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Shape Gradient for Image and
Video Segmentation

S. Jehan-Besson, A. Herbulot, M. Barlaud,
G. Aubert

ABSTRACT In this chapter, we propose to concentrate on the research of
an optimal domain with regards to a global criterion including region and
boundary functionals. A local shape minimizer is obtained through the evo-
lution of a deformable domain in the direction of the shape gradient. Shape
derivation tools, coming from shape optimization theory, allow us to easily
differentiate region and boundary functionals. We more particularly focus
on region functionals involving region-dependent features that are globally
attached to the region. A general framework is proposed and illustrated by
many examples involving functions of parametric or non parametric prob-
ability density functions (pdfs) of image features. Among these functions,
we notably study the minimization of information measures such as the
entropy for the segmentation of homogeneous regions or the minimization
of the distance between pdfs for tracking or matching regions of interest.
Keywords: active contours, active regions, region functionals, boundary
functionals, shape optimization, shape gradient, segmentation, tracking,
Image statistics, non parametric statistics, parzen window, entropy, dis-
tance between pdfs.

1 Introduction

Active contours are powerful tools for image and video segmentation or
tracking. They can be formulated in the framework of variational methods.
The basic principle is to construct a PDE (Partial Differential Equation)
from an energy criterion, including usually both region and boundary func-
tionals. This PDE changes the shape of the current curve according to some
velocity field which can be thought of as a descent direction of the energy
criterion. Given a closed curve enclosing an initial region, one then com-
putes the solution of this PDE for this initial condition. The corresponding
family of curves decreases the energy criterion and converges toward a (lo-
cal) minimum of the criterion hopefully corresponding to the objects to be
segmented.

Originally, snakes [26], balloons [8] or geodesic active contours [3] are
driven towards the edges of an image through the minimization of a bound-
ary integral of features depending on edges. Active contours driven by the
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minimization of region functionals in addition to boundary functionals have
appeared later. Introduced by [9] and [34], they have been further developed
in [37, 5, 7, 32, 31, 14, 36]. Actually, the use of active contours for the op-
timization of a criterion including both region and boundary functionals
appears to be powerful.

However, the PDE computation is not trivial when the energy criterion
involves region functionals. This is mostly due to the fact that the set of
image regions does not have a structure of vector space, preventing us to
use in a straightforward fashion gradient descent methods. To circumvent
this problem, we propose to take benefit of shape derivation principles de-
veloped by [35, 15]. This computation becomes more involved when global
information about regions is present in the energy criterion, the so-called
region-dependent case. It happens when statistical features of a region such
as, for example, the mean or the variance of the intensity, are involved in
the minimization. In this chapter, we propose a general framework based
on shape derivation tools for the computation of the related evolution equa-
tion. Inside this theoretical framework, many descriptors based on paramet-
ric or non parametric pdfs of image features may be studied. We propose
to give some results for both of them and some examples of applications.

Region and boundary functionals are presented in section 2 while shape
derivation tools are presented in section 3. Statistical region-dependent
descriptors based on parametric and non parametric probability density
functions (pdfs) are studied in section 4.

2 Problem Statement

In many image processing problems, the issue is to find a set of image
regions that minimize a given error criterion. The basic idea of active con-
tours is to compute a Partial Differential Equation (PDE) that will drive
the boundary of an initial region towards a local minimum of the error
criterion. The key point is to compute the velocity vector at each point of
the boundary at each time instant.

To fix ideas, in the two-dimensional case, the evolving boundary, or active
contour, is modeled by a parametric curve Γ(s, τ) = (x1(s, τ), x2(s, τ)),
where s may be its arc-length and τ is an evolution parameter. The active
contour is then driven by the following PDE:

Γτ
def
=

∂Γ

∂τ
= v with Γ(τ = 0) = Γ0,

where Γ0 is an initial curve defined by the user and v the velocity vector
of Γ(s, τ). This velocity is the unknown that must be differentiated from
an error criterion so that the solution Γ(., τ) converges towards a curve
achieving a local minimum and thus, hopefully, towards the boundary of
the object to be segmented, as τ → ∞.
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Following the pioneer work of Mumford Shah [30], a segmentation prob-
lem may be formulated through the minimization of a criterion including
both region and boundary functionals. Let U be a class of domains of R

n,
and Ω an element of U of boundary ∂Ω. A boundary functional, Jb, may
be expressed as a boundary integral of some scalar function kb of image
features:

Jb(∂Ω) =

∫

∂Ω

kb(x, ∂Ω) da(x) (1.1)

where ∂Ω is the boundary of the region and da its area element.
The most classical example of boundary functional comes from the work of
Caselles et al [3], where the authors minimize for an image in 2D:

J(∂Ω) =

∫

∂Ω

g(|∇I(∂Ω(s))|)ds

where s represents the arc length of the curve ∂Ω and g(r) = 1
1+rm , m = 1

or 2. The function g drives the curve towards the image edges characterized
by high values of the image gradient.

A region functional, J , may be expressed as an integral, in a domain Ω
of U , of some function k of some region features:

J(Ω) =

∫

Ω

k(x,Ω)dx (1.2)

Let us note that the scalar function k in (1.2) is generally region-dependent.
A classical example of region-dependent descriptor is the following one
proposed by [5, 14]:

k(x,Ω) = (I(x) − µ(Ω))2

where µ(Ω) represents the mean of the intensity values within the region Ω.
This dependency on the region must be taken into account when searching
for a local minimum of the functional.

Generally one uses a linear combination of region-based and contour-
based terms in order to perform a segmentation task. A simple example is
the segmentation into two regions Ωin and Ωout, which basically correspond
to objects and background. An appropriate energy functional for this task
would be:

J(Ωin,Ωout) =

∫

Ωin

kin(x,Ωin) dx+

∫

Ωout

kout(x,Ωout) dx+

∫

∂Ωin

kb(x) ds

where kin is the descriptor for the object region, kout for the background
region and kb the descriptor for the contour.

The choice of the descriptors is dependent on the application. In this
article we propose to focus on statistical descriptors based on paramet-
ric or non parametric pdfs. Once this choice is made the terms have to
be derived in order to calculate a velocity function that drives an initial
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contour towards a minimum. A detailed state of the art on region-based
active contours can be found in [24]. Let us briefly note that some authors
do not compute the theoretical expression of the velocity field but choose
a deformation of the curve that will make the criterion decrease [4, 7].
Other authors [37, 31] compute the theoretical expression of the velocity
vector from the Euler-Lagrange equations. The computation is performed
in two main steps. First, region integrals representing region functionals
are transformed into boundary integrals using the Green-Riemann theo-
rem. Secondly, the corresponding Euler-Lagrange equations are derived,
and used to define a dynamic scheme in order to make evolve the initial
region. Another alternative is to keep the region formulation to compute
the gradient of the energy criterion with respect to the region instead of
reducing region integrals to boundary integrals. In [14], the authors pro-
pose to compute the derivative of the criterion while taking into account
the discontinuities across the contour. In [23, 24] the computation of the
evolution equation is achieved through shape derivation principles.

This computation becomes more difficult for region-dependent descrip-
tors. It happens when statistical features of a region such as, for example,
the mean or the variance of the intensity, are involved in the minimization.
This case has been studied in [5, 14, 36, 28, 13]. In [23, 24] the authors
show that the minimization of functionals involving region-dependent fea-
tures can induce additional terms in the evolution equation of the active
contour that are important in practice. These additional terms are easily
computed thanks to shape derivation tools.

In the following, we present shape derivation tools for the computation
of the evolution equation.

3 From shape derivation tools towards
region-based active contours models

As far as the derivation is concerned, two main difficulties must be solved.
First, the set of image regions, i.e. the set of regular open domains in R

n,
denoted by U , does not have a structure of vector space, preventing us from
using in a straightforward fashion gradient descent methods. To circumvent
this problem, shape derivation methods [35, 15] can be brought to bear on
the problem as detailed in this section. Secondly, the descriptors kr or kb

may be region or boundary-dependent. Such a dependence must be taken
into account in the derivation of the functionals as pointed out in [23, 24, 1,
17]. We here recall a theorem giving relation between derivatives that will
be helpful for derivation of region functionals for both region-independent
and region-dependent descriptors. We also give some details and references
for the derivation of boundary-based terms using shape derivation tools.
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3.1 Shape derivation tools

3.1.1 Introduction of transformations

As it has already been pointed out, the optimization of the region functional
J(Ω) is difficult since U does not have the structure of a vector space.
Variations of a domain must then be defined in some way. Let us consider
a reference domain Ω ∈ U and the set Â of applications T : Ω → R

n, which
are at least as regular as homeomorphisms (i.e. one to one with T and T−1

continuous). We define

Â =
{

T one to one, T, T−1 ∈ W 1,∞(Ω, Rn)
}

where:

Wn,∞(Ω, Rn) = {T : Ω → R
n such that

T ∈ L∞(Ω, Rn) and ∂iT ∈ L∞(Ω, Rn), i = 1, · · · , n}

Given a shape function F : U → R
+, for T ∈ Â, let us define F̂ (T ) =

F (T (Ω)). The key point is that W 1,∞(Ω, Rn) is a Banach space. This allows
us to define the notion of derivative with respect to the domain Ω as follows:

DEFINITION 1 F is Gâteaux differentiable with respect to Ω if and only
if F̂ is Gâteaux differentiable with respect to T .

In order to compute Gâteaux derivatives with respect to T we introduce a
family of deformation (T (τ))τ≥0 such that T (τ) ∈ Â for τ ≥ 0, T (0) = Id,
and T (.) ∈ C1([0, A];W 1,∞(Ω, Rn), A > 0.

For a point x ∈ Ω, we denote:

x(τ) = T (τ,x) with T (0,x) = x

Ω(τ) = T (τ,Ω) with T (0,Ω) = Ω

Let us now define the velocity vector field V corresponding to T (τ) as

V(τ,x) =
∂T

∂τ
(τ,x) ∀x ∈ Ω ∀τ ≥ 0

3.1.2 Relations between the derivatives

We now introduce two main definitions:

DEFINITION 2 The Gâteaux derivative of J(Ω) =
∫

Ω
f(x,Ω)dx in the

direction of V, noted dJr(Ω,V), is equal to:

dJr(Ω,V) = lim
τ→0

J(Ω(τ)) − J(Ω)

τ

This derivative is called the Eulerian derivative.
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DEFINITION 3 The shape derivative of k(x,Ω), noted ks(x,Ω,V ), is
equal to:

ks(x,Ω,V) = lim
τ→0

k(x,Ω(τ)) − k(x,Ω)

τ

The following theorem gives a relation between the Eulerian derivative and
the shape derivative for the region functional (1.2). The proof can be found
in [35, 15], an elementary one is provided in [24] for completeness.

THEOREM 1 The Eulerian derivative of the functional J(Ω) =
∫

Ω
k(x,Ω) dx

in the direction of V is the following:

dJr(Ω,V) =

∫

Ω

ks(x,Ω,V)dx −
∫

∂Ω

k(x,Ω)(V(x) · N(x))da(x)

where N is the unit inward normal to ∂Ω and da its area element.

Note that Theorem 1 provides a necessary condition for a domain Ω̂ to
be an extremum of J(Ω):

∫

Ω̂

ks(x, Ω̂,V)dx −
∫

∂Ω̂

k(x, Ω̂)(V(x) · N(x)) da(x) = 0 ∀V.

3.2 Derivation of boundary-based terms

In the case of boundary-independent descriptors, the Eulerian derivative of
Jb =

∫

∂Ω
kb(x)da(x) in the direction vn = (V · N) is the following:

dJb(∂Ω, vn) =

∫

∂Ω

(∇kb(x) · N − kb(x)κ)(V · N)da (1.3)

where κ is the mean curvature of ∂Ω.
From this Eulerian derivative, we can deduce the following evolution

equation for the active contour:

Γτ = (kb(x)κ −∇kb(x) · N)N with Γ(τ = 0) = Γ0. (1.4)

This evolution equation has been computed by Caselles et al [3] by using
techniques of calculus of variations.

As far as boundary-dependent descriptors are concerned, the dependence
on the boundary must be taken into account for the computation of the
Eulerian derivative. In [17], the authors studied the following descriptor
which represents the distance between the current boundary ∂Ω and a
reference one ∂Ωref :

kb = d(∂Ω, ∂Ωref ).

The authors compute the evolution equation and they show that some
terms appear coming from the dependency of the descriptor with the bound-
ary. This descriptor has been used for the introduction of shape prior for
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segmentation. Let us note that the introduction of shape priors for segmen-
tation using active contours has also been studied by [33, 11, 12]. Let us
also note that in [22], the authors remind some theorems for the computa-
tion of the Eulerian derivative of boundary-dependent descriptors and in
[6], the authors deal with shape metrics following considerations developed
in [15].

3.3 Derivation of region-based terms

Let us now apply the previous results to differentiate the velocity vector of
the active contour.

3.3.1 Region-independent descriptors

We first consider the simple case where the function k does not depend on
Ω, i.e. k = k(x). In that case, the shape derivative ks is equal to zero and
the Eulerian derivative of J is simply (Theorem 1):

dJr(Ω,V) = −
∫

∂Ω

k(x)(V(x) · N(x))da(x)

This leads to the following evolution equation for region-independent de-
scriptors:

Γτ = kN with Γ(τ = 0) = Γ0.

This is the classical result [37, 31] when k has no region dependency. Let us
now consider the more general case where the function k has some region
dependency.

3.3.2 Region-dependent descriptors

Region-dependent descriptors of the form Jr(Ω) =
∫

Ω
k(x,Ω)dx are more

complicated to differentiate. Using Theorem 1 one can obtains a derivative
of the following form [24, 1] for some of them (see section 4):

dJr(Ω,V) = −
∫

∂Ω

(

k(x,Ω) + A(x,Ω)
)

(V · N) da (1.5)

This leads to the following evolution equation for these region-dependent
descriptors:

Γτ = (k + A)N with Γ(τ = 0) = Γ0.

The term A(x,Ω) is a term that comes from the region-dependence and
so from the evaluation of the shape derivative ks. We here propose a gen-
eral framework for deriving some region-dependent descriptors based on
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parametric or non parametric statistics. The principle is to model region-
dependent descriptors as follows:

J(Ω) =

∫

Ω

k(x, G(Ω)) dx, where G(Ω) =

∫

Ω

H(x,Ω) dx (1.6)

As shown in this equation, the function H is itself region-dependent, more
precisely:

H(x,Ω)
def
= H(x,K(Ω)) , and K(Ω) =

∫

Ω

L(x) dx (1.7)

Note that we have stopped the process at the second level but it could con-
ceivably continue. We have chosen this special case of dependency because
it often arises in applications, as shown in sections 4.2 and 4.1.

THEOREM 2 The Eulerian derivative in the direction of V of the func-
tional J defined in (1.9) is:

drJ(Ω,V) = −
∫

∂Ω

(A(x,Ω) + k(x,Ω)) (V(x) · N(x))da(x)

where :

A(x,Ω) =

(
∫

Ω

kG(x, G(Ω)) dx

) (

L(x)

∫

Ω

HK(x,K(Ω)) dx + H(x,K(Ω))

)

The terms kG and HK denote respectively the partial derivative of the func-
tion k and H with respect to their second argument.

Proof: According to Theorem 1, we have:

drJ(Ω,V) =

∫

Ω

ks dx −
∫

∂Ω

k (V · N)da(x)

Let us first compute the shape derivative of k. From the chain rule we get:

ks(x,Ω,V) = kG(x, G)drG(Ω,V), (1.8)

where kG denotes the partial derivative of the function k with respect to
its second argument.

Next we compute the Eulerian derivative of G in the direction of V. We
apply again Theorem 1, and we get:

drG(Ω,V) =

∫

Ω

Hs dx −
∫

∂Ω

H (V · N)da(x).

Plugging this into (1.8), we obtain:

∫

Ω

ks dx =

(
∫

Ω

kG(x, G(Ω)) dx

) (
∫

Ω

Hs dx −
∫

∂Ω

H(V · N)da(x)

)

,
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We also compute the shape derivative of H thanks to Theorem 1:

Hs(x,Ω,V) = HK(x,K)drK(Ω,V)

The Eulerian derivative of K in the direction of V is given by:

drK(Ω,V) =

∫

Ω

Ls dx −
∫

∂Ω

L(x)(V (x) · N(x))da(x)

Since L does not depend on Ω, we obtain Ls = 0 and we get the result.

We can now state the result for the general case where k is described as a
linear combination or region functionals as follows:

J(Ω) =

∫

Ω

k(x, G1(Ω), G2(Ω), .., Gm(Ω)) dx, (1.9)

where the functionals Gi are given by Gi(Ω) =
∫

Ω
Hi(x,Ω) dx i = 1..m.

As shown in this equation, the function Hi is itself region-dependent, more
precisely:

Hi(x,Ω)
def
= Hi(x,Ki1(Ω),Ki2(Ω), ..,Kili(Ω)) (1.10)

where Kij(Ω) =

∫

Ω

Lij(x) dx j = 1..li i = 1..m. (1.11)

We have chosen this special case of dependency because it often arises in
applications, as shown in sections 4.2 and 4.1.

THEOREM 3 The Eulerian derivative in the direction of V of the func-
tional J defined in (1.9) is:

drJ(Ω,V) = −
∫

∂Ω

(A(x,Ω) + k(x,Ω)) (V · N)da.

where A(x,Ω) =
∑m

i=1 Di

∑li
j=1(Bij Lij(x)) +

∑m
i=1(Di Hi),

and Di =

∫

Ω

kGi
(x,G1(Ω), .., Gm(Ω)) dx i = 1..m

Bij =

∫

Ω

HiKij
(x,Ki1(Ω), ..,Kili(Ω)) dx i = 1..m j = 1..li

4 Segmentation using Statistical Region-dependent
descriptors

In this section, we are interested in the minimization of the region functional
(1.2) for region-dependent descriptors. The general framework introduced
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in section 3.3.2 allows us to compute the derivative and the evolution equa-
tion for many descriptors based on parametric or non parametric statistics.
Some examples of computation are given for descriptors based on paramet-
ric statistics in section 4.1, while a general computation of the derivative
is proposed for non parametric statistics in section 4.2.

Let us first introduce some notations and some examples of region-
dependent descriptors. We note f(x) the feature of interest of the image
at location x. This feature may be the intensity of the image, the motion
vector, a shape descriptor and is a function f : Ωf → R

m where Ωf ⊂ R
2 is

the image domain and m is the dimension of the feature. If f is the image
intensity, m = 1 for grayscale images and m = 3 for color images. If f is a
motion vector, m = 2.

When considering the pdf of f within the region, denoted by q(f(x),Ω),
we can choose the following general descriptor for segmentation:

k(x,Ω) = ϕ(q(f(x),Ω)) (1.12)

When minimizing the -log-likelihood function for independent and identi-
cally distributed observations (iid) f(x), we have:

ϕ(q(f(x),Ω)) = − ln(q(f(x),Ω) (1.13)

When minimizing the entropy function, we get:

ϕ(q(f(x),Ω)) = −q(f(x),Ω) ln(q(f(x),Ω) (1.14)

The concept entropy designates the average quantity of information car-
ried out by a feature [10]. Intuitively the entropy represents some kind of
diversity of a given feature.

These descriptors may be chosen to characterize the homogeneity of a
region according to the feature. In both cases, the pdf may be parametric,
i.e. it follows a prespecified law (Gaussian, Rayleigh ...) or non parametric.
In the last case, no assumption are made on the underlying distribution.

As far as parametric pdfs are concerned, the descriptor (1.13) has first
been introduced by [37] for the segmentation of homogeneous regions using
region-based active contours and further developed by [31, 29]. In the case
of parametric pdfs, the probability density function q is indexed by one or
more parameters, denoted by a vector θ, describing the distribution model.
For example, when using a one dimensional Gaussian distribution, we get:

qθ(f(x),Ω)) =
1√
2πσ

exp
−(f(x) − µ)2

2σ2

where θ = [µ σ]T . The term µ and σ represent respectively the mean and the
variance of the scalar feature f within the region Ω. Note that the param-
eters of the distribution depend on Ω and that such a dependence must be
taken into account during the derivation process. Some other descriptors for
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segmentation are derived from the development of the expression (1.13) for
Gaussian distributions. For example, the descriptor k(x,Ω) = (I(x) − µ)2

has been proposed by [5] for the segmentation of homogeneous regions, and
the descriptor k(x,Ω) = %(σ2) by [24].

As far as non parametric pdfs are concerned, the expression of the pdf q

is given by the Parzen method [16]:

q(f(x),Ω) =
1

|Ω|

∫

Ω

K(f(x) − f(x̂)) dx̂ (1.15)

where K is the Gaussian kernel of the estimation with 0-mean and σ-
variance and |Ω| the shape area. Non parametric pdfs have been introduced
in region-based active contours in [1] for the minimization of the distance
between two pdfs and in [28] for the minimization of information measures.
The general descriptor (1.12) has been studied in [20, 21] and the descriptor
(1.13) has been studied by [28, 27, 2].

4.1 Examples of Descriptors based on parametric statistics

In the case of parametric pdfs, the probability density function q is in-
dexed by one or more parameters, denoted by a vector θ, describing the
distribution model. The parameters θ depend on the domain Ω and such a
dependence must be taken into account in the derivation process through
the evaluation of the domain derivative. We propose here to give some
results for the derivation of functions depending on simple statistical pa-
rameters such as the mean or the variance. This study can be extended to
the derivation of the covariance matrix determinant.

4.1.1 Region-dependent descriptors using the mean

For a one-dimensional image feature f , let us choose:

k(x,Ω) = %(f(x) − µ) = %(f(x) − 1

|Ω|

∫

Ω

f(x) dx) (1.16)

where % : R → R+ is a positive function of class C1. The region functional
can be expressed as in equation (1.9):

J(Ω) =

∫

Ω

k(x,Ω) dx =

∫

Ω

%(f(x) − µ) dx =

∫

Ω

%(f(x) − G1(Ω)

G2(Ω)
) dx,

where

G1(Ω) =

∫

Ω

H1(x,Ω) dx =

∫

Ω

f(x) dx and G2(Ω) =

∫

Ω

H2(x,Ω) dx =

∫

Ω

1dx

In this case, the functions Hi, i = 1, 2 do not depend on the region Ω,
l1 = l2 = 0 and Kij(x) = 0 ∀i, j. The terms Dj , j = 1, 2 can then be
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computed:

D1 = −
∫

Ω
1

G2

%′
(

f(x) − G1

G2

)

dx = −1
|Ω|

∫

Ω
%′(f − µ)dx

D2 =
∫

Ω
G1

(G2)2
%′

(

f(x) − G1

G2

)

dx = µ
|Ω|

∫

Ω
%′(f − µ)dx

The terms Bij are equal to zero and the velocity vector of the active contour
is then:

Γτ =

[

k − (f − µ)

|Ω|

∫

Ω

%′(f − µ)dx

]

N

In this example, the term coming from the region dependency of f is equal

to (f−µ)
|Ω|

∫

Ω
%′(f − µ)dx. Note that in the particular case of %(r) = r2, this

term is equal to zero [5, 14].

4.1.2 Region-dependent descriptors based on the variance

Let us take another example of descriptor for one dimensional image fea-
ture. Consider the case where the function k is a function of the variance
given by:

k(x,Ω) = %(σ2) = %

(

1

|Ω|

∫

Ω

(f(x) − µ)2
)

= %

(

G1(Ω)

G2(Ω)

)

where % : R+ → R+ is of class C1.
We can then compute the velocity vector of the active contour from

Theorem 3 using:

G1(Ω) =

∫

Ω

H1(x,Ω) dx , H1(x,Ω) =

(

f(x) − K11

K12

)2

, l1 = 2,

G2(Ω) =

∫

Ω

H2(x,Ω) dx , H2(x,Ω) = 1, l2 = 0 ,

and we find:

Γτ =
[

k + %′(σ2)
(

(f − µ)2 − σ2
)]

N.

In this simple example, we notice that the dependency of the function on
the region induces the term A(x,Ω) = %′(σ2)

(

(f(x) − µ)2 − σ2
)

in the
evolution equation, see [24] for details.

This result can be extended to a descriptor based on the covariance ma-
trix determinant for multidimensional image features f = [f1, f2, ..., fn]T .
It can be a useful tool for the segmentation of homogeneous regions since
minimizing the entropy is equivalent to minimize the determinant of the co-
variance matrix in the case of Gaussian distributions [19, 18]. The evolution
equation can be computed using Theorem 3. Details of the computation as
well as experimental results for the segmentation of the face in color video
sequences may be found in [24] .
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4.2 Descriptors based on non parametric statistics

4.2.1 Region-dependent descriptors based on non parametric pdfs of
image features

We consider the following descriptor, where ϕ is a function: R
+ → R

+ and
q is given by (1.15):

k(x,Ω) = ϕ
(

q(f(x),Ω)
)

(1.17)

THEOREM 4 The Eulerian derivative in the direction V of the func-
tional J(Ω) =

∫

Ω
k(x,Ω)dx where k is defined in (1.17) is:

dJr(Ω,V) = −
∫

∂Ω

(

k(x,Ω) + A(x,Ω)
)

(V · N) da(x)

where A(x,Ω) = − 1

|Ω|

[
∫

Ω

ϕ′(q(f(x̂),Ω))[q(f(x̂),Ω) − K(f(x̂) − f(x))]dx̂

]

Proof: The criterion is differentiated using the methodology developed
in section 3.3.2. We have:

J(Ω) =

∫

Ω

ϕ
(G1(x,Ω)

G2(Ω)

)

dx =

∫

Ω

f(G1(x,Ω), G2(Ω))dx

with G1(x,Ω) =

∫

Ω

H1(x, x̂,Ω) dx̂ , H1(x, x̂,Ω) = K(f(x) − f(x̂)),

G2(Ω) =

∫

Ω

H2(x̂,Ω) dx̂ , H2(x̂,Ω) = 1 ,

These results can then be used for segmentation using information mea-
sures such as the entropy or the mutual information [20, 21]. If we choose
to minimize the entropy as in [20], ϕ(q) = −q ln(q). In Figure 1, an ex-
ample of segmentation of an osteoporosis image is given by minimizing
J(Ωin,Ωout) = E(Ωin)+E(Ωout)+λ

∫

Γ
ds where E(Ωin) and E(Ωout) rep-

resent respectively the entropy of the one-dimensional feature f(x) = I(x)
inside and outside the curve and λ

∫

Γ
ds is the classical regularization term

that minimizes the curve length balanced with a positive parameter λ. The
Figure 1 shows the evolution of the segmentation and the evolution of the
associated histograms (of the region Ωin and Ωout) during iterations. Fig-
ure 2 shows an example of segmentation of color video by minimizing the
joint entropy of a two dimensional feature f(x) = [Y (x), U(x)]T , where Y

is the luminance and U is the chrominance. The joint entropy is computed
by using the joint probabilities between each color channel. In Figure 2, we
can see the evolution of the object histogram (histogram inside the region
Ωin).
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FIGURE 1. Evolution of segmentation and histograms with the minimization of
the entropy for a grayscale image (f = I)

4.2.2 Minimization of the distance between pdfs for tracking

We next assume that we have a function ϕ : R
+ × R

+ → R
+ which allows

us to compare two pdfs. This function is small if the pdfs are similar and
large otherwise. It allows us to introduce the following functional which
represents the ”distance” between the two histograms:

D(Ω) =

∫

Rm

ϕ(q̂(f ,Ω), q(f ,Ωref )) df (1.18)

The distance can be for example the Hellinger distance when ϕ(q̂, q) =
(√

q̂ −√
q
)2

. Using the tools developed in section 3.3.2, we can compute
the Eulerian derivative of the functional D. We have the

THEOREM 5 The Eulerian derivative in the direction V of the func-
tional D defined in (1.18) is:

drD(Ω,V) = − 1

| Ω |

∫

∂Ω

(

∂1ϕ(q̂(.,Ω), q(.,Ωref ))∗K(f(x))−C(Ω)
)

(V·N)da(x) ,

where ∂1ϕ(., .) is the derivative of ϕ according to ist first variable and
C(Ω) =

∫

Rm ∂1ϕ(q̂(f ,Ω), q(f ,Ωref ))q̂(f ,Ω) df . The first term under the
integral, ∂1ϕ(q̂(.,Ω), q(.,Ωref )) ∗ K, is the convolution of the function
∂1ϕ(q̂(.,Ω), q(.,Ωref )) : R

m → R with the kernel K.

A proof of this theorem can be found [1, 25]. An example of tracking is
given in Figure 3 for a two-dimensional image feature f(x) = [H(x), V (x)]T ,
where H is the hue and V is the value of the color system HSV .



1. Shape Gradient for Image and Video Segmentation 15

c. Initial curve d. Iteration 100 e. Final curve

f. Initial histogram g. Iteration 100 h. Final histogram

FIGURE 2. Evolution of segmentation and the associated object histogram (his-
togram of the two components color of the region inside the curve) with the
minimization of the joint entropy

a. Reference segmentation b. Initial curve c. Iteration 200 d. Final curve

e. Reference histogram f. Init. histogram g. It. 200 h. Final histogram

FIGURE 3. Example of tracking using the minimization between the current
histogram and a reference one. Figure a represents the reference segmentation and
Figure e the associated reference object histogram. Figures b, c and d show the
evolution of the curve and Figures f , g, h the evolution of the object histogram.

5 Discussion

In this article, we focus on the problem of finding local minima of a large
class of region and boundary functionals by applying methods of shape
derivation [15, 35]. We more particularly turn our attention to region-based
functionals involving region-dependent descriptors. We propose a general
methodology to derive region-based functionals based on parametric or non
parametric pdfs. To illustrate our framework, some examples of derivation
and computation of the evolution equation are given for parametric and
non parametric statistical descriptors.
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