 2011; Elhajjar et al.,
2010). Computational modeling is in any case needed for evaluating the heat transfer
efficiency that depends on the flow features, these last influenced by the thermal and
rheological properties (Abu-Nada and Chamkha, 2010; Oueslati and Bennacer, 2011;
Mahmoudi et al., 2010; Aminossadati and Ghasemi, 2009; Abu-Nada, 2011).

The use of nanofluids (involving a suspension of nano-particles) in industrial
applications is experiencing an impressive growth because the significant increase
of the thermal conductivity of the base fluid by adding some few percents of nano-
particles. However, some works (Abu-Nada et al., 2010; Massimo, 2011) claimed that in
the case of convection dominated heat transfer, as in the case of the one occurring in the
Rayleigh-Bénard cavity, the heat transfer seems insensitive to the particles volume
fraction, and even sometimes it decreases when increasing the dispersed phase.

For analyzing deeply the question relative to the real effect of nano-particles on
convection dominated flows the parametric solution of the flow model seems an
appealing route, allowing a fast and accurate exploration of the parametric space.
The main conclusion of the analysis addressed in the present work is that the use of
nanofluids does not constitute a valuable technological opportunity, but at least such
conclusion seems of interest because it is based on a fine analysis of the parametric
solution. Independently of the little interest of using nanofluids, the parametric solution
that we calculate can be applied to any Newtonian fluid within a Rayleigh-Bénard flow
cell, and then such a parametric solution could be of interest in other applications.

2. The PGD at a glance
Consider a problem defined in a space of dimension d for the unknown field u(x1,…, xd).
Here, the coordinates xi denote any usual coordinate (scalar or vectorial) related
to physical space, time or problem parameters such as material or flow parameters.
We seek a solution for (x1,…, xd) ∈ Ω1×…×Ωd.
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The PGD yields an approximate solution in the separated form:

u x1; . . . ; xdð Þ �
XN
i¼1

F1
i x1ð ÞU. . .UFd

i xdð Þ: (4)

The PGD approximation is thus a sum of N functional products involving each a
number d of functions Fj

i xj
� �

that are unknown a priori. It is constructed by successive
enrichment, whereby each functional product is determined in sequence. At a particular
enrichment step n+1, the functions Fj

i xj
� �

are known for i⩽n from the previous
steps, and one must compute the new product involving the d unknown functions
Fj
nþ 1 xj
� �

; j¼ 1; . . . ; d. This is achieved by invoking the weak form of the problem
under consideration. The resulting discrete system is non-linear, which implies that
iterations are needed at each enrichment step. A low-dimensional problem can thus
be defined in Ωj for each of the d functions Fj

nþ 1 xj
� �

; j¼ 1; . . . ; d. For additional
details on the separated representation constructor the interested reader can refer
to Appendix 1.

2.1 Parametric solution-based vademecum
In the case of a field depending on the physical space x ∈ Ωx⊂R3, the time t ∈ I t⊂R
and Q parameters p1,y, pQ, pjAOpj , j¼ 1,y,Q, the solution is sought under the
separated form:

u x; t; p1; . . . ; pQ
� �� XN

i¼1

Xi xð ÞUTi tð ÞU
YQ
j¼1

Pj
i p

j� � (5)

As soon as this solution is available, after solving the multidimensional model within
the PGD framework, we can have access to any possible solution. In fact the
representation (5) implies an approximation of each function. Thus the space functions
Xi(x) could be approximated, for example, by using a finite element interpolation
that implies knowing the value of each space function Xi(x) at the Mx nodes xk
(k¼ 1,…,Mx) of the mesh used for approximating them, i.e. Xi(xk). The functions Ti(t)
depending on time will be expressed from the values of those functions at Mt time
instants tl (l¼ 1,…,Mt), i.e. Ti(tl). Finally, the functions depending on the different
parameters P j

i p
j

� �
will be expressed from the values of those functions at Mpj values

of each parameter p j
r ðr¼ 1; . . . ;Mp jÞ, i.e. P j

i p
j
r

� �
. Thus, the solution consists of N

vectors of sizeMx that contain the discrete representation of functions Xi(x), N vectors
of size Mt that contain the discrete representation of functions Ti(t) and N vectors
of size Mpj that contain the discrete representation of functions P j

i p
j

� �
, j¼ 1,yQ.

If we imagine that Mx ¼ Mt ¼ Mp1 ¼ . . . ¼ MpQ ¼ M, then the solution
representation involves N � (Q+2) vectors of size M, that is N � (Q+2)M values
instead of theM2+Q involved by an equivalent mesh. If for a while we imagine Q¼ 10,
M¼ 100 and N¼ 10 the separated representation will involve 104 values instead
of 1020 involved in a hypothetical equivalent mesh.

Thus, the PGD solver allowing the construction of the separated representation (5)
can be viewed as a solver that constructs on the fly a compressed representation of
the model solution. Its connexion with singular value decompositions and its high
order counterpart was highlighted in Chinesta et al. (2013) where a PGD-based
post-compression was proposed for a posteriori reduction of the number of terms
involved by the separated representation.
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Until now, we presented the PGD as en efficient solver, however, it can be also
viewed as a model reduction strategy when computing only the most relevant terms
of the separated representation. In that case an error is introduced, but because the
few number of terms retained, storage and data post-processing can be efficiently
performed even on deployed platforms.

As soon as a separated representation is available, it can be viewed as a computational
handbook, a metamodel, containing an unimaginable amount of information. For
example, if the solution (5) applies for a model involving ten parameters, all them
considered as extra-coordinates, i.e. Q¼ 10, and ten discrete values are considered for
describing each parametric dependency, i.e. M1¼?¼M10¼ 10 the solution (5)
contains the information associated to 1010 possible scenarios. Obtaining an equivalent
amount of information would require the solution of 1010 transient 3D problems.
Now, from this extremely rich metamodel, one could obtain the solution for
any possible scenario u(x, t, p1,…, p10) from the parametric solution (5).

3. Separated representation of the parametric Rayleigh-Bénard model
solution
We consider the dimensionless form of the Rayleigh-Bénard model (see Appendix 2 for
more details concerning the derivation of this model):

rUv¼ 0

@v
@tþvUrv ¼ �rpþ Pr

Ra

� �1
2rUDþyj

@y
@tþvUry ¼ PrURað Þ�1

2r2y

8>>><
>>>:

(6)

where v is the dimensionless velocity, p is the dimensionless pressure, θ the
dimensionless temperature, D the dimensionless strain rate tensor (symmetric
component of the dimensionless velocity gradient), Pr and Ra the Prandtl and Rayleigh
dimensionless numbers, respectively (theirs expressions are given in the Appendix 2)
and j the unit vector defining the direction along which gravity force applies (the
y-direction in our case).

The model is defined in the unit square domain Ω¼ (0,1) × (0,1) (related to the
square domain of size H depicted in Figure 1) fulfilled by a fluid initially at rest.
A dimensionless temperature θ(x, y¼ 0)¼ θH¼ 0.5 is enforced at the bottom boundary

Cavity

u = v = 0, Tc

u = v = 0, TH

u = v = 0 u = v = 0

�T

�x
= 0

g

y

x

H �T

�x
= 0

Figure 1.
Square domain and
boundary conditions
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y¼ 0 whereas a low dimensionless temperature θ(x, y¼ 1)¼ θC¼−0.5 is applied on the
upper boundary. The dimensionless temperature θ is defined by:

y ¼ T�Tr

TH�TC
(7)

where TC and TH (THWTC) are the temperatures enforced at the top and bottom cavity
boundaries, respectively, and Tr is a reference temperature Tr¼ (TH+TC)/2.

The heat flux is assumed vanishing on the left and right domain boundaries.
The initial temperature distribution compatible with a thermal conduction regime in a
fluid at rest, evolves linearly in the y-direction:

y x; y; t¼ 0ð Þ ¼ yH�y (8)

Equation (6) defines a mixed formulation involving as unknowns the dimensionless
velocity, pressure and temperature fields. When we proceed to the discretization
of the weak form related to Equation (6) some stability conditions must be ensured. One
of them concerns the so-called LBB condition that restricts the free choice of pressure
and velocity approximations. As in Aghighi et al. (2013) in what follows we consider a
penalty formulation of the incompressibility constraint. Thus, the mass balance we are
considering writes:

rUvþ1
l
p¼ 0 (9)

with λ a large enough constant. This expression implies:

p ¼ �l rUvð Þ (10)

that substituted in the momentum equation simplifies the model formulation:

@v
@tþvUrv ¼ lr rUvð Þþ Pr

Ra

� �1
2rUDþyj

@y
@tþvUry ¼ PrURað Þ�1

2r2y

8><
>: (11)

which only implies the dimensionless velocity and temperature fields.
The weighted residual form related to Equation (11) reads:

R
O�Iv

nU @v
@tþvUrv�lrðrUvÞ� Pr

Ra

� �1
2rUD�yj

� �
dx dt¼ 0

R
O�Iy

nU @y
@tþvUry� PrURað Þ�1

2r2y
n o

dx dt¼ 0

8>><
>>: (12)

where I represents the dimensionless time interval.
In the previous model the coefficients Pr=Ra

� �1=2 and PrURað Þ�1=2 can be viewed as
a sort of equivalent viscosity and thermal diffusivity, respectively, that for the sake of
notational simplicity could be noted by ῆ and ᾶ, respectively.

Thus the above strong and weak formulations read:

@v
@tþvUrv ¼ lrðrUvÞþ ~ZrUDþyj
@y
@tþvUry ¼ ~ar2y

(
(13)
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and: R
O�Iv

nU @v
@tþvUrv�lr rUvð Þ� ~ZrUD�yj
� 	

dx dt¼ 0R
O�Iy

nU @y
@tþvUry� ~ar2y
� 	

dx dt¼ 0

(
(14)

respectively.

3.1 Extended parametric weak form
When both parameters ῆ and ᾶ are considered as extra-coordinates the weak form must
be considered in the extended domain resulting from Ω, ℐ and the domains
in which both extra-coordinates take theirs values that we will note by Ξη and Ξα,
respectively. We define the domain Ξ¼Ξη×Ξα and the couples ξ¼ (ῆ, ᾶ)∈Ξ.

The extended weak form writes in this case:R
O�I�Xv

nU @v
@tþvUrv�lr rUvð Þ� ~ZrUD�yj
� 	

dx dt dn¼ 0R
O�I�Xy

nU @y
@tþvUry� ~ar2y
� 	

dx dt dn¼ 0

(
(15)

with the velocity and temperature fields depending now on the physical coordinates x
and t as well as on both parametric coordinates ῆ and ᾶ, that is v(x, t, ξ) and θ(x, t, ξ).

In what follows as we are only interested in the long time solution we are
considering the steady state solution and then removing all time dependences, fact that
results in: R

O�Xv
nU vUrv�lr rUvð Þ� ~ZrUD�yj
� 	

dx dn¼ 0R
O�Xy

nU vUry� ~ar2y
� 	

dx dn¼ 0

(
(16)

with v(x,ξ) and θ(x,ξ).

3.2 Separated representation of velocity and temperature fields
With the components of the velocity field v denoted by (u, v), the separated
representation of the different unknown fields read:

u x; nð Þ �
Xi¼N

i¼1

Xu
i xð ÞUYu

i nð Þ (17)

v x; nð Þ �
Xi¼N

i¼1

Xv
i xð ÞUYv

i nð Þ (18)

and:

y x; nð Þ �
Xi¼N

i¼1

X y
i xð ÞUYy

i nð Þ (19)

with x¼ (x,y) and ξ¼ (ῆ, ᾶ).
In the separated representation of both components of the velocity vector (17)

and (18) we considered different functions Yu
i nð Þ and Yv

i nð Þ because this choice offers
the most compact representation. We could consider identical functions Θi(ξ) in the
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separated representation of both velocity components but in that case the number of
terms involved in the separated representation would be higher:

Remark 1. As the problem here addressed, the Rayleigh-Bénard flow model, only
involves two parameters we decided to consider both parameters grouped
when defining the separated representation. Obviously an alternative
separated representation could consist of a fully separated representation
of the parametric space, that is:

u x; nð Þ �
Xi¼N 0

i¼1

Xu
i xð ÞUYu

i ~Zð ÞUUu
i ~að Þ (20)

and similarly for v and θ. This representation involves in general more
terms, that is, N'WN, but allows considering many parameters as extra-
coordinates without suffering the curse of dimensionality. In general the
more are the coordinates considered separately the higher is the number
of terms involved in the finite sum. In the limit case in which all the
coordinates are considered fully grouped (without any separation)
the solution consists in a single term.

Expressions (17) and (18) can be written in the compact separated representation vector
form:

v x; nð Þ �
u x; nð Þ
v x; nð Þ

 !
�

Xi¼N

i¼1

Xu
i xð ÞUYu

i nð Þ

Xi¼N

i¼1

Xv
i xð ÞUYv

i nð Þ

0
BBBBB@

1
CCCCCA ¼

Xi¼N

i¼1

Xi xð Þ3Yi nð Þ (21)

where the symbol “°” denotes the so-called entry-wise, Hadamard or Schur multiplication
for vectors. Thus for two generic vectors a and b, the i-component of the entry-wise
product a3bð Þi is given by a3bð Þi ¼ aiUbi .

This separated representation is built as described in Appendix 1, by computing a
term at each iteration of the PGD constructor. Thus, if we assume at iteration m the
solution vm and θm given by:

vm x; nð Þ ¼
Xi¼m

i¼1

Xi xð Þ3Yi nð Þ (22)

and:

ym x; nð Þ ¼
Xi¼m

i¼1

X y
i xð ÞUYy

i nð Þ (23)

at iteration m+1 we look for the next functional products:

vmþ 1 x; nð Þ ¼
Xi¼m

i¼1

Xi xð Þ3Yi nð ÞþR xð Þ3S nð Þ ¼ vm x; nð ÞþR xð Þ3S nð Þ (24)

and:

ymþ 1 x; nð Þ ¼
Xi¼m

i¼1

X y
i xð ÞUYy

i nð ÞþRy xð ÞUSy
nð Þ ¼ ym x; nð ÞþRy xð ÞUSy

nð Þ (25)

3.3 Linearization
The previous models are always non-linear because the advective terms v·∇v and
v·∇θ, and coupled. The simplest linearization consists of linearizing at iteration m+1
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the non-linear terms around the solution at the previous iterationm. Thus, we can write
at iteration m+1:

vmþ 1Urvmþ 1 � vmUrvmþ 1 (26)
and:

vmþ 1Urymþ 1 � vmUrymþ 1 (27)
This simple linearization is not optimal as explained in Ammar et al. (2010b), because
the number of terms in the decomposition depends on the convergence rate of the fixed
point algorithm and not only on the separability of the approximated solution. An
enhanced linearization originally proposed in Ammar et al. (2010b) was considered in
Aghighi et al. (2013), where the non-linear terms were evaluated at the previous fixed
point solution instead of at the previous enrichment step, however, in this paper we use
the above simple linearization, because after computing the parametric solution it will be
post-compressed by using the strategy described in Chinesta et al. (2013). Thus, in what
follows we are not constrained by the separated representation constructor optimality.

3.4 Separated representation-based weak form
By considering the simplest linearization and the approximations at iteration m:

vm x; nð Þ �
Xm
i¼1

Xi xð Þ3Yi nð Þ

ym x; nð Þ �
Xm
i¼1

X y
i xð ÞUYy

i nð Þ

8>>>>><
>>>>>:

(28)

at iteration m+1 the searched solution writes:

vmþ 1 x; nð Þ �
Xm
i¼1

Xi3YiþR3S

ymþ 1 x; nð Þ �
Xm
i¼1

X y
i UY

y
i þRyUSy

8>>>>><
>>>>>:

(29)

where for the sake of clarity we do not specify the dependence of functions Xi, X
y
i , R

and Rθ on x and Θi, Y
y
i , S and Sθ on ξ.

The test functions related to (29) write:

vn x; nð Þ ¼ Rn3SþR3Sn

yn x; nð Þ ¼ Ry
� �

n
USyþRyU Sy

� �
n

8<
: (30)

By introducing Equations (29) and (30) into the extended weak form (16) it results:R
O�X Rn3SþR3Sn

� �
U

Xi¼m

i¼1

Xi3Yi

 !
U
Xi¼m

i¼1

r Xi3Yið Þþr R3Sð Þ
 !(

�l
Xi¼m

i¼1

r rU Xi3Yið Þð Þ�lr rU R3Sð Þð Þ� ~Z
Xi¼m

i¼1

rUDiþrUD
 !

�
Xi¼m

i¼1

X y
i UY

y
i þRyUSy

 !
j

)
dx dn¼ 0 (31)
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and:

R
O�X Ry

� �n

USyþRyU Sy
� �n


 �
U

Xi¼m

i¼1

Xi3Yi

 !
U
Xi¼m

i¼1

rX y
i UY

y
i þrRyUSy

 !(

� ~a
Xi¼m

i¼1

r2X y
i UY

y
i þr2RyUSy

 !)
dx dn¼ 0 (32)

where:

Di ¼ 1
2 r Xi3Yið Þþ r Xi3Yið Þð ÞT
� �

D ¼ 1
2 r R3Sð Þþ r R3Sð Þð ÞT
� �

8><
>: (33)

We consider the expression of the different differential operators developed in Aghighi
et al. (2013) that allows the explicit application of the differential operators on the
spatial functions Xi, X

y
i , R and Rθ.

3.5 Fixed point alternated direction linearization
Now for computing functions R, Rθ, S and Sθ, we proceed as described in Appendix 1,
by applying a fixed point alternated direction strategy, that starting from an arbitrary
S and Sθ computes R and Rθ from Equations (31) and (32). Then from the just
calculated couple of functions we can update functions S and Sθ. Both steps are
repeated until reaching the fixed point, i.e. until the just computed functions are close
enough to the previous ones.

It must be highlighted that when functions S and Sθ are known, integrals in the
parametric domain Ξ in Equations (31) and (32) can be performed leading to a weak
form that only involves the fields R, Rθ and theirs derivatives. Obviously, because the
original problem involves second order space derivatives of the velocity components
and the temperature field, the resulting weak form will involve second order space
derivatives on both, the components of R and Rθ. Obviously, integration by parts can
by then performed in order to reduce the derivatives order and proceed to the
discretization of the resulting weak form by using standard continuous finite element
interpolations for example, but other choices exist. A strong form could be derived, as
shown in Appendix 1, and then solved by using any collocation technique applied on it.

On the other hand, when functions R and Rθ are assumed known, space integrals in
the space domainΩ in Equations (31) and (32) can be performed, leading to a weak form
that only concerns parametric functions S, Sθ. As the original problem does not involve
derivatives with respect to the model parameters ῆ and ᾶ the resulting strong form
defines a simple algebraic problem.

4. Numerical results
In what follows we are applying the technique just described to the solution of the
Rayleigh-Bénard problem for both Newtonian fluids and suspensions containing
nano-particles.

For approximating functions depending on the physical space x¼ (x,y): Xi, R, X
y
i

and Rθ we use standard eight-nodes quadrilateral C0 finite elements. The considered
computational meshes of the square cavity involve 1,160 and 2,296 nodes. The finer
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mesh was used to conclude on the convergence of the results computed on the
coarser one.

The parametric domain Ξ¼Ξη × Ξα was defined in order to cover the domain of
variation of both the Prandtl and the Rayleigh numbers, that we considered taking
values in the intervals Pr∈[0.7,7] and Ra∈[103,105]. This choice implies ~ZAXZ ¼
0:0026; 0:083½ � and ~aAXa ¼ 0:001; 0:04½ �. The mesh considered in the parametric
domain Ξ¼Ξη × Ξα involves 30×30 nodes. Convergence is assumed reached when the
L2 norm of the error related to the equation residual attains the value ε¼ 10−6.
In general 20 terms in the finite sums suffice for solving very accurately both problems.
The comparison with the solutions obtained by using the finite element method for
some choices of the parameters revealed errors lower that 0.1 percent.

In order to quantify the heat transfer efficiency we define the mean Nusselt number
Nu from:

Nu nð Þ ¼
Z 1

0

@y x; nð Þ
@y

9y¼0dx (34)

4.1 Newtonian fluid
After solving Equations (31) and (32) in Ω × Ξ both parametric solutions v(x,ξ) and
θ(x,ξ) are available and can be particularized easily and in real time at each position
x∈Ω and for each couple ξ∈Ξ, with n ¼ ~Z; ~að Þ that can be obtained from the values of
the dimensionless Prandtl and Rayleigh numbers from:

~Z ¼ Pr
Ra

� �1
2

~a ¼ PrURað Þ�1
2

8><
>: (35)

Figure 2 compares the evolution of the maximum value of the x-component of the
velocity vector with the Prandtl number for three different values of the Rayleigh
number (on the left) and its evolution with the Rayleigh number for three values of the
Prandtl number (on the right).

The thermal efficiency is quantified from the evolution of the mean Nusselt number
with both, the Prandt and the Rayleigh numbers. Both evolutions are compared
in Figure 3.

It is important noticing that all the previous representations only required a single
solution of the parametric model in order to compute the general parametric solution
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Figure 2.
Evolution of the
maximum value of
the x-component of
the velocity vector
with the Prandtl
number for three
different values of
the Rayleigh number
(on the left) and its
evolution with the
Rayleigh number for
three values of the
Prandtl number
(on the right)
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that contains the model solution for any choice of the model parameters in Ξ. Thus, the
analysis, optimization or the inverse analysis can be performed efficiently because the
calculation of the velocity and temperature fields only involves a simple particularizetion
of the general parametric solution.

4.2 Nanofluid
In this section we are focussing on suspensions involving nano-particles. In particular
we are considering the Al2O3-water suspension for which there is an extensive
literature covering its rheological and thermal properties.

In order to use the parametric solution just obtained v(x,ξ) and θ(x,ξ) we need
deriving the dependence of the model parameters Pr and Ra on the suspension features
(size of the particles and solid phase concentration).

As in the present case we can differentiate two phases, the solid and the suspending
fluid, we introduce the indexes •f and •s, respectively. When no index is specified the
property is related to the suspension itself, that is, to the nanofluid.

The dimensionless Prandtl (Pr) and Rayleigh (Ra) numbers, the first defined from the
ratio of momentum diffusivity to thermal diffusivity, and the second one related with
buoyancy-driven flows write:

Pr ¼
2ZCp

k
(36)

and:

Ra ¼
gbH 3DTr

2Za
(37)

respectively, where ν is the kinematic viscosity.
For obtaining both numbers (Pr and Ra) for the suspension we need to derive the

expressions given its specific heat, the heat expansion, the viscosity and thermal
diffusivity.

For that purpose we start considering a mixture rule for the density:

r ¼ frsþ 1�fð Þrf (38)

where ϕ is the nano-particles volume fraction.
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Figure 3.
Evolution of the

mean Nusselt
number with the

Prandtl number for
three different values

of the Rayleigh
number (on the left)

and its evolution
with the Rayleigh
number for three

values of the
Prandtl number

(on the right)
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In a similar way we can define for the volumetric heat capacity ρ �Cp:

rCp ¼ f rCp
� �

sþ 1�fð Þ rCp
� �

f (39)

that allows writing:

Cp ¼
f rCp
� �

sþ 1�fð Þ rCp
� �

f

r
(40)

with the suspension density ρ given in Equation (38).
By repeating the same reasoning for the thermal expansion we obtain:

b ¼ f rbð Þsþ 1�fð Þ rbð Þf
r

(41)

The thermal conductivity and the viscosity do not accept a mixture rule. In Massimo
(2011), authors proposed the following expression for the effective thermal conductivity
of nanofluids:

k
kf
¼ 1:44 R0:4

e Prð Þ0:66f
T
Tf r


 �10 ks
kf


 �0:03

f0:66 (42)

where Tfr is the freezing temperature of the suspending fluid and Re the Reynolds
number defined from:

Re ¼
2rf KbT

2Z2f dp
(43)

where Kb is the Boltzmann’s constant and dp the particles diameter.
In the same publication (Massimo, 2011) authors propose an expression for the

suspension viscosity:

Z
Zf

¼ 1

1�34:87 dp
df

� ��0:3
f1:03

(44)

where df is the equivalent diameter of a fluid molecule calculated from:

df¼ 0:1
6Mm

Naprf 0

 !1
3

(45)

where Mm is the fluid molecular weight, Na is the Avogadro’s number and ρf0 is the
fluid density at 293 K.

Thus, as soon as the fluid and the particles properties are known, the ones of the
suspension can be obtained and from these both the Prandtl and Rayleigh numbers.
In the present model the thermal properties and the viscosity of the suspending fluid
are modified by the inclusion of nano-particles, however, its rehological behaviors
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remains Newtonian (the viscosity does not evolve with the shear rate). More complex
rheologies (rheothining) where considered in our former work (Aghighi et al., in press)
and could be also considered in a parametric framework.

In the numerical results presented below different temperatures (T¼ 294 K and
T¼ 324 K), diameters of the nano-particles (dp¼ 25 nm and dp¼ 100 nm) and different
nano-particles volume fractions (25 values uniformly distributed in the interval [0,6]
percent) were considered.

The Prandtl and Rayleigh numbers previously defined can be rewritten as:

Pr ¼
2ZCp

k
¼ Pr

Prð Þf
Prð Þf (46)

and:

Ra ¼
gbH 3DTr

2Za
¼ Ra

Rað Þf
Rað Þf (47)

Figures 4 and 5 depict the evolution of the mean Nusselt number with the particles
volume fraction ϕ for different (Ra)f, temperature T and particles diameter dp: T¼ 294 K
and dp¼ 25 nm (Figure 4-left); T¼ 294 K and dp¼ 100 nm (Figure 4-right);
T¼ 324 K and dp¼ 25 nm (Figure 5-left) and T¼ 324 K and dp¼ 100 nm (Figure 5-right).
As expected the heat transfer efficiency increases with the fluid Rayleigh number (Ra)f
because the main transfer mechanism is due to convection. Decreasing viscosity
enhances the convective effects. Thus, even if the introduction of nano-particles
increases the thermal conductivity, its effect can be suppressed by the viscosity
increase. Some profiles show a maximum for a given concentration that represents the
optimal compromise between the antagonist effects of increasing thermal conductivity
and viscosity.

Figures 6-13 depict the steady velocity field and the temperature profiles for
different suspensions characterized by ϕ, T, dp and (Ra)f. As expected convection
increases when increasing the Rayleigh number and decreases slightly by increasing
the nano-particles volume fraction.

5. Conclusions
In this work we considered successfully the parametric solution of non-linear coupled
models related to the steady state Rayeigh-Bénard flow model of both Newtonian
and nanofluids, by using the PGD. PGD proceeds by building-up a space-parameters
separated representation of the different unknown fields, in our case the two
components of the velocity field and the temperature. About 20 terms were needed to
represent these fields, number that implied the necessity of solving few tens of 2D
problems for calculating the solution of the flow model for any choice of the
dimensionless Prandtl and Rayleigh numbers that fully define the flow, instead
the thousands required when using standard discretizations procedures that requires
a model solution for each couple (Pr, Ra). Thus, impressive computing time savings
were obtained making possible the fully exploration of the parametric space, that is too
expensive when using standard solution procedures.
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Steady state velocity
(top) and
temperature profiles
(bottom) for ϕ¼ 0
(left), ϕ¼ 3 percent
(center) and ϕ¼ 6
percent (right) for
(Ra)f¼ 104, T¼ 294
K and dp¼ 25 nm
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Figure 10.
Steady state velocity
(top) and
temperature profiles
(bottom) for ϕ¼ 0
(left), ϕ¼ 3 percent
(center) and ϕ¼ 6
percent (right) for
(Ra)f¼ 104, T¼ 324
K and dp¼ 25 nm
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Figure 11.
Steady state velocity

(top) and
temperature profiles
(bottom) for ϕ¼ 0
(left), ϕ¼ 3 percent
(center) and ϕ¼ 6
percent (right) for

(Ra)f¼ 105, T¼ 324
K and dp¼ 25 nm
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Figure 12.
Steady state velocity
(top) and
temperature profiles
(bottom) for ϕ¼ 0
(left), ϕ¼ 3 percent
(center) and ϕ¼ 6
percent (right) for
(Ra)f¼ 105, T¼ 324
K and dp¼ 100 nm
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Figure 13.
Steady state velocity

(top) and
temperature profiles
(bottom) for ϕ¼ 0
(left), ϕ¼ 3 percent
(center) and ϕ¼ 6
percent (right) for

(Ra)f¼ 105, T¼ 324
K and dp¼ 100 nm
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Appendix 1. PGD-based parametric solver
In this appendix, we illustrate the PGD by considering the following parametric heat transfer
equation:

@u
@t
�kDu�f¼ 0: (A1)

with homogeneous initial and boundary conditions. The enforcement of non-homogeneous initial
and boundary conditions was deeply treated in Gonzalez et al. (2010) and Chinesta et al. (2010b).

Here (x,t,k) ∈ Ω × I × ℑ, and the source term f is assumed constant. The conductivity k is
viewed as a new coordinate defined in the interval ℑ. Thus, instead of solving the thermal model
for different discrete values of the conductivity parameter, we wish to solve at once a more
general problem, the price to pay being an increase of the problem dimensionality. However, as
the complexity of the PGD scales only linearly (and not exponentially) with the space dimension,
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consideration of the conductivity as a new coordinate still allows one to efficiently obtain an
accurate solution.

The weak form related to Equation (A1) reads:Z
O�I�ℑ

unU
@u
@t
�kDu�f


 �
dx dt dk¼ 0; (A2)

for all test functions u* selected in an appropriate functional space.
The PGD solution is sought in the form:

u x; t; kð Þ �
XN
i¼1

Xi xð ÞUTi tð ÞUKi kð Þ: (A3)

At enrichment step n of the PGD algorithm, the following approximation is already known:

un x; t; kð Þ ¼
Xn
i¼1

Xi xð ÞUTi tð ÞUKi kð Þ: (A4)

We wish to compute the next functional product Xn+1(x)·Tn+1(t)·Kn+1(k), which we write as R(x)·
S(t)·W(k) for notational simplicity.

Thus, the solution at enrichment step n+1 reads:

unþ1 ¼ unþR xð ÞUS tð ÞUW kð Þ: (A5)

We propose the simplest choice for the test functions u* used in Equation (A2):

un ¼ Rn xð ÞUS tð ÞUW kð ÞþR xð ÞUSn tð ÞUW kð ÞþR xð ÞUS tð ÞUW n kð Þ: (A6)

With the trial and test functions given by Equations (A5) and (A6), respectively, Equation (A2) is
a non-linear problem that must be solved by means of a suitable iterative scheme. In our earlier
papers (Ammar et al., 2006, 2007), we used Newton’s method. Simpler linearization strategies can
also be applied, however. The simplest one is an alternating direction, fixed point algorithm,
which was found remarkably robust in the present context. Each iteration consists of three steps
that are repeated until reaching convergence, that is, until reaching the fixed point. The first step
assumes S(t) andW(k) known from the previous iteration and compute an update for R(x) (in this
case the test function reduces to R*(x)·S(t)·W(k)). From the just-updated R(x) and the previously
used W(k), we can update S(t) (with u*¼R(x)⋅S*(t)⋅W(k)). Finally, from the just computed R(x)
and S(t), we update W(k) (with u*¼R(x)⋅S(t)⋅W*(k)). This iterative procedure continues until
reaching convergence. The converged functions R(x), S(t) and W(k) yield the new functional
product of the current enrichment step: Xn+1(x)¼R(x), Tn+1(t)¼ S(t) and Kn+1(k)¼W(k).
The explicit form of these operations is described as follows.

Computing R(x) from S(t) and W(k).
We consider the weak form of Equation (A1):Z

O�I�ℑ
un

@u
@t
�kDu�f


 �
dx dt dk¼ 0: (A7)

here, the trial function is given by:

u x; t; kð Þ ¼
Xn
i¼1

Xi xð ÞUTi tð ÞUKi kð ÞþR xð ÞUS tð ÞUW kð Þ: (A8)

Since S and W are known from the previous iteration, the test function reads:

un x; t; kð Þ ¼ Rn xð ÞUS tð ÞUW kð Þ: (A9)
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Introducing (A8) and (A9) into (A7) yields:R
O�I�ℑR

nUSUWU RU@S@tUW�kUDRUSUW
� �

dx dt dk

¼ �RO�I�ℑR
nUSUWUℛndx dt dk;

(A10)

where Rn is the residual at enrichment step n:

Rn ¼
Xn
i¼1

XiU
@Ti

@t
UKi�

Xn
i¼1

kUDXiUTiUKi�f : (A11)

since all functions involving time and conductivity have been determined, we can integrate
Equation (A10) over I × ℑ. With the following notations:

w1 ¼
R
ℑW

2dk s1 ¼
R
I S

2dt r1 ¼
R
OR

2dx

w2 ¼
R
ℑkW

2dk s2 ¼
R
I SU

dS
dt dt r2 ¼

R
ORUDRdx

w3 ¼
R
ℑWdk s3 ¼

R
I Sdt r3 ¼

R
ORdx

wi
4 ¼

R
ℑWUKidk si4 ¼

R
I SU

dTi
dt dt ri4 ¼

R
ORUDXidx

wi
5 ¼

R
ℑkWUKidk si5 ¼

R
I SUTidt ri5 ¼

R
ORUXidx

2
666666664

3
777777775
; (A12)

Equation (A10) reduces to:R
OR

nU w1Us2UR�w2Us1UDRð Þdx

¼ �RORnU
Xn
i¼1

wi
4Us

i
4UXi�

Xn
i¼1

wi
5Us

i
5UDXi�w3Us3Uf

 !
dx:

(A13)

Equation (A13) defines in weak form an elliptic steady state boundary value problem for the
unknown function R that can be solved by using any suitable discretization technique (finite
elements, finite volumes, etc.). Another possibility consists in coming back to the strong form of
Equation (A13):

w1Us2UR�w2Us1UDR ¼ �
Xn
i¼1

wi
4Us

i
4UXi�

Xn
i¼1

wi
5Us

i
5UDXi�w3Us3Uf

 !
; (A14)

that can be solved by using any classical collocation technique (finite differences, SPH, etc.…).
Computing S(t) from R(x) and W(k).
In the present case, the test function is written as:

un x; t; kð Þ ¼ Sn tð ÞUR xð ÞUW kð Þ; (A15)

and the weak form becomes:R
O�I�ℑS

nURUWU RU@S@tUW�kUDRUSUW
� �

dx dt dk

¼ �RO�I�ℑS
nURUWURndx dt dk:

(A16)

Integrating over Ω×ℑ, one obtains:R
I S

nU w1Ur1UdSdt�w2Ur2US
� �

dt

¼ �RI SnU
Xn
i¼1

wi
4Ur

i
5U
dTi

dt
�
Xn
i¼1

wi
5Ur

i
4UTi�w3Ur3Uf

 !
dt:

(A17)
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Equation (A17) represents the weak form of the ODE defining the time evolution of the
field S that can be solved by using any stabilized discretization technique (SU, Discontinuous
Galerkin, etc.). The strong form of Equation (A17) reads:

w1Ur1U
dS
dt
�w2Ur2US ¼ �

Xn
i¼1

wi
4Ur

i
5U
dTi

dt
�
Xn
i¼1

wi
5Ur

i
4UTi�w3Ur3Uf

 !
: (A18)

Equation (A18) can be solved by using backward finite differences, or higher order Runge-Kutta
schemes, among many other possibilities.

Computing W(k) from R(x) and S(t).
The test function is now given by:

un x; t; kð Þ ¼ W n kð ÞUR xð ÞUS tð Þ; (A19)

and the weak form becomes:R
O�I�ℑW

nURUSU RU@S@tUW�kUDRUSUW
� �

dx dt dk

¼ �RO�I�ℑW
nURUSURndx dt dk

(A20)

Integration over Ω×I yields:R
ℑW

nU r1Us2UW�r2Us1UkUWð Þdk

¼ �RℑW nU
Xn
i¼1

ri5Us
i
4UKi�

Xn
i¼1

ri4Us
i
5UkUKi�r3Us3Uf

 !
dk:

(A21)

Equation (A21) does not involve any differential operator. The corresponding strong form reads:

r1Us2�r2Us1Ukð ÞUW ¼ �
Xn
i¼1

ri5Us
i
4�ri4Us

i
5Uk

� �
UKi�r3Us3Uf

 !
: (A22)

This is an algebraic problem, which is hardly a surprise since the original Equation (A1) does not
contain derivatives with respect to the parameter k. Introduction of the parameter k as additional
model coordinate does not increase the cost of a particular enrichment step. It does, however,
necessitate more enrichment steps, i.e. more terms (higher N) in the decomposition (A3).

We have seen that at each enrichment step the construction of the new functional product in
Equation (A3) requires non-linear iterations. If mi denotes the number of iterations needed at
enrichment step i, the total number of iterations involved in the construction of the PGD
approximation is m ¼Pi¼N

i¼1 mi . In the above example, the entire procedure thus involves the
solution of m 3D problems for the functions Xi(x), m 1D problems for the functions Ti(t) and m
algebraic systems for the functions Ki(k). In general, m rarely exceeds ten. The number N of
functional products needed to approximate the solution with enough accuracy depends on the
solution regularity. All numerical experiments carried to date reveal that N ranges between a few
tens and 100. Thus, we can conclude that the complexity of the PGD procedure to compute the
approximation (A3) is of some tens of 3D steady state problems (the cost related to the 1D and
algebraic problems being negligible with respect to the 3D problems). In a classical approach, one
must solve for each particular value of the parameter k a 3D problem at each time step. In usual
applications, this often implies the computation of several millions of 3D solutions. Clearly, the
CPU time savings by applying the PGD can be of several orders of magnitude.

Appendix 2. Dimensionless Rayleigh-Benard problem
Let’s be the mass, momentum and energy balances:
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rUv¼ 0

r @v
@tþvUrv� � ¼ �rpþrUtþrUgUbU T�Trð Þj

@T
@t þvUrT ¼ aUr2T

8><
>: (A23)

where v is the velocity field, p is the pressure, T the temperature, D the strain rate tensor
(symmetric component of the velocity gradient), α the thermal diffusivity (α¼ (k)/(ρ·Cp), k being
the thermal conductivity – assumed isotropic, ρ the density and Cp the specific heat), τ the
deviatoric part of the Cauchy’s stress tensor, g the gravity’s acceleration, β the expansion
coefficient, Tr a reference temperature and j the unit vector defining the y-direction along which
the gravity applies.

The constitutive equation for a Newtonian fluid reads:

t¼ 2UZUD (A24)

The dimensionless form of these equations is performed by considering the following relations,
in which the star superscript refers to the dimensionless variables:

x ¼ xnUH

t ¼ tnU H

gUbHUDTð Þ12

v ¼ vnU gUbHUDTð Þ12
p ¼ pnU gUbHUDTð ÞUr
T ¼ yUDTþTr

8>>>>>>><
>>>>>>>:

(A25)

where H is the length of the square cavity in which the flow takes place, ΔT the temperature
difference between the upper and the bottom boundaries having temperatures Tc and TH
(THWTC), respectively. In this work we considered Tr ¼ TCþTHð Þ=2.

By introducing relations (A25) into the balance Equations (A23) and making use of the
dimensionless Prandtl (Pr) and Rayleigh (Ra) numbers, the first defined from the ratio of
momentum diffusivity to thermal diffusivity, and the second one related with buoyancy-driven
flows:

Pr ¼ 2UZUCp

k

Ra ¼ gUbUH 3UDTUr
2UZUa

8<
: (A26)

by omitting star superscripts the dimensionless Rayleigh-Benard model finally writes:

rUv¼ 0

@v
@tþvUrv ¼ �rpþ Pr

Ra

� �1
2
UrUDþyj

@y
@tþvUry ¼ PrURað Þ�1

2Ur2y

8>>><
>>>:

(A27)

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com
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